Skip to main content

Potassium-Solubilizing Bacteria and Their Application in Agriculture

Abstract

Potassium (K) is one of the major macronutrients which play an important role in plant growth and development. Total soil potassium reserves are generally large; however, major portion of it exists in insoluble K minerals and very little potassium becomes available to plants. There are certain microorganisms which use a number of biological processes to make potassium available from unavailable forms. These potassium-solubilizing bacteria (KSB) can be used as a promising approach to increase K availability in soils, thus playing an important role for crop establishment under K-limited soils. Owing to naturally available source of potassium in soil and high price of synthetic potassium fertilizers, the importance of KSB is increasing day by day. The use of chemical fertilizers can be decreased by using KSB in agriculture that can lead to sustainable agriculture. A number of workers have demonstrated the role of KSB in crop improvement. The present review highlights the importance of KSB for enhancing crop production. The mechanisms used by KSB for K solubilization have been discussed. The work of various scientists regarding plant growth promotion through KSB has been reviewed in detail, and present constraints and future scope of this technology have also been discussed.

Keywords

  • Insoluble K
  • Microorganisms
  • Biological processes
  • K solubilization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-81-322-2776-2_21
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-81-322-2776-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 21.1

References

  • Aamir M, Aslam A, Khan MY, Jamshaid MU, Ahmad M, Asghar HN, Zahir ZA (2013) Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agric Biol 1:7–12

    Google Scholar 

  • Abdel-Salam MA, Shams AS (2012) Feldspar-K fertilization of potato (Solanum tuberosum L.) augmented by biofertilizer. J Agric Environ Sci 12:694–699

    CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20:5879–5885

    CAS  CrossRef  Google Scholar 

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea mays) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with Rhizobium and PGPR containing ACC deaminase. Can J Microbiol 57:578–589

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt–stressed conditions. Ann Microbiol 62:1321–1330

    CAS  CrossRef  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013a) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt–affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahmad M, Zahir ZA, Nadeem SM, Nazli F, Jamil M, Khalid M (2013b) Field evaluation of Rhizobium and Pseudomonas strains to improve growth, nodulation and yield of mung bean under salt-affected conditions. Soil Environ 32:158–165

    Google Scholar 

  • Ahmad M, Zahir ZA, Jamil M, Nazli F, Latif M, Akhtar MF (2014a) Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions. Pak J Bot 46:375–382

    CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Nadeem SM, Nazli F, Jamil M, Jamshaid MU (2014b) Physiological response of mung bean to Rhizobium and Pseudomonas based biofertilizers under salinity stress. Pak J Agric Sci 51:1–8

    Google Scholar 

  • Aleksandrov VG (1985) Organo-mineral fertilizers and silicate bacteria. Dokl Akad Nauk 7:43–48

    Google Scholar 

  • Aleksandrov VG, Blagodyr RN, Ilev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Microchem J 29:111–114

    CAS  Google Scholar 

  • Archana DS, Savalgi VP, Alagawadi AR (2008) Effect of potassium solubilizing bacteria on growth and yield of maize. Soil Biol Ecol 28:9–18

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2012) Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet 9(4):627–630

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2010) Coronatine-intensive 1 (COII) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol Plant 3:390–405

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Awasthi R, Tewari R, Nayyar H (2011) Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops. Int Res J Microbiol 2:484–503

    Google Scholar 

  • Badr MA (2006) Efficiency of K-feldspar combined with organic materials and silicate dis-solving bacteria on tomato yield. J Appl Sci Res 2:1191–1198

    Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Balamurugan A (2012a) Impact of different temperature, carbon and nitrogen sources on solubilization efficiency of native potassium solubilizing bacteria from tea (Camellia sinensis). J Biol Res 3(2):36–42

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012b) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr Agric Res 7:4250–4259

    Google Scholar 

  • Barre P, Montagnier C, Chenu C, Abbadie L, Velde B (2008) Clay minerals as a soil potassium reservoir: observation and quantification through X-ray diffraction. Plant Soil 302:213–220

    CAS  CrossRef  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    CAS  CrossRef  Google Scholar 

  • Basak BB, Biswas DR (2012) Modification of waste mica for alternative source of potassium: Evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). LAP LAMBERT Academic Publishing, India

    Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Mineral Manag 8:149–150

    CrossRef  Google Scholar 

  • Bhattacharyya P, Kumar R (2000) Liquid biofertilizer-current knowledge and future prospect National seminar on development and use of biofertilizers, biopesticides and organic manures. Bidhan Krishi Viswavidyalaya, Kalyani, pp 10–12

    Google Scholar 

  • Bin L, Bin W, Mu P, Liu C, Teng HH (2010) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Google Scholar 

  • Biswas DR (2011) Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato-soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr Cycl Agroecosyst 89:15–30

    CrossRef  Google Scholar 

  • Brar SK, Sarma SJ, Chaabouni E (2012) Shelf-life of Biofertilizers: an accord between formulations and genetics. J Biofertil Biopesticide 3:1–2

    CrossRef  Google Scholar 

  • Braunschweigh IC (1980) K+ availability in relation to clay content. Results of field experiment. Potash Rev 2:1–8

    Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577

    PubMed  CrossRef  Google Scholar 

  • Chen S, Lian B, Liu CQ (2008) Bacillus mucilaginosus on weathering of phosphorite and primary analysis of bacterial proteins during weathering. Chin J Geochem 27:209–216

    CrossRef  CAS  Google Scholar 

  • Dasan AS (2012) Compatibility of agrochemicals on the growth of phosphorous mobilizing bacteria Bacillus megaterium var. phosphaticum potassium mobilizing bacteria Frateuria aurantia. Appl Res Dev Inst J 6:118–134

    Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. Am J Life Sci 1:88–92

    CAS  CrossRef  Google Scholar 

  • El-Haddad ME, Mustafa I, Selim Sh M, El-Tayeb TS, Mahgoob AE, Abdel-Aziz NH (2011) The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil. Braz J Microbiol 42:105–113

    CrossRef  Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    CAS  CrossRef  Google Scholar 

  • Ghorbani R, Koocheki A, Jahan M, Asadi GA (2008) Impact of organic amendments and compost extracts on tomato production and storability in agroecological system. Agron J 28:307–311

    CAS  Google Scholar 

  • Girgis MGZ (2006) Response of wheat to inoculation with phosphate and potassium mobilizers and organic amendment. Ann Agric Sci Ain Shams Univ Cairo 51:85–100

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help tofeed the world. Microbiol Res 169:30–39

    CAS  PubMed  CrossRef  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Cheng Z, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  CrossRef  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by gram-negative bacteria. In: Torriani-Gorni A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing Bacillus sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India: research and reviews. J Microbiol Biotechnol 2:1–7

    Google Scholar 

  • Habibi A, Heidari G, Sohrabi Y, Badakhshan H, Mohammadi K (2011) Influence of bio, organic and chemical fertilizers on medicinal pumpkin traits. J Med Plants Res 5:5590–5597

    CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral up take, soil availability and growth of eggplant. J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani LKD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hassan EA, Hassan EA, Hamad EH (2010) Microbial solubilization of phosphate-potassium rocks and their effect on khella (Ammi visnaga) growth. Ann Agric Sci 55:37–53

    Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotech 22:983–990

    CAS  CrossRef  Google Scholar 

  • Iqbal MA, Khalid M, Shahzad SM, Ahmad M, Soleman N, Akhtar N (2012) Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik.). Chil J Agri Res 72:104–110

    CrossRef  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Van-Hees PAW (2003) Organic acid behavior in soils misconceptions and knowledge gaps. Plant Soil 248:31–41

    CAS  CrossRef  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 67:493–499

    CrossRef  CAS  Google Scholar 

  • Lang-bo YI, Qing-zhong P, Qi-zhuang HE, Qing-jing P (2012) Isolation and identification of potash feldspar-solubilizing bacteria and their potassium-releasing activities. Chin J Microecol 24:773–776

    Google Scholar 

  • Leaungvutiviroj C, Ruangphisarn P, Hansanimitkul P, Shinkawa H, Sasaki K (2010) Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Biosci Biotechnol Biochem 74:1098–1101

    CAS  PubMed  CrossRef  Google Scholar 

  • Li DX (2003) Study on the effects of silicate bacteria on the growth and fruit quality of apples. J Fruit Sci 20:64–66

    CAS  Google Scholar 

  • Li FC, Li S, Yang YZ, Cheng LJ (2006) Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol Mineral 25:440–448

    CAS  Google Scholar 

  • Lian B, Prithiviraj B, Souleimanova A, Smitha DL (2001) Evidence for the production of chemical compounds analogous to nod factor by the silicate bacterium Bacillus circulans GY92. Microbiol Res 156:289–292

