Skip to main content

Advertisement

Log in

Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In the Darmstadt long-term fertilization trial, the application of composted cattle farmyard manure without (CM) and with (CMBD) biodynamic preparations was compared to mineral fertilization with straw return (MIN). The present study was conducted to investigate the effects of spatial variability, especially of soil pH in these three treatments, on soil organic matter and soil microbial biomass (C, N, P, S), activity (basal CO2 production and O2 consumption), and fungal colonization (ergosterol). Soil pH was significantly lower in the MIN treatments than in the organic fertilizer treatments. In the MIN treatments, the contents of soil organic C and total N were also significantly lower (13% and 16%, respectively) than those of the organic fertilizer treatments. In addition, the total S content increased significantly in the order MIN < CM < CMBD. The microbial biomass C content was significantly lower (9%) in the MIN treatments than in the organic fertilizer treatments. Microbial biomass N and biomass P followed microbial biomass C, with a mean C/N ratio of 7.9 and a mean C/P ratio of 23. Neither the microbial biomass C to soil organic C ratio, the metabolic quotient qCO2, nor the respiratory quotient (mol CO2/mol O2) revealed any clear differences between the MIN and organic fertilizer treatments. The mean microbial biomass S content was 50% and the mean ergosterol content was 40% higher in the MIN treatments compared to the organic fertilizer treatments. The increased presence of saprotrophic fungi in the MIN treatments was indicated by significantly increased ratios of ergosterol-to-microbial biomass C and the microbial biomass C/S ratio. Our results showed that complex interactions between the effects of fertilizer treatments and natural heterogeneity of soil pH existed for the majority of microbial biomass and activity indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abele U (1987) Produktqualität und Düngung - mineralisch, organisch, biologisch-dynamisch. Schriftenreihe des Bundesministers für Ernährung, Landwirtschaft und Forsten. Heft 345. Münster Hiltrup

  • Allison MF, Killham K (1988) Response of microbial biomass to straw incorporation. J Soil Sci 39:237–242

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic-C in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  • Bachinger J (1996) Der Einfluss unterschiedlicher Düngerarten (mineralisch, organisch, biologisch-dynamisch) auf die zeitliche Dynamik und räumliche Verteilung von bodenchemischen und -mikrobiologischen Parametern der C- und N-Dynamik sowie auf das Pflanzen- und Wurzelwachstum vom Winterroggen. Schriftenreihe: Band 7. IBDF, Darmstadt

  • Banerjee MR, Chapman SJ (1996) The significance of microbial biomass sulphur in soil. Biol Fertil Soils 22:116–125

    Article  CAS  Google Scholar 

  • Birkhofer K, Bezemer TM, Bloem J, Bonkowski M, Christensen S, Dubois D, Ekelund F, Fließbach A, Gunst L, Hedlund K, Mäder P, Mikola J, Robin C, Setälä H, Tatin-Froux F, van der Putten WH, Scheu S (2008) Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308

    Article  CAS  Google Scholar 

  • Blöschel G (2006) Geostatistische Methoden bei der hydrologischen Regionalisierung. Wiener Mitteilungen Band 197:21–39

    Google Scholar 

  • Böhme L, Langer U, Böhme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109:141–152

    Article  Google Scholar 

  • Bonmati M, Ceccanti B, Nanniperi P (1991) Spatial variability of phosphatase, urease, protease, organic carbon and total nitrogen in soil. Soil Biol Biochem 23:391–396

    Article  CAS  Google Scholar 

  • Bowen RM, Harper SHT (1990) Decomposition of wheat straw and related compounds by fungi isolated from straw in arable soils. Soil Biol Biochem 22:393–399

    Article  Google Scholar 

  • Brookes PC, Polwson DS, Jenkinson DS (1982) Measurement of microbial phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Bruun S, Christensen BT, Hansen EM, Magid J, Jensen LS (2003) Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments. Soil Biol Biochem 35:67–76

