Skip to main content
Log in

The Temperature Response of CO2 Production from Bulk Soils and Soil Fractions is Related to Soil Organic Matter Quality

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The projected increase in global mean temperature could accelerate the turnover of soil organic matter (SOM). Enhanced soil CO2 emissions could feedback on the climate system, depending on the balance between the sensitivity to temperature of net carbon fixation by vegetation and SOM decomposition. Most of the SOM is stabilised by several physico-chemical mechanisms within the soil architecture, but the response of this quantitatively important fraction to increasing temperature is largely unknown. The aim of this study was to relate the temperature sensitivity of decomposition of physical and chemical soil fractions (size fractions, hydrolysis residues), and of bulk soil, to their quality and turnover time. Soil samples were taken from arable and grassland soils from the Swiss Central Plateau, and CO2 production was measured under strictly controlled conditions at 5, 15, 25, and 35 °C by using sequential incubation. Physico-chemical properties of the samples were characterised by measuring elemental composition, surface area, 14C age, and by using DRIFT spectroscopy. CO2 production rates per unit (g) organic carbon (OC) strongly varied between samples, in relation to the difference in the biochemical quality of the substrates. The temperature response of all samples was exponential up to 25 °C, with the largest variability at lower temperatures. Q10 values were negatively related to CO2 production over the whole temperature range, indicating higher temperature sensitivity of SOM of lower quality. In particular, hydrolysis residues, representing a more stabilised SOM pool containing older C, produced less CO2 g−1 OC than non-hydrolysed fractions or bulk samples at lower temperatures, but similar rates at ≥25 °C, leading to higher Q10 values than in other samples. Based on these results and provided that they apply also to other soils it is suggested that because of the higher sensitivity of passive SOM the overall response of SOM to increasing temperatures might be higher than previously expected from SOM models. Finally, surface area measurements revealed that micro-aggregation rather than organo-mineral association mainly contributes to the longer turnover time of SOM isolated by acid hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G.I. Ågren E. Bosatta (2002) ArticleTitleReconciling differences in predictions of temperature response of soil organic matter Soil Biol. Biochem. 34 129–132 Occurrence Handle10.1016/S0038-0717(01)00156-0

    Article  Google Scholar 

  • B. Allard J. Templier J. Largeau (1997) ArticleTitleArtifactual origin of mycobacterial bacteran Formation of melanoidin-like artifact macromolecular material during the usual isolation process. Org. Geochem. 26 691–703

    Google Scholar 

  • J.M. Anderson (1991) ArticleTitleThe effects of climate change on decomposition processes in grassland and coniferous forests Ecol. Appl. 1 326–347

    Google Scholar 

  • R. Bol T. Bolger R. Cully D. Little (2003) ArticleTitleRecalcitrant soil organic matter mineralize more efficiently at higher temperatures J. Plant Nutr. Soil Sci. 166 300–307 Occurrence Handle10.1002/jpln.200390047

    Article  Google Scholar 

  • Bolin B. and Sukumar R. 2000. Global perspective. In: Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verardo D.J. and Dokken D.J. (eds), Land use, Land-use Change, and Forestry. A Special Report of the IPCC. Cambridge University Press, pp. 23--51.

  • E. Bosatta G.I. Ågren (1999) ArticleTitleSoil organic matter quality interpreted thermodynamically Soil Biol. Biochem. 31 1889–1891 Occurrence Handle10.1016/S0038-0717(99)00105-4

    Article  Google Scholar 

  • I.C. Burke C.M. Yonker W.J. Parton C.V. Cole K. Flach D.S. Schimel (1989) ArticleTitleTextureclimateand cultivation effects on soil organic-matter content in US grassland soils Soil Sci. Soc. Am. J. 53 800–805

    Google Scholar 

  • G.A. Buyanovsky M. Aslam G.H. Wagner (1994) ArticleTitleCarbon turnover in soil physical fractions Soil Sci. Soc. Am. J. 58 1167–1173

    Google Scholar 

  • J. Curiel Yuste I.A. Janssens A. Carrara R. Ceulemans (2004) ArticleTitleAnnual Q 10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity Glob. Change Biol. 10 161–169 Occurrence Handle10.1111/j.1529-8817.2003.00727.x

    Article  Google Scholar 

  • P. Dalias J.M. Anderson P. Bottner M.M. Couteaux (2001) ArticleTitleTemperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions Glob. Change Biol. 7 181–192 Occurrence Handle10.1046/j.1365-2486.2001.00386.x

    Article  Google Scholar 

  • E.A. Davidson S.E. Trumbore R. Amundson (2000) ArticleTitleSoil warming and organic carbon content Nature 408 789–790 Occurrence Handle10.1038/35048672 Occurrence Handle11130707

