Skip to main content
Log in

New perspectives on the angiosperm female gametophyte

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

This review builds upon previous classifications of angiosperm female gametophytes but offers two new perspectives. Firstly, the course of development is compared to an algorithm: a predetermined set of rules that produces a mature female gametophyte. This analogy allows hypotheses to be developed as to what changes in the “developmental program” are responsible for variant forms of development. Secondly, the review recognizes that the four meiotic products of a megaspore mother cell have different genetic constitutions and may have conflicting interests. In most cases, only one member of a megaspore tetrad gives rise to a functional egg. This megaspore is called the germinal spore. The other members of the tetrad are called somatic spores. Somatic spores do not give rise to functional eggs and, therefore, cannot leave direct genetic descendants.

Non-monosporic embryo sacs are genetic chimeras containing derivatives of more than one megaspore nucleus. Conflict may arise within such embryo sacs between the derivatives of the germinal megaspore nucleus and the derivatives of somatic megaspore nuclei. “Antipodal eggs” and chalazal “strike” are interpreted as evidence of this conflict. The behavior of somatic spores and their derivatives is often variable for different embryo sacs produced by the same sporophyte. This has created difficulties for existing classifications of embryo sac “types” because more than one type is sometimes recognized within a species. A new classification of developmental algorithms is presented that emphasizes the fate of the germinal spore and its derivatives.

Zusammenfassung

Dieser Überblick baut sich auf vorangehende Klassifizierungen des weiblichen Gametophyten der Angiospermen auf, zeigt aber zwei neue Perspektiven auf. Erstens wird der Entwicklungsverlauf vergleichen mit einem Algorithmus: eine vorbestimmte Reihe von Regeln, die den entwickelten weiblichen Gametophyten hervorbringen. Diese Analogie erlaubt, die Hypothese aufzustellen, daß eine Änderung im “Entwicklungs-Programm” verantwortlich ist für verschiedene Formen der Entwicklung. Zweitens zeigt dieser Überblick, daß die vier meiotischen Produkte der Megasporenmutterzelle unterschiedliche genetische Zusammensetzung und vielleicht widersprüchliche Interessen haben. Meistens entwickelt sich nur aus einer Zelle der Megasporentetrade eine funktionsfähige Eizelle. Diese Megaspore wird “Keimspore” gennant. Die übrigen drei Megasporen werden als “somalische Sporen” bezeichnet. Aus den somatischen Sporen können sich keine funktionsfähigen Eizellen und somit keine direkten genetischen Nachkommen bilden.

Nicht-monospore Embryosäcke sind genetische Chimären, die Derivate von mehr als einem Megasporennukleus enthalten. Konflikte können innerhalb dieser Embryosäcke entstehen zwischen Derivaten des Keim-Megasporennukleus und Derivaten des somatischen Sporennukleus. Die “Antipodialeizellen” und der “Teilungsstreik” der chalazalen Kerne werden als Beweis für diesen Konflikt interpretiert. Das Verhalten der somatischen Sporen und ihrer Derivate ist oft variable für verschiedene Embryosäcke, die vom gleichen Sporophyten produziert wurden. Dies verursachte Schwierigkeiten in der bestehende Klassifizierung der Embryosack-Typen, weil manchmal mehr als ein Typus innerhalb einer Art auftreten kann. Eine neue Klassifizierung auf Grund des algorithmischen Entwicklungsverlaufes wird hier vorgestellt, der die Entwicklung der Keimspore und ihrer Derivate hervorhebt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Arekal, G. D. &C. R. Nagendran. 1976. Embryo sac ofHydrobryopsis sessilis (Podostemaceae)—Origin, organization and significance. Bot. Notiser128: 332–338.

    Google Scholar 

  • — &G. W. Shivamurthy. 1978. Female gametophyte in two species ofBalanophora— A reinvestigation. Phytomorphology28: 7–13.

    Google Scholar 

  • Bambacioni-Mezzetti, V. 1931. Nuove ricerche sull’embriologia delle Gigliacee. Ann. di Bot. (Roma)19: 365–382.

    Google Scholar 

  • Battaglia, E. 1951. The male and female gametophytes of angiosperms—An interpretation. Phytomorphology1: 86–116.

    Google Scholar 

  • —. 1971. The embryo sac of Podostemaceae—An interpretation. Caryologia24: 403–420.

