Skip to main content

Pre-fertilization: Reproductive Growth and Development

  • Chapter
Plant Biology and Biotechnology
  • 4288 Accesses

Abstract

This chapter deals with details on anther and male gametophytic development, ovule and female gametophytic development, events leading to double fertilization, pollen germination and pollen tube and syngamy and triple fusion. Since basic embryological developmental details are already detailed in earlier literature, attention is focused only on recent data, particularly molecular data pertaining to these aspects. Special attention has been given to genetic control of anther tapetum, endothecium and anther dehiscence, microsporogenesis, microgametogenesis, chalazal behaviour and function and female gametophytic development. The importance of cell cycle events in syngamy and triple fusion is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149:1713–1723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana somatic embryogenesis receptor-like kinases1 and 2 control male sporogenesis. Plant Cell 17:3337–3349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ariizumi T, Toriyama L (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–480

    Article  CAS  PubMed  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53:107–116

    Article  CAS  PubMed  Google Scholar 

  • Baker SC, Robinson-Beers K, Villanueva JM, Gaiser JC, Gasser CS (1997) Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145:1109–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Batygina TB, Vasilyeva VE (1998) Sexual reproduction in flowering plants: periodization of egg cell and zygote development and possible types of karyogamy. In: Bhatia B, Shukla AK, Sharma HL (eds) Plant form and function. Angkor Publishers (P) Ltd, New Delhi, pp 170–198

    Google Scholar 

  • Beals TP, Goldberg RB (1997) A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9:1527–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bemer M, Heijmans K, Airolde C, Davies B, Angenent GC (2010) An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis. Plant Physiol 154:287–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blackmore S, Worthey AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  CAS  PubMed  Google Scholar 

  • Bowman F (1984) The ovule. In: Johri BM (ed) Embryology of the Angiosperms. Springer, New York, pp 123–157

    Chapter  Google Scholar 

  • Brownfield L, Hafidh H, Borg M, Sidorova A, Mori T, Twell D (2009a) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet 5:e1000430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brownfield L, Hafidh H, Durbarry A, Khatab H, Sidorova A, Doerner P, Twell D (2009b) Arabidopsis DUO POLLEN3 is a key regulator of male germline development and embryogenesis. Plant Cell 21:1940–1956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brukhin V, Curtism MD, Grossnicklaus U (2005) The angiosperm female gametophyte: no longer the forgotten generation. Curr Sci 89:1844–1852

    Google Scholar 

  • Cai G, Casino CD, Romagnoli S, Cresti M (2005a) Pollen cytoskeleton during germination and tube growth. Curr Sci 89:1853–1860

    Google Scholar 

  • Cai G, Ovidi E, Romagnoli S, Vantard M, Cresti M, Tiezzi A (2005b) Identification and characterization of plasma membrane proteins that bind to microtubules in pollen tubes and generative cells of tobacco. Plant Cell Physiol 46:563–578

    Article  CAS  PubMed  Google Scholar 

  • Cannales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LBR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    Article  Google Scholar 

  • Chaturvedi A, Bahadur B (1985) Gland crested anthers in some angiosperms. J Swamy Bot Cl 2:79–86

    Google Scholar 

  • Christensen JE, Horner HT Jr, Lersten NR (1972) Pollen wall and tapetal orbicular wall development in Sorghum bicolor (Gramineae). Am J Bot 59:43–58

    Article  Google Scholar 

  • Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10:49–64

    Article  Google Scholar 

  • Christensen CA, Subramanian S, Drews GN (1998) Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev Biol 202:136–151

    Article  CAS  PubMed  Google Scholar 

  • Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colcombet J, Boisson-Dermier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES 1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis GL (1966) Systematic embryology of angiosperms. Wiley, New York

    Google Scholar 

  • de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ (2009) A novel fatty Acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21:507–525

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Del Casino C, Li Y, Moscetelli A, Scali M, Tiezzi A, Cresti M (1993) Distribution of microtubules during the growth of tobacco pollen tubes. Biol Cell 79:125–132

