Skip to main content

Processes of Soil Carbon Dynamics and Ecosystem Carbon Cycling in a Changing World

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

Climate change is evident and increases of carbon dioxide concentration (CO2), temperature and extreme weather events are predicted. To predict the effects of such changes on carbon (C) cycling, the processes and mechanisms determining the magnitude of C storage and fluxes must be well understood. The biggest challenge is nowadays to quantify belowground components of the C-cycle. Soil respiration accounts for ∼70% of total annual ecosystem respiration. However, the CO2 flux from soil originates from several sources, such as root respiration, rhizomicrobial respiration, mineralization of litter and mineralization of soil organic matter (SOM). Increasing atmospheric CO2 concentrations will generally increase plant growth, thus C-input to soil. This higher C-input will be accompanied by higher SOM mineralization due to warming. However, mineralization of more stable pools may be affected more by warming compared to mineralization of labile pools. The importance of cropland management is demonstrated in a model scenario. Crop residue incorporation increased C-storage in the soil markedly. However, under the assumption of a higher temperature sensitivity of mineralization of stable C-pools the net-sink of C under recommended management practice is severely reduced. Precise predictions are hampered due to the lack of quantitative, mechanistic knowledge. It is discussed that a more interdisciplinary scientific approach will increase the speed in generating urgently needed understanding of belowground processes of C-cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGBDM:

Aboveground biomass dry matter

AUR:

Acid unsoluble residue

BIO:

Microbial biomass, model pool in RothC

C:

Carbon

CH4 :

Methane

CI:

Confidence interval

CO2 :

Carbon dioxide

CO2-fert:

Max-CC and CO2 fertilization of crops, climate scenario for the modelling example

CON:

Control treatment in the Puch experiment

DJF:

December, January, February

DPM:

Decomposable plant material, model pool in RothC

ETP:

Evapotranspiration

FACE:

Free air carbon dioxide enrichment

GHG:

Greenhouse gas

GPP:

Gross primary production

HUM:

Humified organic matter, model pool in RothC

IOM:

Inert organic matter, model pool in RothC

IOSDV:

“Internationale organische Stickstoff-Dauerdüngungsversuche” (German) International organic long-term nitrogen fertilization experiment

JJA:

June, July, August

MAM:

March, April, May

MAP:

Mean annual precipitation

MAT:

mean annual temperature

Max-CC:

Maximal climate change, climate scenario for the modelling example

MRT:

Mean residence time

N:

Nitrogen

NECB:

Net ecosystem carbon balance

NEP:

Net ecosystem production

No-CC:

No climate change climate, scenario for the modelling example

NPP:

Net primary production

OM:

Organic matter

ppm:

Parts per million

RA:

Respiration by autotrophic organisms

RE:

Ecosystem respiration

RES:

Residue incorporation treatment in the Puch experiment

RH:

Respiration by heterotrophic organisms

RMSE:

Root mean square error

RPM:

Resistant plant material model pool in RothC

SOC:

Soil organic carbon

SOM:

soil organic matter

SON:

September October, November

References

  • Abiven S, Recous S, Reves V et al (2005) Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality. Biol Fert Soils 42:119–128

    Article  CAS  Google Scholar 

  • Abiven S, Menasseri S, Chenu C (2009) The effects of organic inputs over time on soil aggregate stability – A literature analysis. Soil Biol Biochem 41:1–12

    Article  CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Anderson T-H, Heinemeyer WH-J (2011) Changes in the fungal-to-bacterial respiratory ratio and microbial biomass in agriculturally managed soils under free-air CO(2) enrichment (FACE): a six-year survey of a field study. Soil Biol Biochem 43:895–904

    Article  CAS  Google Scholar 

  • Baguis P, Roulin E, Willems P et al (2010) Climate change scenarios for precipitation and potential evapotranspiration over central Belgium. Theor Appl Climatol 99:273–286

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492

    Article  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710

    Article  CAS  Google Scholar 

  • Baldock JA, Masiello CA, Gelinas Y et al (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64

    Article  CAS  Google Scholar 

  • Balesdent J (1996) The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur J Soil Sci 47:485–493

    Article  CAS  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53:215–230

    Article  Google Scholar 

  • Bapiri A, Bååth E, Rousk J (2010) Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microb Ecol 60:419–428

    Article  PubMed  Google Scholar 

  • Barot S, Blouin M, Fontaine S et al (2007) A tale of four stories: soil ecology, theory evolution and the publication system. PloS One 2(11):e124810