    Google Scholar 

  • Bhandari, N. N. &P. Chitralekha. 1989. Cellularization of the female gametophyte inRanunculus sceleratus. Canad. J. Bot.67: 1325–1330.

    Google Scholar 

  • — &S. C. A. Vohra. 1983. Embryology and affinities of Viscaceae. Pages 69–86in M. Calder & P. Bernhardt (eds.), The biology of mistletoes. Academic Press Australia, Sydney.

    Google Scholar 

  • Bhatnagar, S. P. & A. K. Bhatnagar. 1986. Review of embryology of angiosperms, B. M. Johri (ed.) 1984. Phytomorphology36: 174–177.

  • — &B. M. Johri. 1983. Embryology of Loranthaceae. Pages 47–68in M. Calder & P. Bernhardt (eds.), The biology of mistletoes. Academic Press Australia, Sydney.

    Google Scholar 

  • Björnstad, I. N. 1970. Comparative embryology of Asparagiodeae—Polygonateae, Liliaceae. Nytt Mag. Bott.17: 169–207.

    Google Scholar 

  • Bouman, F. 1984. The ovule. Pages 123–157in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.

    Google Scholar 

  • Boyes, J. W. 1939. Development of the embryo sac ofPlumbagella micrantha. Amer. J. Bot. 26: 539–547.

    Google Scholar 

  • — &E. Battaglia. 1951. The tetrasporic embryo sacs ofPlumbago coccinea, P. scandens, andCeratostigma willmottianum. Bot. Gaz.112: 485–489.

    Google Scholar 

  • Briggs, C. L., M. Westoby, P. M. Selkirk &R. J. Oldfield. 1987. Embryology of early abortion due to limited maternal resources inPisum sativum L. Ann. Bot.59: 611–619.

    Google Scholar 

  • Brown, W. H. 1908. The nature of the embryo sac ofPeperomia. Bot. Gaz.46: 445–460.

    Google Scholar 

  • Cass, D. D. 1972. Occurrence and development of a filiform apparatus in the egg ofPlumbago capensis. Amer. J. Bot.59: 279–283.

    Google Scholar 

  • —,D. J. Peteya &B. L. Robertson. 1985. Megagametophyte development inHordeum vulgare. 1. Early megagametogenesis and the nature of cell wall formation. Canad. J. Bot.63:2164–2171.

    Google Scholar 

  • —,——. 1986. Megagametophyte development inHordeum vulgare. 2. Later stages of wall development and morphological aspects of megagametophyte cell differentiation. Canad. J. Bot.64: 2327–2336.

    Google Scholar 

  • Charnov, E. L. 1979. Simultaneous hermaphroditism and sexual selection. Proc. Nat. Acad. Sci. USA76: 2480–2484.

    PubMed  Google Scholar 

  • Cooper, D. C. 1939. Development of megagametophyte inErythronium albidum. Bot. Gaz.100: 862–867.

    Google Scholar 

  • Corner, E. J. H. 1976. The seeds of dicotyledons. Vol. 1. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cosmides, L. M. &J. Tooby. 1981. Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol.89: 83–129.

    PubMed  CAS  Google Scholar 

  • Dahlgren, K. V. O. 1928. Die embryologie einiger Alismatazeen. Svensk Bot. Tidskr.22: 1–17.

    Google Scholar 

  • —. 1934. Die Embryosackentwicklung vonEchinodorus macrophyllus undSagittaria sagittifolia. Planta21: 602–612.

    Google Scholar 

  • Dahlgren, R. M. T. 1980. A revised system of classification of the angiosperms. Bot. J. Linn. Soc.80:91–124.

    Google Scholar 

  • —,H. T. Clifford &P. F. Yeo. 1985. The families of the monocotyledons. Springer-Verlag, Berlin.

    Google Scholar 

  • Davis, G. L. 1966. Systematic embryology of the angiosperms. John Wiley, New York.

    Google Scholar 

  • Eberhard, W. G. 1980. Evolutionary consequences of intracellular organelle competition. Quart. Rev. Biol.55: 231–249.

    PubMed  CAS  Google Scholar 

  • Ekdahl, I. 1941. Die Entwicklung von Embryosack und Embryo beiUlmus glabra Huds. Svensk Bot. Tidskr.35: 143–156.