    Article  PubMed  Google Scholar 

  • H. Dorr K.O. Munnich (1986) ArticleTitleAnnual variations of the C-14 content of soil CO2 Radiocarbon 28 338–345

    Google Scholar 

  • R.H. Ellerbrock A. Hohn J. Rogasik (1999) ArticleTitleFunctional analysis of soil organic matter as affected by long-term manurial treatment Eur. J. Soil Sci. 50 65–71 Occurrence Handle10.1046/j.1365-2389.1999.00206.x

    Article  Google Scholar 

  • P. Falloon P. Smith K. Coleman S. Marshall (1998) ArticleTitleEstimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted Carbon Model Soil Biol. Biochem. 30 1207–1211 Occurrence Handle10.1016/S0038-0717(97)00256-3

    Article  Google Scholar 

  • P. Falloon P. Smith (2000) ArticleTitleModelling refractory soil organic matter Biol. Fertil. Soils 30 388–398 Occurrence Handle10.1007/s003740050019

    Article  Google Scholar 

  • C. Fang P. Smith J.B. Moncrieff J.U. Smith (2005) ArticleTitleSimilar response of labile and resistant soil organic matter pools to changes in temperature Nature 433 57–59 Occurrence Handle10.1038/nature03138 Occurrence Handle15635408

    Article  PubMed  Google Scholar 

  • C.P. Giardina M. Ryan (2000) ArticleTitleEvidence that decomposition rates of organic carbon in mineral soil do not vary with temperature Nature 404 858–861 Occurrence Handle10.1038/35009076 Occurrence Handle10786789

    Article  PubMed  Google Scholar 

  • L. Gu W.M. Post A.W. King (2004) ArticleTitleFast labiel carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysis Glob. Biogeochem. Cycles 18 GB1022 Occurrence Handle10.1029/2003GB002119

    Article  Google Scholar 

  • J. Hassink (1995) ArticleTitleDecomposition rate constants of size and density fractions of soil organic-matter Soil Sci. Soc. Am. J. 59 1631–1635

    Google Scholar 

  • H.W. Hunt (1977) ArticleTitleSimulation model for decomposition in grasslands Ecology 58 469–484

    Google Scholar 

  • H. Jenny (1980) The Soil Resource. Ecological Studies 37 Springer Verlag N.Y

    Google Scholar 

  • T. Kätterer M. Reichstein O. Andren A. Lomander (1998) ArticleTitleTemperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models Biol. Fertil. Soils 27 258–262 Occurrence Handle10.1007/s003740050430

    Article  Google Scholar 

  • K. Kaiser G. Guggenberger (2003) ArticleTitleMineral surfaces and soil organic matter Eur. J. Soil Sci. 54 219–236 Occurrence Handle10.1046/j.1365-2389.2003.00544.x

    Article  Google Scholar 

  • M.U.F. Kirschbaum (1995) ArticleTitleThe temperature-dependence of soil organic matter decomposition, and the effect of global warming on soil organic-C storage Soil Biol. Biochem. 27 753–760 Occurrence Handle10.1016/0038-0717(94)00242-S

    Article  Google Scholar 

  • W. Knorr I.C. Prentice J.I. House E.A. Holland (2005) ArticleTitleLong-term sensitivity of soil carbon turnover to warming Nature 433 298–301 Occurrence Handle10.1038/nature03226 Occurrence Handle15662420

    Article  PubMed  Google Scholar 

  • I. Kögel-Knabner (1997) ArticleTitleC-13 and N-15 NMR spectroscopy as a tool in soil organic matter studies Geoderma 80 243–270 Occurrence Handle10.1016/S0016-7061(97)00055-4

    Article  Google Scholar 

  • S.W. Leavitt R.F. Follett E.A. Paul (1996) ArticleTitleEstimation of slow- and fast-cycling soil organic carbon pools from 6N HCl hydrolysis Radiocarbon 38 231–239

    Google Scholar 

  • J. Leifeld (2003) ArticleTitleComments on “Recalcitrant soil organic materials mineralize more efficiently at higher temperatures” by R. Bol, T. BolgerR. Cully, and D. Little; Journal of Plant Nutrition and Soil Science 166: 300–307(2003) J. Plant Nutr. Soil Sci. 166 777–778 Occurrence Handle10.1002/jpln.200320001

    Article  Google Scholar 

  • J. Leifeld I. Kögel-Knabner (2005) ArticleTitleSoil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma 124 143–155 Occurrence Handle10.1016/j.geoderma.2004.04.009

    Article  Google Scholar 

  • J. Leifeld S. Bassin J. Fuhrer (2005) ArticleTitleCarbon stocks in Swiss agricultural soils predicted by land-usesoil characteristics, and altitude Agric. Ecosyst. Environ. 105 255–266 Occurrence Handle10.1016/j.agee.2004.03.006

    Article  Google Scholar 

  • Leinweber P. 1995. Organische Substanzen in Partikelgrößenfraktionen: Zusammensetzung, Dynamik und Einfluß auf Bodeneigenschaften. Vechtaer Studien zur Angewandten Geographie und RegionalwissenschaftBand 15. Vechtaer Druckerei und Verlag Vechta.