    Article  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter – decomposition, humus formation carbon sequestration. Springer, Berlin

    Google Scholar 

  • Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Blagodatsky S, Dorodnikov M et al (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Glob Chang Biol 16:836–848

    Article  Google Scholar 

  • Böttcher J (2004) Uncertainties of nonlinearly estimated parameters from incubations of soil organic matter. J Plant Nut Soil Sci 167:293–302

    Article  Google Scholar 

  • Bottner P, Couteaux MM, Anderson JM et al (2000) Decomposition of C-13-labelled plant material in a European 65–40 degrees latitudinal transect of coniferous forest soils: simulation of climate change by translocation of soils. Soil Biol Biochem 32:527–543

    Article  CAS  Google Scholar 

  • Burdon J (2001) Are the traditional concepts of the structures of humic substances realistic? Soil Sci 166:752–769

    Article  CAS  Google Scholar 

  • Cannel MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot 85:45–54

    Article  CAS  Google Scholar 

  • Chapin F, Woodwell G, Randerson J et al (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystem 9:1041–1050

    Article  CAS  Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52:345–353

    Article  CAS  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Coleman K, Jenkinson DS (1999) ROTHC-26.3 a model for the turnover of carbon in soil. IACR, Rothamsted

    Google Scholar 

  • Conant RT, Ryan MG, Agren GI et al (2011) Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glob Chang Biol 17:3392–3404

    Article  Google Scholar 

  • Conway T, Tans P (2011) Trends in atmospheric carbon dioxide. NOAA/ESRL. http://www.esrl.noaa.gov/gmd/ccgg/trends. Accessed 27 Nov 2011

  • Cotrufo MF, Ngao J, Marzaioli F et al (2010) Inter-comparison of methods for quantifying above-ground leaf litter decomposition rates. Plant Soil 334:365–376

    Article  CAS  Google Scholar 

  • Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3:854–857

    Article  CAS  Google Scholar 

  • Dagesse D (2011) Effect of freeze-drying on soil aggregate stability. SSSA J 75:2111–2121

    CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • de Graaff M-A, van Groenigen K-J, Six J et al (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091

    Article  Google Scholar 

  • Denef K, Six J, Merckx R et al (2002) Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant Soil 246:185–200

    Article  CAS  Google Scholar 

  • Derenne S, Largeau C (2001) A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Sci 166:833–847

    Article  CAS  Google Scholar 

  • Dilkes NB, Jones DL, Farrar J (2004) Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiol 134:706–715

    Article  PubMed  CAS  Google Scholar 

  • Domanski G, Kuzyakov Y, Siniakina SV et al (2001) Carbon flows in the rhizosphere of ryegrass (Lolium perenne). J Plant Nut Soil Sci 164:381–387

    Article  CAS  Google Scholar 

  • Drake JE, Gallet-Budynek A, Hofmockel KS et al (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357

    Article  PubMed  Google Scholar 

  • Ellerbrock RH, Hohn A, Gerke HH (1999) Characterization of soil organic matter from a sandy soil in relation to management practice using FT-IR spectroscopy. Plant Soil 213:55–61

    Article  CAS  Google Scholar 

  • Ellert BH, Janzen HH, VandenBygaart AJ et al (2008) Measuring change in soil organic carbon storage. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis. Taylor & Francis, Boca Raton

    Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. SSSA J 50:627–633

    Google Scholar 

  • Eusterhues K, Rumpel C, Kleber M et al (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34:1591–1600

    Article  CAS  Google Scholar 

  • Feng XJ, Simpson MJ (2008) Temperature responses of individual soil organic matter components. J Geophys Res Biogeosci 113

    Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. SSSA J 67:798–805

    CAS  Google Scholar 

  • Fierer N, Grandy AS, Six J et al (2009) Searching for unifying principles in soil ecology. Soil Biol Biochem 41:2249–2256

    Article  CAS  Google Scholar 

  • Fischer H, Meyer A, Fischer K et al (2007) Carbohydrate and amino acid composition of dissolved organic matter leached from soil. Soil Biol Biochem 39:2926–2935

    Article  CAS  Google Scholar 

  • Flessa H, Ludwig B, Heil B et al (2000) The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by C-13 natural abundance. J Plant Nut Soil Sci 163:157–163

    Article  CAS  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L et al (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Article  Google Scholar 

  • Fontaine S, Barot S, Barre P et al (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–U210

    Article  PubMed  CAS  Google Scholar 

  • Franko U (1997) Modellierung des Umsatzes der organischen Bodensubstanz. Arch Acker Pfl Boden 41:527–547