    Google Scholar 

  • Erdtman, G. 1966. Pollen morphology and plant taxonomy. Vol. 1 (corrected reprint). Hafher, New York.

    Google Scholar 

  • Fagerlind, F. 1938. Wo kommen tetrasporische durch drei Teilungsschritte vollentwickelte Embryosäcke unter den Angiospermen vor? Bot. Notiser1938: 461–498.

    Google Scholar 

  • —. 1939a. Kritische und revidierende Untersuchungen über das Vorkommen desAdoxa (“Lilium”) Typs. Acta Horti Berg.13: 1–49.

    Google Scholar 

  • —. 1939b. Drei Beispiele des Fritillaria-Typs. Svensk Bot. Tidskr.33: 188–204.

    Google Scholar 

  • —. 1939c. Die Entwicklung des Embryosäckes beiPeperomia pellucida. Ark. f. Bot.29A(17): 1–15.

    Google Scholar 

  • —. 1944. Die tetrasporische Angiospermen-Embryosack und dessen Bedeutung für das Verständnis der Entwicklungsmechanik und Phylogenie des Embryosacks. Ark. f. Bot.31A(11): 1–71.

    Google Scholar 

  • Fisher, G. C. 1914. Seed development in the genusPeperomia. Bull. Torrey Bot. Club41: 137–156, 221–241.

    Google Scholar 

  • Grallert, B. &M. Sipiczki. 1989. Initiation of the second meiotic division inSchizosaccharomyces pombe shares common functions with that of mitosis. Curr. Genet.15: 231–233.

    Google Scholar 

  • Haig, D. 1986. Conflicts among megaspores. J. Theor. Biol.123: 471–480.

    Google Scholar 

  • —. 1987. Kin conflict in seed plants. Trends Ecol. Evol.2: 337–340.

    Google Scholar 

  • — &M. Westoby. 1989. Parent-specific gene expression and the triploid endosperm. Amer. Naturalist134: 147–155.

    Google Scholar 

  • Haque, A. 1951. The embryo sac ofErythronium americanum. Bot. Gaz.112: 495–500.

    Google Scholar 

  • Harling, G. 1950. Embryological studies in the Compositae. I. Anthemideae—Anthemidinae. Acta Horti Berg.15: 135–168.

    Google Scholar 

  • —. 1951a. Embryological studies in the Compositae. II. Anthemideae—Chrysantheminae. Acta Horti Berg.16: 1–56.

    Google Scholar 

  • —. 1951b. Embryological studies in the Compositae. III. Astereae. Acta Horti Berg.16: 73–120.

    Google Scholar 

  • Haupt, A. W. 1934. Ovule and embryo sac ofPlumbago capensis. Bot. Gaz.95: 649–659.

    Google Scholar 

  • Herr, J. M., Jr. 1984. Embryology and taxonomy. Pages 645–696in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.

    Google Scholar 

  • Hjelmqvist, H. &F. Grazi. 1965. Studies on variation in embryo sac development. Bot. Notiser118: 329–360.

    Google Scholar 

  • Howe, T. D. 1975. The female gametophyte of three species ofGrindelia and ofPrionopsis ciliata (Compositae). Amer. J. Bot.62: 273–279.

    Google Scholar 

  • Johnson, D. S. 1900. On the endosperm and embryo ofPeperomia pellucida. Bot. Gaz.30: 1–11.

    Google Scholar 

  • —. 1902. On the development of certain Piperaceae. Bot. Gaz.34: 321–340.

    Google Scholar 

  • —. 1910. Studies in the development of the Piperaceae I. The suppression and extension of sporogenous tissue in the flower ofPiper betel L. var.monoicum. C. DC. J. Exp. Zool. 9:715–749.

    Google Scholar 

  • —. 1914. Studies of the development of the Piperaceae II. The structure and seeddevelopment ofPeperomia hispidula. Amer. J. Bot.1: 323–339, 357–397.

    Google Scholar 

  • Johnston, S. A., T. P. M. den Nijs, S. J. Peloquin &R. E. Hanneman, Jr. 1980. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet.57: 5–9.

    Google Scholar 

  • Johri, B. M. 1935a. Studies in the family Alismaceae. I.Limnophyton obtusifolium. Miq. J. Indian Bot. Soc.14: 49–66.

    Google Scholar 

  • —. 1935b. Studies in the family Alismaceae. II.Sagittaria sagittifolia L. Proc. Indian Acad. Sci. B.1: 340–348.