    Article  Google Scholar 

  • Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Moller BL, Preuss D (2009) CYP70481 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dobritsa AA, Lei Z, Nishikawa S, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153:937–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman WE (1999) Expression of the cell cycle in sperms of Arabidopsis: Implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126:1065–1075

    CAS  PubMed  Google Scholar 

  • Fu Y, Yuan M, Huang BQ, Yang HY, Zee SY, O’Brien TP (2000) Changes in actin organization in the living egg apparatus of Torenia fournieri during fertilization. Sex Plant Reprod 12:315–322

    Article  CAS  Google Scholar 

  • Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerassimova-Navashina HN (1951) Pollen grains, gametes and sexual process in angiosperm. Transact Bot Inst Acad Sci USSR 7:294–355 (in Russian)

    Google Scholar 

  • Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, de A Souza C, Heitz T, Douglas CJ, Legrand M (2010) Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22:4067–4083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9:227–238

    Article  CAS  PubMed  Google Scholar 

  • Haig D (1990) New perspectives on the angiosperm female gametophytes. Bot Rev 56:236–274

    Article  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Toreniafournieri. Plant Cell 10:2019–2031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (2000) Explosive discharge of pollen tube contents in Torenia fournieri. Plant Physiol 122:11–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  CAS  PubMed  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kuroiwa T (2003) Pollen-tube guidance: beacons from the female gametophyte. Curr Opin Plant Biol 8:36–41

    Article  Google Scholar 

  • Higginson T, Li SF, Parish RW (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35:177–192

    Article  CAS  PubMed  Google Scholar 

  • Huang BQ, Russell SD (1992) Female germ unit: organization isolation and function. Int Rev Cytol 140:233–296

    Article  Google Scholar 

  • Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159

    Article  CAS  PubMed  Google Scholar 

  • Hülskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    Article  PubMed Central  PubMed  Google Scholar 

  • Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Jensen WA (1973) Fertilization in flowering plants. Bioscience 23:21–27

    Article  Google Scholar 

  • Johnson MA, Preuss D (2002) Plotting a course: multiple signals guide pollen tubes to their targets. Dev Cell 2:273–281

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim YK, Nahm BH, An G (2005) Rice undeveloped Tapetum 1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapil RN, Vasil IK (1963) Ovule. In: Maheshwari P (ed) Recent advance in the embryology of angiosperms. International Society of Plant Morphologists, Delhi

    Google Scholar 

  • Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, de Azevedo Souza C, Geoffroy P, Heintz D, Krahn D, Kaiser M, Kombrink E, Heitz T, Suh D-Y, Legrand M, Douglas CJ (2010) LAP6/POLYKETIDESYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22:4045–4066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YJ, Zheng B, Yu Y, Won SY, Ma B, Chen X (2011) The role of mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnamurthy KV (1977) Meiotic induction is plants: hypothesis. Biology 1:15–17

    Google Scholar 

  • Krishnamurthy KV (2015) Growth and development in plants. Scientific Publishers, Jodhpur

    Google Scholar 

  • Kwee HS, Sundaresan V (2003) The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the anaphase promoting complex in Arabidopsis. Plant J 36:853–866

    Article  CAS  PubMed  Google Scholar 

  • Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of cytoskeleton in freeze- substituted pollen tubes of Nicotiana tabacum. Protoplasma 140:141–150

    Article  Google Scholar 

  • Leins P, Erbar C (2010) Flower and fruit: morphology, ontogeny, phylogeny, function and ecology. Science Publishers, Schweizerbart

    Google Scholar 

  • Lennon KA, Roy S, Hepler PK, Lord EM (1998) The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sex Plant Reprod 11:49–59

    Article  Google Scholar 

  • Li H, Lin Y, Heath RM, Zhu MX, Yang Z (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-located calcium influx. Plant Cell 11:1731–1742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang XQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li SF, Iacuone S, Parish RW (2007) Suppression and restoration of male fertility using a transcription factor. Plant Biotechnol J5:297–312

    Article  CAS  Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Article  CAS  PubMed  Google Scholar 

  • Love AJ, Milner JJ, Sadanandom A (2008) Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci 13:589–595

    Article  CAS  PubMed  Google Scholar 

  • Lush WM (1999) Whither chemotropism and pollen tube guidance? Trends Plant Sci 4:413–418