    Article  CAS  Google Scholar 

  • Chan KY, Heenan DP (1999) Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci Soc Am J 63:1841–1844

    CAS  Google Scholar 

  • Chander K, Hartmann G, Joergensen RG, Khan KS, Lamersdorf N (2008) Comparison of three methods for measuring heavy metals in soils contaminated by different sources. Arch Agron Soil Sci 54:413–422

    Article  CAS  Google Scholar 

  • Chapman SJ (1987) Microbial sulphur in some Scottish soils. Soil Biol Biochem 19:301–305

    Article  CAS  Google Scholar 

  • Cheshire MV, Bedrock CN, Williams BL, Chapman SJ, Solntseva I, Thomsen I (1999) The immobilization of nitrogen by straw decomposing in soil. Eur J Soil Sci 50:329–341

    Article  Google Scholar 

  • Christensen BT (1988) Effects of animal manure and mineral fertilizer on the total carbon and nitrogen contents of soil size fractions. Biol Fertil Soils 5:304–307

    Article  Google Scholar 

  • Christensen BT (1996) The Askov long-term experiments on animal manure and mineral fertilizers. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models. NATO ASI Series, 38 I, Springer, Berlin, pp 301–312

    Google Scholar 

  • Dilly O (2001) Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol Biochem 33:117–127

    Article  CAS  Google Scholar 

  • Dilly O (2003) Regulation of the respiratory quotient of soil microbiota by availability of nutrients. FEMS Microbiol Ecol 43:375–381

    Article  CAS  PubMed  Google Scholar 

  • Dilly O (2005) Microbial energetics in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: Roles in genesis and functions. Springer, Berlin, pp 123–138

    Chapter  Google Scholar 

  • Djajakirana G, Joergensen RG, Meyer B (1996) Ergosterol and microbial biomass relationship in soil. Biol Fertil Soils 22:299–304

    Article  CAS  Google Scholar 

  • Edmeades DC (2003) The long-term effect of manures and fertilizers on soil productivity and quality: A review. Nutr Cycl Agroecosyst 66:165–180

    Article  CAS  Google Scholar 

  • Elfstrand S, Hedlund K, Mårtensson A (2007) Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl Soil Ecol 35:610–621

    Article  Google Scholar 

  • Ellmer F, Peschke H, Köhn W, Chmielewski FM, Baumecker M (2000) Tillage and fertilizing effects on sandy soils. Review and selected results of long-term experiments at Humboldt-University Berlin. J Plant Nutr Soil Sci 163:267–272

    Article  CAS  Google Scholar 

  • Eriksen J, Mortensen JV (1999) Soil sulphur status following long-term annual application of animal manure and mineral fertilizers. Biol Fertil Soils 28:416–421

    Article  Google Scholar 

  • FAO-WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No 103. FAO, Rome

    Google Scholar 

  • Fließbach A, Oberholzer HR, Gunst L, Mäder P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284

    Article  Google Scholar 

  • Guerrero C, Moral R, Gómez I, Zornoza R, Arcenegui V (2007) Microbial biomass and activity of an agricultural soil amended with the solid phase of pig slurries. Biores Technol 98:3259–3264

    Article  CAS  Google Scholar 

  • Haynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 51:123–137

    Article  Google Scholar 

  • Heitkamp F, Raupp J, Ludwig B (2009) Impact of fertilizer type and rate on carbon and nitrogen pools in a sandy Cambisol. Plant Soil 319:259–275 (doi:10.1007/s11104-008-9868-x)

    Article  CAS  Google Scholar 

  • Hepperly PR, Douds D Jr, Seidel R (2006) The Rodale Institute farming systems trial 1981 to 2005: Long term analysis of organic and conventional maize and soybean cropping systems. In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. ISOFAR Scientific Series, Verlag Dr. Köster, Berlin, pp 15–32