    Google Scholar 

  • —. 1935c. Studies in the family Alismaceae. III.Sagittaria guayanensis H.B.K. andS. latifolia Willd. Proc. Indian Acad. Sci. B.2: 33–48.

    Google Scholar 

  • —. 1936a. The life-history ofButomopsis lanceolata Kunth. Proc. Indian Acad. Sci. B. 4: 139–162.

    Google Scholar 

  • —. 1936b. Studies in the family Alismaceae. IV.Alisma plantago L.;Alisma plantagoaquatica L. andSagittaria graminea Mich. Proc. Indian Acad. Sci. B.4: 128–138.

    Google Scholar 

  • —. 1938a. The embryo sac ofHydrocleis nymphoides Buchen. Beih. Bot. Ztbl.48A: 165–172.

    Google Scholar 

  • —. 1938b. The embryo sac ofLimnocharis emarginata L. New Phytol.37: 279–285.

    Google Scholar 

  • — &R. N. Kapil. 1953. Contribution to the morphology and life history ofAcalypha indica L. Phytomorphology3: 137–151.

    Google Scholar 

  • — &D. Kak. 1954. The embryology ofTamarix Linn. Phytomorphology4: 230–247.

    Google Scholar 

  • Kanta, K. 1962. Morphology and embryology ofPiper nigrum L. Phytomorphology12: 207–221.

    Google Scholar 

  • Kapil, R. N. 1960. Embryology ofAcalypha Linn. Phytomorphology10: 174–184.

    Google Scholar 

  • — &A. K. Bhatnagar. 1981. Ultrastructure and biology of female gametophyte in flowering plants. Int. Rev. Cytol.70: 291–341.

    Google Scholar 

  • Kennell, J. C. &H. T. Horner. 1985. Influence of the soybean male-sterile gene (ms 1) on the development of the female gametophyte. Canad. J. Genet. Cytol.27: 200–209.

    Google Scholar 

  • Kermicle, J. L. 1971. Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Amer. J. Bot.58: 1–7.

    Google Scholar 

  • Lin, B-Y. 1978. Structural modifications of the female gametophyte associated with the indeterminate gametophyte (ig) mutant in maize. Canad. J. Genet. Cytol.20: 249–257.

    Google Scholar 

  • —. 1981. Megagametogenetic alterations associated with the indeterminate gametophyte mutation in maize. Rev. Brasil. Biol.41: 557–563.

    Google Scholar 

  • —. 1984. Ploidy barrier to endosperm development in maize. Genetics107: 103–115.

    PubMed  Google Scholar 

  • Maheshwari, P. 1946a. The Fritillaria type of embryo sac: A critical review. J. Indian Bot. Soc. (M. O. P. Iyengar Commem. Vol.): 101–119.

  • —. 1946b. The Adoxa type of embryo sac: A critical review. Lloydia9: 73–113.

    Google Scholar 

  • —. 1950. An introduction to the embryology of angiosperms. McGraw-Hill, New York.

    Google Scholar 

  • — &B. M. Johri. 1941. The embryo-sac ofAcalypha indica L. Beih. Bot. Ztbl.16: 125–136.

    Google Scholar 

  • — &B. Singh. 1943. Studies in the family Alismaceae. V. The embryology ofMachaerocarpus californicus (Torr.) Small. Proc. Indian Acad. Sci. B.9: 311–322.

    Google Scholar 

  • Maheshwari, S. C. 1955. The occurrence of bisporic embryo sacs in angiosperms—A critical review. Phytomorphology5: 67–99.

    Google Scholar 

  • Martinoli, G. O. 1939. Contributo all’embriologia delle Asteraceae. N. G. Bot. Ital.46: 259–298.

    Google Scholar 

  • Mathur, K. &R. Khan. 1941. The development of the embryo sac inVogelia indica. Lamk. Proc. Indian Acad. Sci. B.13: 360–368.

    Google Scholar 

  • Mathur, N. 1956. The embryology ofLimnanthes. Phytomorphology6: 41–50.

    Google Scholar 

  • Mauritzon, J. 1936. Zur Embryologie der Berberidaceen. Medd. Göteborgs Bot. Trädgård11: 1–17.

    Google Scholar 

  • Modilewski, J. 1908. Zur Embryobildung vonGunnera chilensis. Ber. Dtsch. Bot. Ges.26: 550–556.