    Article  PubMed  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari P (1950) Embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Mascaenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  Google Scholar 

  • Mascarenhas JP (1990) Gene activity during pollen development. Annu Rev Plant Physiol Plant Mol Biol 41:317–338

    Article  Google Scholar 

  • Masiero S, Colombo L, Grini PE, Schnittinger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23:865–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16:142–153

    Article  Google Scholar 

  • Millar AA, Gübler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller DD, Lancelle SA, Helper PK (1996) Actin filaments do not form a dense mesh work in Lilium longiflorum pollen tube tips. Protoplasma 195:123–132

    Article  Google Scholar 

  • Moore JM (2002) Isolation and characterization of gametophytic mutants in Arabidopsis thaliana. Ph.D thesis, State University of New York at Stony Brook

    Google Scholar 

  • Moore JM, Viele-Calzada JP, Gagliano W, Grossniklaus U (1997) Genetic characterization of hadad, a mutant disrupting megagametogenesis in Arabidopsis thaliana. Cold Spring Harbor Symp Quant Biol 62:35–47

    Article  CAS  PubMed  Google Scholar 

  • Morant M, Jergensem K, Schaller H, Pinot F, Mollerm BL, Werck Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neill SD (1997) Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol 48:547–574

    Article  PubMed  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    Article  CAS  PubMed  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by Pop2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  CAS  PubMed  Google Scholar 

  • Papini A, Mosti S, Brighigna L (1999) Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207:213–221

    Article  Google Scholar 

  • Paxson Sowders DM, Owen HA, Makaroff CA (1997) A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198:53–65

    Article  Google Scholar 

  • Periasamy K, Swamy BGL (1966) Morphology of the anther tapetum of angiosperms. Curr Sci 35:427–430

    Google Scholar 

  • Phan HA, Iacuone S, Li SF, Parish RW (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23:2209–2224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:675–680

    Article  Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264:1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Raghavan V (2000) Developmental biology of flowering plants. Springer, New York

    Book  Google Scholar 

  • Raghavan V (2003) Some reflections on double fertilization, from its discovery to the present. New Phytol 159:565–583

    Article  CAS  Google Scholar 

  • Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436

    Article  CAS  PubMed  Google Scholar 

  • Rotman N, Durbarry A, Wardle A, Yang WC, Chanboud A, Faure JE, Berger F, Twell D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248

    Article  CAS  PubMed  Google Scholar 

  • Russell SD (2001) Female gametogenesis: ontogenesis of the embryo sac and female gametes. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer Academic Publication, Dordrecht, pp 89–100

    Google Scholar 

  • Sanchez AM, Bosch M, Bots M, Nieuwland J, Feron R, Mariani C (2004) Pistil factors controlling pollination. Plant Cell 16:S98–S106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanders PM, Bul AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96:11664–11669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:46–60

    Article  Google Scholar 

  • Sehgal CB (1965) The embryology of Cuminum cyminum L. and Trachyspermum ammi (L.) Sprague (=Carum copticum Clarke). Proc Natl Inst Sci India 31:175–201

    Google Scholar 

  • Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23:2225–2246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518

    CAS  PubMed  Google Scholar 

  • Smaczniak C, Immink RGH, Angenent GC, Kaufmann K (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081–3098

    Article  CAS  PubMed  Google Scholar 

  • Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTEDMICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  CAS  PubMed  Google Scholar 

  • Sorri O, Äström H, Raudaskoski M (1996) Actin and tubulin expression and isotype pattern during tobacco pollen tube growth. Sex Plant Reprod 9:255–263

    Article  CAS  Google Scholar 

  • Steffen JG, Kang IH, Macfariane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51:281–292

    Article  CAS  PubMed  Google Scholar 

  • Steffen JG, Kang IH, Portereiko MF, Lloyd A, Drews GN (2008) AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol 148:259–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stinson JR, Eisenberg AJ, Willing RP, Pe ME, Hanson DD, Mascarenhas JP (1987) Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol 83:442–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swamy BGL, Krishnamurthy KV (1975) Embryo sac ontogenies in angiosperms—an elucidation. Phytomorphology 25:12–18