    CAS  Google Scholar 

  • Friedlingstein P, Cox P, Betts R et al (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM et al (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Gillabel J, Cebrian-Lopez B, Six J et al (2010) Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob Chang Biol 16:2789–2798

    Article  Google Scholar 

  • Golchin A, Oades J, Skjemstad J et al (1994) Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy. Aust J Soil Res 32:285–309

    Article  CAS  Google Scholar 

  • Golchin A, Oades JM, Skjemstad JO et al (1995) Structural and dynamic properties of soil organic-matter as reflected by C-13 natural-abundance, pyrolysis mass-spectrometry and solid-state C-13 NMR-spectroscopy in density fractions of an Oxisol under forest and pasture. Aust J Soil Res 33:59–76

    Article  Google Scholar 

  • Gu L, Post WM, King AW (2004) Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Glob Biogeochem Cycle 18:GB1022

    Article  CAS  Google Scholar 

  • Haile-Mariam S, Collins HP, Wright S et al (2008) Fractionation and long-term laboratory incubation to measure soil organic matter dynamics. SSSA J 72:370–378

    CAS  Google Scholar 

  • Hammes K, Schmidt MWI, Smernik RJ et al (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob Biogeochem Cycle 21:GB3016

    Article  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT et al (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochem 48:115–146

    Article  CAS  Google Scholar 

  • Harmon ME, Silver WL, Fasth B et al (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Chang Biol 15:1320–1338

    Article  Google Scholar 

  • Hege U, Offenberger K (2006) Effect of differentiated mineral fertilization and organic manuring on yield, product quality and N balances in the International Permanent Organic Nitrogen Fertilization Experiment (IOSDV). Puch Arch Agron Soil Sci 52:535–550

    Article  CAS  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  PubMed  CAS  Google Scholar 

  • Heinze S, Raupp J, Joergensen RG (2010) Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 328:203–215

    Article  CAS  Google Scholar 

  • Heitkamp F, Raupp J, Ludwig B (2009) Impact of fertilizer type and rate on carbon and nitrogen pools in a sandy Cambisol. Plant Soil 319:259–275

    Article  CAS  Google Scholar 

  • Heitkamp F, Raupp J, Ludwig B (2011) Effects of fertilizer type and rate on labile soil fractions of a sandy Cambisol – long term and short-term dynamics. J Plant Nut Soil Sci 174:121–127

    Article  CAS  Google Scholar 

  • Heitkamp F, Jäger N, Flessa H et al (2012a) Effect of fertilization on respiration from different sources in a sandy Cambisol of an agricultural long-term experiment. Arch Agron Soil Sci. doi:10.1080/03650340.2011.555762

  • Heitkamp F, Wendland M, Offenberger K et al (2012b) Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model. Geoderma 170:168–175

    Article  CAS  Google Scholar 

  • Helfrich M, Ludwig B, Buurman P et al (2006) Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state C-13 NMR spectroscopy. Geoderma 136:331–341

    Article  CAS  Google Scholar 

  • Hickler T, Smith B, Prentice IC et al (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob Chang Biol 14:1531–1542

    Article  Google Scholar 

  • Hugh HAL (2007) Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biol Biochem 39:977–986

    Article  CAS  Google Scholar 

  • Jacob M, Viedenz K, Polle A et al (2010) Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164:1083–1094

    Article  PubMed  Google Scholar 

  • Jacobs A, Helfrich M, Dyckmans J et al (2011) Effects of residue location on soil organic matter turnover: results from an incubation experiment with 15N-maize. J Plant Nut Soil Sci 174:634–643

    Article  CAS  Google Scholar 

  • Jäger N, Stange CF, Ludwig B et al (2011) Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments-a laboratory study. Biol Fert Soils 47:483–494

    Article  CAS  Google Scholar 

  • Jensen LS, Salo T, Palmason F et al (2005) Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant Soil 273:307–326

    Article  CAS  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Article  Google Scholar 

  • Kiem R, Kögel-Knabner I (2002) Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions <6 μm. Org Geochem 33:1699–1713

    Article  CAS  Google Scholar 

  • Kim D-G, Vargas R, Bond-Lamberty B et al (2011) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosci Discuss 8:9847–9899

    Article  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming in soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic matter decomposition – still a topic of debate. Soil Biol Biochem 38:2510–2518

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IC, House JI et al (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  PubMed  CAS  Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M et al (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nut Soil Sci 171:61–82

