Skip to main content
Log in

A comparative ultrastructural analysis of exine pattern development in wild-typeArabidopsis and a mutant defective in pattern formation

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

In order to identify factors necessary for the establishment of the reticulate pollen wall pattern, we have characterized a T-DNA tagged mutant ofArabidopsis thaliana that is defective in pattern formation. This study reports the results of an ultrastructural comparison of pollen wall formation in the mutant to wall development in wild-type plants. Pollen wall development in the mutant parallels that of wild-type until the early tetrad stage. At this point in wild-type plants, the microspore plasma membrane assumes a regular pattern of ridges and valleys. Initial sporopollenin deposition occurs on the ridges marking the beginning of probacula formation. In contrast, the plasma membrane in the mutant appears irregular with flattened protuberances and rare invaginations. As a result, the wild-type regular pattern of ridges and valleys is not formed. Sporopollenin is randomly deposited on the plasma membrane and aggregates on the locule wall; it is not anchored to the membrane. Our finding that the mutation blocks the normal invagination of the plasma membrane and disrupts the proper deposition of sporopollenin during wall formation suggests that the mutation could be in a gene responsible for pattern formation. These results also provide direct evidence that the plasma membrane plays a critical role in the establishment of the pollen wall pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cutter EG (1971) Plant anatomy: experiment and interpretation. Addison-Wesley, Reading, MA

    Google Scholar 

  • Dahl AO (1986) Observation on pollen development inArabidopsis under gravitationally controlled environments. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp 49–60

    Google Scholar 

  • Dickinson HG (1970) Ultrastructural aspects of primexine formation in the microspore tetrad ofLilium longiflorum. Cytobiologie 4: 437–449

    Google Scholar 

  • —, Sheldon JM (1986) The generation of patterning at the plasma membrane of the young microspore ofLilium. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, p 1–17

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy: an introduction to palynology. Almqvist and Wiksell, Stockholm

    Google Scholar 

  • — (1969) Handbook of palynology: an introduction to the study of pollen grains and spores. Hafner, New York

    Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis inArabidopsis: mutational spectrum. Plant J 1: 71–82

    Google Scholar 

  • Fitzgerald MA, Knox RB (1995) Initiation of primexine in freeze-substituted microspores ofBrassica campestris. Sex Plant Reprod 8: 99–104

    Google Scholar 

  • —, Barnes SH, Blackmore S, Calder DM, Knox RB (1994) Exine formation in the pollinium ofDendrobium. Protoplasma 179: 121–130

    Google Scholar 

  • Godwin H (1968) The origin of the exine. New Phytol 67: 667–676

    Google Scholar 

  • Heslop-Harrison J (1963) An ultrastructural study of pollen wall ontogeny inSilene pendula. Grana Palynol 4: 7–24

    Google Scholar 

  • — (1971a) The pollen wall: structure and development. In: Heslop-Harrison J (ed) Pollen: development and physiology. Butterworths, London, pp 75–98

    Google Scholar 

  • (1971b) Wall pattern formation in angiosperm microsporogenesis. Symp Soc Exp Biol 25: 277–300

  • Hoefert LL (1968) Polychromatic stains for the thin sections ofBeta embedded in epoxy resin. Stain Tectmol 43: 145–151

    Google Scholar 

  • Ingber I (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. I Cell Sci 104: 613–627

    Google Scholar 

  • Kuang A, Musgrave ME (1996) Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation inArabidopsis thaliana. Protoplasma 194: 81–90

    PubMed  Google Scholar 

  • Owen HA, Makaroff CA (1995) Ultrastructure of microsporogenesis and microgametogenesis inArabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185: 7–21

    Google Scholar 

  • Peirson BN, Owen HA, Feldmann KA, Makaroff CA (1996) Characterization of three male-sterile mutants ofArabidopsis thaliana exhibiting alterations in meiosis. Sex Plant Reprod 9: 1–16

    Google Scholar 

  • Pérez-Muñoz CA, Jernstedt JA, Webster BD (1993) Pollen wall development inVigna vexillata II. Ultrastructural studies. Am J Bot 80: 1193–1202

    Google Scholar 

  • —, Webster BD, Jernstedt JA (1995) Spatial congruence between exine pattern, microtubules and endomembranes inVigna pollen. Sex Plant Reprod 8: 147–151

    Google Scholar 

  • Scott RJ (1994) Pollen exine — the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead MA (eds) Molecular and cellular aspects of plant reproduction. Cambridge University Press, Cambridge, pp 49–81

    Google Scholar 

  • Sheldon JM, Dickinson HG (1983) Determination of patterning in the pollen wall ofLilium henryi. J Cell Sci 63: 191–208

    PubMed  Google Scholar 

  • — — (1986) Pollen wall formation inLilium: the effect of chaotropic agents, and the organisation of the microtubular cytoskeleton during pattern development. Planta 168: 11–23

    Google Scholar 

  • Skvarla JJ, Larson DA (1966) Fine structural studies ofZea mays pollen I. Cell membranes and exine ontogeny. Am J Bot 53: 1112–1125

    Google Scholar 

  • —, Rowley JR (1987) Ontogeny of pollen inPoinciana (Leguminoseae). I. Development of exine template. Rev Palaeobot Palynol 50: 293–311

    Google Scholar 

  • Smith MM, McCully ME (1978) A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma 95: 229–254

    Google Scholar 

  • Southworth D, Jernstedt JA (1995) Pollen exine development precedes microtubule rearrangement inVigna unguiculata (Fabaceae): a model for pollen wall patterning. Protoplasma 187: 79–87

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry, management. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Sutherland J, McCully ME (1976) A note on the structural changes in the walls of pericycle cells initiating lateral root meristems inZea mays. Can J Bot 54: 2083–2087

    Google Scholar 

  • Takahashi M (1989) Pattern determination of the exine inCaesalpinia japonica (Leguminosae: Caesalpinioideae). Am J Bot 76: 1615–1626

    Google Scholar 

  • Takahashi M, Skvarla JJ (1991) Exine pattern formation by plasma membrane inBougainvillea spectabilis Willd. (Nyctaginaceae). Am J Bot 78: 1063–1069

    Google Scholar 

  • Waterkeyn L, Bienfait A (1970) On a possible function of the callosic special wall inIpomoea purpurea (L) Roth. Grana 10: 13–20

    Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4: 759–771

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paxson-Sowders, D.M., Owen, H.A. & Makaroff, C.A. A comparative ultrastructural analysis of exine pattern development in wild-typeArabidopsis and a mutant defective in pattern formation. Protoplasma 198, 53–65 (1997). https://doi.org/10.1007/BF01282131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282131

Keywords

Navigation