    CAS  PubMed  CrossRef  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–182

    CAS  Google Scholar 

  • Liu W, Xu X, Wu S, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    CAS  CrossRef  Google Scholar 

  • Lynn TM, Win HS, Kyaw EP, Latt ZK, Yu SS (2013) Characterization of phosphate solubilizing and potassium decomposing strains and study on their effects on tomato cultivation. Int J Innov Appl Stud 3:959–966

    Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Microbiology 59:49–55

    Google Scholar 

  • Man LY, Cao XY, Sun DS (2014) Effect of potassium-solubilizing bacteria-mineral contact mode on decomposition behavior of potassium-rich shale. Chin J Nonferrous Metals 24:1099–1109

    CAS  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. An Intl J Plant Res 27:181–187

    CrossRef  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Google Scholar 

  • Mengel K (2007) Potassium. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. Taylor & Francis, Boca Raton, pp 91–120

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Acad Publishers, Dordrecht, p 849

    CrossRef  Google Scholar 

  • Mikhailouskaya N, Tcherhysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Latvian J Agron 8:154–157

    Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci 7:307–316

    Google Scholar 

  • Muentz A (1890) Surla decomposition desroches etla formation de la terre arable. C R Acad Sci 110:1370–1372

    Google Scholar 

  • Muralikannan N, Anthomiraj S (1998) Occurrence of silicate solubilizing bacteria in rice ecosystem. Madras Agric J 85:47–50

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC deaminase confer salt tolerance in maize grown on salt affected soils. Can J Microbiol 55:1302–1309

    CAS  PubMed  CrossRef  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010a) Rhizobacteria capable of producing ACC-deaminase may mitigate the salt stress in wheat. Soil Sci Soc Am J 74:533–542

    CrossRef  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010b) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393

    CAS  CrossRef  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Ashraf M (2011) Microbial ACC-deaminase biotechnology: perspectives and applications in stress agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Heidelberg, pp 141–185

    Google Scholar 

  • Nadeem SM, Naveed M, Zahir ZA, Asghar HM (2013) Plant–microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Patel BC (2011) Advance method of preparation of bacterial formulation using potash mobilizing bacteria that mobilize potash and make it available to crop plant. WIPO Patent Application WO/2011/154961

    Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium- a potential tool for sustainable soil health. J Biofertil Biopesticide 3(4):1–9

    Google Scholar 

  • Prajapati KB, Modi HA (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIB Tech J Microbiol 1:8–14

    Google Scholar 

  • Prajapati KB, Modi HA (2014) The Study of shelf life of potassium solubilizing microorganisms for liquid biofertilizer. Biotechnology 3:13–14

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3:181–188

    Google Scholar 

  • Raj SA (2004) Solubilization of silicate and concurrent release of phosphorus and potassium in rice ecosystem. In: Kannaiyan S, Kumar K, Govindarajan K (eds) Biofertilizer technology for rice based cropping system. Scientific Book Center, pp 372–378

    Google Scholar 

  • Rajawat MVS, Singh S, Singh G, Saxena AK (2012) Isolation and characterization of K-solubilizing bacteria isolated from different rhizospheric soil. In: Proceeding of 53rd annual conference of association of microbiologists of India, 2012, pp 124

    Google Scholar 

  • Requena BN, Jimenez I, Toro M, Barea JM (1997) Interactions between plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystem. New Phytol 136:667–677

    CrossRef  Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    CrossRef  CAS  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21(2):118–124

    Google Scholar 

  • Shaaban EA, El-Shamma IMS, El Shazly S, El-Gazzar A, Abdel-Hak RE (2012) Efficiency of rock-feldspar combined with silicate dissolving bacteria on yield and fruit quality of valencia orange fruits in reclaimed soils. J Appl Sci Res 8:4504–4510

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    CAS  PubMed  CrossRef  Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solublisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol App Sci 3:622–629

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    CAS  CrossRef  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    CAS  PubMed  CrossRef  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions of releasing potassium by a silicate-dissolving bacterial strain NBT. Agr Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Zhao F, He H, Qiu G, Chen L (2008) Isolation, characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered feldspar. Can J Microbiol 54:1064–1068