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2011) How to link soil C pools with CO2 fluxes? Biogeosciences 8:1523–1537

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16:3386–3406

    Article  Google Scholar 

  • Kuzyakov Y, Larionova AA (2005) Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J Plant Nut Soil Sci 168:503–520

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H et al (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Lamparter A, Bachmann J, Goebel M-O et al (2009) Carbon mineralization in soil: Impact of wetting-drying, aggregation and water repellency. Geoderma 150:324–333

    Article  CAS  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ et al (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  PubMed  CAS  Google Scholar 

  • Ledford H (2008) Forestry carbon dioxide projects to close down. Nature 456:289–289

    Article  PubMed  CAS  Google Scholar 

  • Leifeld J, Fuhrer J (2005) The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75:433–453

    Article  CAS  Google Scholar 

  • Leuschner C, Jungkunst HF, Fleck S (2009) Functional role of forest diversity: pros and cons of synthetic stands and across-site comparisons in established forests. Basic Appl Ecol 10:1–9

    Article  Google Scholar 

  • Ludwig B, Schulz E, Rethemeyer J et al (2007) Predictive modelling of C dynamics in the long-term fertilization experiment at Bad Lauchstädt with the Rothamsted Carbon model. Eur J Soil Sci 58:1155–1163

    Article  CAS  Google Scholar 

  • Lundquist EJ, Scow KM, Jackson LE et al (1999) Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol Biochem 31:1661–1675

    Article  CAS  Google Scholar 

  • MacCarthy P (2001) The principles of humic substances. Soil Sci 166:738–751

    Article  CAS  Google Scholar 

  • Manderscheid R, Pacholski A, Weigel H-J (2010) Effect of free air carbon dioxide enrichment combined with two nitrogen levels on growth, yield and yield quality of sugar beet: Evidence for a sink limitation of beet growth under elevated CO(2). Eur J Agric 32:228–239

    Article  CAS  Google Scholar 

  • Martens DA (2000) Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol Biochem 32:361–369

    Article  CAS  Google Scholar 

  • Matzner E, Borken W (2008) Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur J Soil Sci 59:274–284

    Article  Google Scholar 

  • Melin E (1930) Biological decomposition of some types of litter from north American forests. Ecology 11:72–101

    Article  CAS  Google Scholar 

  • Muhr J, Goldberg SD, Borken W et al (2008) Repeated drying-rewetting cycles and their effects on the emission of CO2, N2O, NO, and CH4 in a forest soil. J Plant Nutr Soil Sci 171:719–728

    Article  CAS  Google Scholar 

  • Navarro-García F, Casermeiro MÁ, Schimel JP (2012) When structure means conservation: Effect of aggregate structure in controlling microbial responses to rewetting events. Soil Biol Biochem 44:1–8

    Article  CAS  Google Scholar 

  • Oades JM (1984) Soil organic-matter and structural stability – mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400

    Article  Google Scholar 

  • Paul EA, Morris SJ, Conant RT et al (2006) Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools? SSSA J 70:1023–1035

    CAS  Google Scholar 

  • Piccolo A, Spaccini R, Haberhauer G et al (1999) Increased sequestration of organic carbon in soil by hydrophobic protection. Naturwissenschaften 86:496–499

    Article  PubMed  CAS  Google Scholar 

  • Potthoff M, Dyckmans J, Flessa H et al (2005) Dynamics of maize (Zea mays L.) leaf straw mineralization as affected by the presence of soil and the availability of nitrogen. Soil Biol Biochem 37:1259–1266

    Article  CAS  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC et al (2009) Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–811

    Article  CAS  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Reichstein M, Bednorz F, Broll G et al (2000) Temperature dependence of carbon mineralisation: conclusions from a long-term incubation of subalpine soil samples. Soil Biol Biochem 32:947–958

    Article  CAS  Google Scholar 

  • Rillig MC, Allen MF (1999) What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza 9:1–8

    Article  Google Scholar 

  • Rochette P, Angers DA, Flanagan LB (1999) Maize residue decomposition measurement using soil surface carbon dioxide fluxes and natural abundance of carbon-13. SSSA J 63:1385–1396

    CAS  Google Scholar 

  • Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211

    Article  CAS  Google Scholar 

  • Rovira P, Kurz-Besson C, Couteaux MM et al (2008) Changes in litter properties during decomposition: a study by differential thermogravimetry and scanning calorimetry. Soil Biol Biochem 40:172–185

    Article  CAS  Google Scholar 

  • Rühlmann J (1999) A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiment. Plant Soil 213:149–160