    Google Scholar 

  • Hoffmann B, Müller T, Joergensen RG (2009) CO2 production and O2 consumption during the early decomposition of different litter types over a range of temperatures in soil-inoculated quartz sand. J Plant Nutr Soil Sci (doi:10.1002/jpln.200800187)

  • Iqbal J, Thomasson JA, Jenkins JN, Owens PR, Whisler FD (2005) Spatial variability analysis of soil physical properties of alluvial soils. Soil Sci Soc Am J 69:1338–1350

    Article  CAS  Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans Royal Soc London B 329:361–368

    Article  CAS  Google Scholar 

  • Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309

    Article  CAS  Google Scholar 

  • Joergensen RG, Mueller T (1996) The fumigation-extraction method to estimate soil microbial biomass: Calibration of the k EN value. Soil Biol Biochem 28:33–37

    Article  CAS  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Joergensen RG, Kübler H, Meyer B, Wolters V (1995) Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests. Biol Fertil Soils 19:215–219

    Article  Google Scholar 

  • Karamanos RE, Goh TB, Poisson DP (2005) Nitrogen, phosphorus, and sulfur fertility of hybrid canola. J Plant Nutr 28:1145–1161

    Article  CAS  Google Scholar 

  • Khan KS, Heinze S, Joergensen RG (2009) Simultaneous measurement of S, macronutrients, and heavy metals in the soil microbial biomass with CHCl3 fumigation and NH4NO3 extraction. Soil Biol Biochem 41:309–314

    Article  CAS  Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Koepf HH, Schaumann W, Haccius M (1990) Bio-dynamic agriculture: An introduction. Anthroposophic, Hudson

    Google Scholar 

  • Lejon DPH, Sebastia J, Lamy I, Chaussod R, Ranjard L (2007) Relationships between soil organic status and microbial community density and genetic structure in two agricultural soils submitted to various types of organic management. Microb Ecol 53:650–663

    Article  PubMed  Google Scholar 

  • Liu TL, Juang KW, Lee DY (2006) Interpolating soil properties using Kriging combined with categorial information of soil maps. Soil Sci Soc Am J 70:1200–1209

    Article  CAS  Google Scholar 

  • Ludwig B, Schulz E, Merbach I, Rethemeyer J, Flessa H (2007) Predictive modelling of the C dynamics for eight variants of the long-term static fertilization experiment in Bad Lauchstädt using the Rothamsted Carbon Model. Eur J Soil Sci 58:1155–1163

    Article  CAS  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Magid J, Luxhøi J, Jensen LS, Møller J, Bruun S (2006) Establishment of a long-term field trial with urban fertilizers—is recycling of nutrients from urban areas to prei-urban organic farms feasible? In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. ISOFAR Scientific Series, Verlag Dr. Köster, Berlin, pp 59–78

    Google Scholar 

  • Marinari S, Mancinelli R, Campiglia E, Grego S (2006) Chemical and biological indicators of soil quality in organic and conventional farming systems in central Italy. Ecol Indic 6:701–711

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Melero S, Ruiz Porras JC, Herencia JF, Madejon E (2006) Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Till Res 90:162–170

    Article  Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675

    Article  CAS  Google Scholar 

  • Podolinsky A (2000) Biodynamik—Landwirtschaft der Zukunfit. Frumenta Verlag, Arlesheim

    Google Scholar 

  • Raupp J (2001) Manure fertilisation for soil organic matter maintenance and its effects upon crops and the environment, evaluated in a long-term trial. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CABI, Wallingford, pp 301–308

    Google Scholar 

  • Raupp J, Oltmanns M (2006a) Farmyard manure, plant based organic fertilisers, inorganic fertiliser—which sustains soil organic matter best? Asp Appl Biol 79:273–276

    Google Scholar 

  • Raupp J, Oltmanns M (2006b) Soil properties, crop yield and quality with farmyard manure with and without biodynamic preparations and with inorganic fertilizers. In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. ISOFAR Scientific Series, Verlag Dr. Köster, Berlin, pp 135–155