  • J. Liski H. Ilvesniemi A. Mäkelä C.J. Westman (1999) ArticleTitleCO2 emissions from soil in response to climatic warming are overestimated – the decomposition of old soil organic matter is tolerant of temperature Ambio 28 171–174

    Google Scholar 

  • J. Lloyd J.A. Taylor (1994) ArticleTitleOn the temperature dependence of soil respiration Funct. Ecol. 8 315–323

    Google Scholar 

  • J.M. Melillo P.A. Steudler J.D. Aber K. Newkirk H. Lux F.P. Bowles C. Catricala A. Magill T. Ahrens S. Morisseau (2002) ArticleTitleSoil warming and carbon-cycle feedbacks to the climate system Science 298 2173–2176 Occurrence Handle10.1126/science.1074153 Occurrence Handle12481133

    Article  PubMed  Google Scholar 

  • J. Niemeyer Y. Chen J.M. Bollag (1992) ArticleTitleCharacterization of humic acids, composts, and peat by Diffuse Reflectance Fourier-Transform Infrared-Spectroscopy Soil Sci. Soc. Am. J. 56 135–140

    Google Scholar 

  • W.J. Parton J.W.B. Stewart C.V. Cole (1988) ArticleTitleDynamics of C, NP and S in grassland soils – a Model Biogeochemistry 5 109–131 Occurrence Handle10.1007/BF02180320

    Article  Google Scholar 

  • N. Poirier S. Derenne J.-N. Rouzaud C. Largeau A. Mariotti J. Balesdent J. Maquet (2000) ArticleTitleChemical structure and sources of the macromolecularresistantorganic fraction isolated from a forest soil (Lacadéesouth-west France) Org. Geochem 31 813–827 Occurrence Handle10.1016/S0146-6380(00)00067-X

    Article  Google Scholar 

  • M. Reichstein F. Bednorz G. Broll T. Katterer (2000) ArticleTitleTemperature dependence of carbon mineralisation: Conclusions from a long-term incubation of subalpine soil samples Soil Biol. Biochem. 32 947–958 Occurrence Handle10.1016/S0038-0717(00)00002-X

    Article  Google Scholar 

  • J.L. Sarmiento N. Gruber (2002) ArticleTitleSinks for anthropogenic carbon Phys. Today 55 30–36

    Google Scholar 

  • P. Sollins P. Homann B.A. Caldwell (1996) ArticleTitleStabilization and destabilization of soil organic matter: Mechanisms and controls Geoderma 74 65–105 Occurrence Handle10.1016/S0016-7061(96)00036-5

    Article  Google Scholar 

  • L.H. Sorensen (1981) ArticleTitleCarbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay Soil Biol. Biochem. 13 313–321 Occurrence Handle10.1016/0038-0717(81)90068-7

    Article  Google Scholar 

  • J.H.M. Thornley M.G.R. Cannell (2001) ArticleTitleSoil carbon storage response to temperature: an hypothesis Ann. Bot. 87 591–598 Occurrence Handle10.1006/anbo.2001.1372

    Article  Google Scholar 

  • A.R. Townsend P.M. Vitousek S.E. Trumbore (1995) ArticleTitleSoil organic matter dynamics along gradients in temperature and land-use on the Island of Hawaii Ecology 76 721–733

    Google Scholar 

  • S. Trumbore (2000) ArticleTitleAge of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics Ecol. Applic. 10 399–411

    Google Scholar 

  • Trumbore S., Bonani G. and Wölfli W. 1990. The rates of carbon cycling in several soils from AMS 14C measurements of fractionated soil organic matter. In: Bowuman A.F. (ed.), Soils and the Greenhouse Effect. John Wiley and Sons Ltd, pp. 407--141.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Leifeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leifeld, J., Fuhrer, J. The Temperature Response of CO2 Production from Bulk Soils and Soil Fractions is Related to Soil Organic Matter Quality. Biogeochemistry 75, 433–453 (2005). https://doi.org/10.1007/s10533-005-2237-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-2237-4

Keywords

Navigation