    Article  Google Scholar 

  • Rumpel C, Koegel-Knabner I (2011) Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  • Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27

    Article  Google Scholar 

  • Schenck zu Schweinsberg-Mickan M, Joergensen RG, Mueller T (2010) Fate of 13C- and 15N-labelled rhizodeposition of Lolium perenne as function of the distance to the root surface. Soil Biol Biochem 42:910–918

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nat Geosci 478:49–56

    CAS  Google Scholar 

  • Schmitt A, Glaser B, Borken W et al (2008) Repeated freeze-thaw cycles changed organic matter quality in a temperate forest soil. J Plant Nut Soil Sci 171:707–718

    Article  CAS  Google Scholar 

  • Schulze E-D, Luyssaert S, Ciais P et al (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. CarboEuropeTeam 2:842–850

    CAS  Google Scholar 

  • Seifert A-G, Trumbore S, Xu X et al (2011) Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation. Geochim Cosmochim Acta 75:2557–2570

    Article  CAS  Google Scholar 

  • Sierra J (1990) Analysis of soil nitrogen mineralization as estimated by exponential models. Soil Biol Biochem 22:1151–1153

    Article  CAS  Google Scholar 

  • Siewert C (2004) Rapid screening of soil properties using thermogravimetry. SSSA J 68:1656–1661

    CAS  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Google Scholar 

  • Smith P, Smith JU, Powlson DS et al (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225

    Article  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Solomon S, Qin D, Manning DAC et al (2007) Climate change 2007: the physical science basis – contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Teepe R, Brumme R, Beese F (2001) Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biol Biochem 33:1269–1275

    Article  CAS  Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic-matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Trofymow JA, Moore TR, Titus B et al (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res-Revue Canadienne De Recherche Forestiere 32:789–804

    Article  Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Chang Biol 12:141–153

    Article  Google Scholar 

  • Trumbore SE, Czimczik CI (2008) An uncertain future for soil carbon. Science 321:1455–1456

    Article  PubMed  CAS  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    Article  PubMed  CAS  Google Scholar 

  • Vanhala P, Karhu K, Tuomi M et al (2007) Old soil carbon is more temperature sensitive than the young in an agricultural field. Soil Biol Biochem 39:2967–2970

    Article  CAS  Google Scholar 

  • Vicca S, Janssens IA, Flessa H et al (2009) Temperature dependence of greenhouse gas emissions from three hydromorphic soils at different groundwater levels. Geobiology 7:465–476

    Article  PubMed  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition – what do we know? Biol Fert Soils 46:1–15

    Article  Google Scholar 

  • von Lützow M, Kogel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67:235–248

    Article  CAS  Google Scholar 

  • Wall DH, Bradford MA, St John MG et al (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Chang Biol 14:2661–2677

    Google Scholar 

  • Wang Y, Hsieh Y-P (2002) Uncertainties and novel prospects in the study of the soil carbon dynamics. Chemosphere 49:791–804

    Article  PubMed  CAS  Google Scholar 

  • Werth M, Kuzyakov Y (2008) Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C. Soil Biol Biochem 40:625–637

    Article  CAS  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. SSSA J 66:1930–1946

    CAS  Google Scholar 

  • Wetterstedt JAM, Persson T, Agren GI (2010) Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Glob Chang Biol 16:1806–1819

    Article  Google Scholar 

  • Wiseman CLS, Puttmann W (2005) Soil organic carbon and its sorptive preservation in central Germany. Eur J Soil Sci 56:65–76

    Article  CAS  Google Scholar 

  • Wutzler T, Reichstein M (2008) Colimitation of decomposition by substrate and decomposers – a comparison of model formulations. Biogeosciences 5:749–759

    Article  CAS  Google Scholar 

  • Yoo G, Yang XM, Wander MM (2011) Influence of soil aggregation on SOC sequestration: a preliminary model of SOC protection by aggregate dynamics. Ecol Eng 37:487–495

    Article  Google Scholar 

  • Yuste JC, Nagy M, Janssens IA et al (2005) Soil respiration in a mixed temperate forest and its contribution to total ecosystem respiration. Tree Physiol 25:609–619

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y et al (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol-UK 1:85–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Heitkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heitkamp, F., Jacobs, A., Jungkunst, H.F., Heinze, S., Wendland, M., Kuzyakov, Y. (2012). Processes of Soil Carbon Dynamics and Ecosystem Carbon Cycling in a Changing World. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_18

Download citation

Publish with us

Policies and ethics