    Google Scholar 

  • Reddy KS, Singh M, Swarup A, Rao AS, Singh KN (2002) Sulfur mineralization in two soils amended with organic manures, crop residues, and green manures. J Plant Nutr Soil Sci 165:167–171

    Article  CAS  Google Scholar 

  • Robertz M, Muckenheim T, Eckl S, Webb L (1999) Kostengünstige Labormethode zur Bestimmung der mikrobiellen Bodenatmung nach DIN 19737. Wasser Boden 51/5:48–53

    Google Scholar 

  • Saggar S, Bettany JR, Stewart JWB (1981) Measurement of microbial sulfur in soil. Soil Biol Biochem 13:493–498

    Article  CAS  Google Scholar 

  • Scharfy D, Raupp J, Neumann E, Römheld V (2005) Der Einfluss organischer Düngung im Langzeitdüngungsversuch auf das Ausmaß der Wurzelinfektion mit Arbuskulärer Mykorrhiza sowie die Entwicklung des wurzelexternen Myzels bei Kartoffel (Solanum tuberosum). In: Heß J, Rahmann G (eds) Ende der Nische. Beiträge zur 8. Wissenschaftstagung Ökologischer Landbau. Kassel University Press, Kassel, pp 229–232

    Google Scholar 

  • Scheller E, Joergensen RG (2008) Decomposition of wheat straw differing in nitrogen content in soils under conventional and organic farming management. J Plant Nutr Soil Sci 171:886–892

    Article  CAS  Google Scholar 

  • Schnug E, Haneklaus S, Murphy DPL (1993) Impact of sulphur fertilization on fertilizer nitrogen efficiency. Sulphur Agr 17:8–12

    Google Scholar 

  • Schnürer J, Clarholm M, Rosswall T (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol Biochem 17:611–618

    Article  Google Scholar 

  • Stutter MI, Deeks LK, Billet MF (2004) Spatial variability in soil ion exchange chemistry in a granitic upland catchment. Soil Sci Soc Am J 68:1304–1314

    Article  CAS  Google Scholar 

  • Turinek M, Grobelnik-Mlakar S, Bavec M, Bavec F (2009) Biodynamic agriculture research progress and priorities. Renew Agr Food Syst 24(2):146–154

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wälder K, Wälder O, Rinklebe J, Menz J (2008) Estimation of soil properties with geostatistical methods in floodplains. Arch Agron Soil Sci 54:275–295

    Article  Google Scholar 

  • Watson CJ, Kilpatrick DJ, Cooper JE (1995) The effect of increasing application rate of granular calcium ammonium nitrate on net nitrification in a laboratory study of grassland soils. Fertil Res 40:155–161

    Article  Google Scholar 

  • Witter E, Mårtensson AM, Garcia FV (1993) Size of the soil microbial biomass in a long-term field experiment as affected by different n-fertilizers and organic manures. Soil Biol Biochem 25:659–669

    Article  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of microbial biomass C by fumigation extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu J, O’Donnell G, Syers JK (1993) Microbial growth and sulphur immobilization following the incorporation of plant residues into soil. Soil Biol Biochem 25:1567–1573

    Article  CAS  Google Scholar 

  • Wu J, O’Donnell AG, He ZL, Syers JK (1994) Fumigation-extraction method for the measurement of soil microbial biomass-S. Soil Biol Biochem 26:117–125

    Article  CAS  Google Scholar 

  • Zaller JG, Köpke U (2004) Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Bio Fertil Soils 40:222–229

    Google Scholar 

Download references

Acknowledgements

The technical assistance of Gabriele Dormann is highly appreciated. This project was supported by a grant of the Research Training Group 1397 “Regulation of soil organic matter and nutrient turnover in organic agriculture” of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Heinze.

Additional information

Responsible Editor: Liz Shaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinze, S., Raupp, J. & Joergensen, R. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 328, 203–215 (2010). https://doi.org/10.1007/s11104-009-0102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0102-2

Keywords

Navigation