    Google Scholar 

  • Swamy BGL, Krishnamurthy KV (1980) From flower to fruit- embryology of angiosperms. Tata McGraw Hill, New Delhi

    Google Scholar 

  • Tang XJ, Lancelle SA, Hepler PK (1989) Fluorescence microscopic localization of actin in pollen tubes: comparison of actin antibody and phalloidin staining. Cell Motil Cytoskeleton 12:216–224

    Article  CAS  PubMed  Google Scholar 

  • Tang LK, Chu H, Yip WK, Yeung EC, Lo C (2009) An anther-specific dihydroflavonol 4-reductase-like gene (DRL1) is essential for male-fertility in Arabidopsis. New Phytol 181:576–587

    Article  CAS  PubMed  Google Scholar 

  • Tian HQ, Russell SD (1997) Calcium distribution in fertilizes and unfertilized ovules and embryos sacs of Nicotiana tabacum L. Planta 202:93–105

    Article  CAS  Google Scholar 

  • Tiwari SC, Polito VS (1990a) The initiation and organization of microtubules in germinating pear (Pyrus communis L.) pollen. Eur J Cell Biol 53:384–389

    CAS  PubMed  Google Scholar 

  • Tiwari SC, Polito VS (1990b) An analysis of the role of actin during pollen activation leading to germination in pear (Pyrus communis L.): treatment with cytochalasin D. Sex Plant Rep 3:121–129

    Article  Google Scholar 

  • Twell D (1995) Diphtheria toxin-mediated cell ablation in developing pollen: vegetative cell ablation blocks generative cell migration. Protoplasma 187:144–154

    Article  CAS  Google Scholar 

  • Vidali L, Yakota E, Cheung AY, Shimmen T, Helper PK (1999) The 135KDa a actin-binding protein from Lilium longiflorum pollen is the plant homologue of Villin. Protoplasma 209:283–291

    Article  CAS  Google Scholar 

  • Vizcay Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    Article  CAS  PubMed  Google Scholar 

  • Weterings K, Russell SD (2004) Experimental analysis of the fertilization process. Plant Cell 16:107–118

    Article  Google Scholar 

  • Willemse M, van Lammeren A (2002) Fertilization, from attraction to embryo. Biologia (Bratisl) 57:13–22

    Google Scholar 

  • Willemse MTM, van Went JI (1984) The female gametophyte. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 159–196

    Chapter  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALESTERILITY (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factor. Plant J28:27–39

    Article  Google Scholar 

  • Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer P, Rahnenführer J, von Mering C, Grossnicklaus U (2010) Arabidopsis female gametophyte gene expression maps reveals similarities between plant and animal gametes. Curr Biol 20:506–512

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang CY, Yuan Z, Zhang DS, Gondwe MY, Ding ZW, Liang WQ, Zhang DB, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16:S133–S141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z (2002) Versatile signaling switches in plants. Plant Cell 14:S375–S388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang L, Sundaresan V, Ye D (2003) TAPETUM DETERMINANT1 is required for cell specialization. Plant Cell 15:2792–2804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang C, Vizcay Barrena G, Conner K, Wilson ZA (2007) MALESTERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XS, O’Neill SD (1993) Ovary and Gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5:403–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Sun YL, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM (DYT1) encoding putative bHLH transcription factor. Development 133:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    Article  CAS  PubMed  Google Scholar 

  • Zhao DZ, Wang GF, Speal B, Ma H (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 18:2021–2031

    Article  CAS  Google Scholar 

  • Zheng ZL, Yang ZB (2000) The Rop GTPase switch turns on polar growth in pollen. Trends Plant Sci 5:298–303

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Chen X, McCormick S (2011) The anaphase-promoting complex is a dual integrator that regulates both microRNA-mediated transcriptional regulation of cyclinB1 and degradation of cyclin B1 during Arabidopsis male gametophyte development. Plant Cell 23:1033–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J 55:266–277

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Krishnamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Krishnamurthy, K.V. (2015). Pre-fertilization: Reproductive Growth and Development. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_17

Download citation

Publish with us

Policies and ethics