    CAS  PubMed  CrossRef  Google Scholar 

  • Sindhu SS, Verma MK, Suman M (2009) Molecular genetics of phosphate solubilization in rhizosphere bacteria and its role in plant growth promotion. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes and crop productivity. Nova Science Publishers, New York, pp 199–228

    Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Wien, New York, pp 195–235

    Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2012) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry: soil biology. Springer-Wien, New York, pp 27–40

    Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    CAS  CrossRef  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD et al (eds) Potassium in agriculture. ASA, Madison, pp 201–276

    Google Scholar 

  • Subhashini DV (2015) Growth promotion and increased potassium uptake of tobacco by potassium-mobilizing bacterium Frateuria aurantia grown at different potassium levels in Vertisols. Commun Soil Sci Plant Anal 46:210–220

    CAS  CrossRef  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agr Sci 3:350–355

    Google Scholar 

  • Supanjani HHS, Jung SJ, Lee KD (2006) Rock phosphate and potassium rock solubilizing bacteria as alternative sustainable fertilizers. Agro Sust Dev 26:233–340

    CAS  CrossRef  Google Scholar 

  • Syed BA, Patel B (2014) Investigation and correlation of soil biotic and abiotic factors affecting agricultural productivity in semi-arid regions of north Gujarat, India. Int J Res Stud Biosci 2:18–29

    Google Scholar 

  • Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A, Amtmann A, Armengaud P (2010) Potassium deficiency induced the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. Plant Biol 10(1):172–184

    Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA, Vandevivere P (1996) Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    CAS  CrossRef  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Uroz S, Calvaruso C, Turpault P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    CAS  PubMed  CrossRef  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983

    CrossRef  Google Scholar 

  • Verma M, Sharma S, Prasad R (2011) Liquid biofertilizers: advantages over carrier- based biofertilizers for sustainable crop production. News L Intl Soc Environ Bot 17:2pp

    Google Scholar 

  • Vlek PLG, Vielhauer K (1994) Nutrient management strategies in stressed environments. In: Virmani SM, Katyal JC, Eswaran H, Abrol IP (eds) Stressed ecosystems and sustainable agriculture. Oxford and IBH Publishing Co., New Delhi, pp 203–229

    Google Scholar 

  • Wakeel A, Gul M, Sanaullah M (2013) Potassium dynamics in three alluvial soils differing in clay contents. Emirates J Food Agric 25:39–44

    Google Scholar 

  • White PJ, Karley AJ (2010) Potassium. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, plant cell monographs, vol 17. Springer, Berlin, pp 199–224

    CrossRef  Google Scholar 

  • Wood N (2001) Nodulation by numbers: the role of ethylene in symbiotic nitrogen fixation. Trends Plant Sci 6:501–502

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    CrossRef  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutri Fertil Sci 4:321–330

    Google Scholar 

  • Yadegari M, Farahani GHN, Mosadeghzad Z (2012) Biofertilizers effects on quantitative and qualitative yield of Thyme (Thymus vulgaris). Afr J Agric Res 7:4716–4723

    CrossRef  Google Scholar 

  • Yakhontova K, Andreev PI, Ivanova MY, Nesterovich LG (1987) Bacterial decomposition of smecite minerals. Doklady Akademii Nauk, SSR 296:203–206

    CAS  Google Scholar 

  • Youssef GH, Seddik WMA, Osman MA (2010) Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. J Am Sci 6:647–660

    Google Scholar 

  • Zahir ZA, Ghani U, NaveedM NSM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    CAS  PubMed  CrossRef  Google Scholar 

  • Zapata F, Roy RN (2004) Use of phosphate rock for sustainable agriculture. FAO and IAEA, Rome

    Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    CrossRef  CAS  Google Scholar 

  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W et al (2012) Characterization and potassium-solubilizing ability of Bacillus circulans Z1-3. Adv Sci Lett 10:173–176

    CAS  CrossRef  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    CrossRef  Google Scholar 

  • Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S et al (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

    Google Scholar 

  • Zhao F, Sheng X, Huang Z, He L (2008) Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodiv Sci 16:593–600

    CAS  CrossRef  Google Scholar 

  • Zhou H, Zeng X, Liu F, Qiu G, Hu Y (2006) Screening, identification and desilication of a silicate bacterium. J Cent South Univ Technol 13:337–341

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir Ahmad Zahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Ahmad, M., Nadeem, S.M., Naveed, M., Zahir, Z.A. (2016). Potassium-Solubilizing Bacteria and Their Application in Agriculture. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_21

Download citation