    Google Scholar 

  • Mukkada, A. J. 1964. An addition to the bisporic embryo sacs—TheDicraea type. New Phytol.63: 289–292.

    Google Scholar 

  • Nagendran, C. R. 1974. Is the embryo sac of Podostemaceae bisporic? Current Sci.43: 259–261.

    Google Scholar 

  • —,G. D. Arekal &K. Subramanyam. 1977. Embryo sac studies in three Indian species ofPolypleurum (Podostemaceae). Plant Syst. Evol.128: 215–226.

    Google Scholar 

  • Newcomb, W. 1973. The development of the embryo sac of sunflowerHelianthus annuus before fertilization. Canad. J. Bot.51: 863–878.

    Google Scholar 

  • Nikiticheva, Z. I., M. S. Yakovlev &T. A. Plyushch. 1981. [The development of the ovule, embryo sac and endosperm in the species ofPeperomia]. Bot. Zhur.66: 1388–1397 (in Russian).

    Google Scholar 

  • Nogler, G. A. 1984. Gametophytic apomixis. Pages 475–518in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.

    Google Scholar 

  • Palser, B. F. 1975. The bases of angiosperm phylogeny: Embryology. Ann. Missouri Bot. Gard.62: 621–646.

    Google Scholar 

  • Philipson, W. R. 1987. The treatment of isolated genera. Bot. J. Linn. Soc.95: 19–25.

    Google Scholar 

  • Queller, D. C. 1983. Kin selection and conflict in seed maturation. J. Theor. Biol.100: 153–172.

    Google Scholar 

  • —. 1984. Models of kin selection on seed provisioning. Heredity53: 151–165.

    Google Scholar 

  • Rao, P. N. 1970. Euphorbiaceae. Bull. Indian Nat. Sci. Acad.41: 136–141.

    Google Scholar 

  • Romanov, I. D. 1938. Eine neue Form des Embryosackes von Adoxa-typus beiTulipa tetraphylla undT. ostrovskiana. Compt. Rend. (Doklady) Acad. des Sci. U.R.S.S.19:113–115.

    Google Scholar 

  • —. 1939. Two new forms of embryo-sack in the genusTulipa. Compt. Rend. (Doklady) Acad. des Sci. U.R.S.S.22: 139–141.

    Google Scholar 

  • —. 1959. The embryo sac and pollen morphology inTulipa (abstract). Proc. 9th Inter. Congr. Bot.23:331–332.

    Google Scholar 

  • Roper, R. B. 1952. The embryo sac ofButomus umbellatus L. Phytomorphology2: 61–74.

    Google Scholar 

  • Russell, S. D. 1979. Fine structure of megagametophyte devleopment inZea mays. Canad. J. Bot.57: 1093–1110.

    Google Scholar 

  • —. 1982. Fertilization inPlumbago zeylanica: Entry and discharge of the pollen tube in the embryo sac. Canad. J. Bot.60: 2219–2230.

    Google Scholar 

  • — &D. D. Cass. 1988. Fertilization inPlumbagella micrantha. Amer. J. Bot.75: 778–781.

    Google Scholar 

  • Rutishauser, A. 1935. Entwicklungsgeschichtliche und zytologische Untersuchungen anKorthalsella dacrydii (Ridl.) Dans. Ber. Schweiz. Bot. Ges.44: 389–436.

    Google Scholar 

  • —. 1969. Embryologie und Fortpflanzungsbiologie der Angiospermen. Springer-Verlag, Wien.

    Google Scholar 

  • Samuels, J. A. 1912. Etudes sur le développement du sac embryonnaire et sur la fécondation duGunnera macrophylla Bl. Arch. f. Zellf.8: 52–120.

    Google Scholar 

  • Satina, S. &A. F. Blakeslee. 1935. Cytological effects of a gene inDatura which causes dyad formation in sporogenesis. Bot. Gaz.96: 521–532.

    Google Scholar 

  • Shattuck, C. H. 1905. A morphological study ofUlmus americana. Bot. Gaz.40: 209–223.

    Google Scholar 

  • Schnarf, K. 1929. Embryologie der Angiospermen, Handbuch der Pflanzenanatomie Bd. X/2. Borntraeger, Berlin.

    Google Scholar 

  • Smith, F. H. 1955. Megagametophyte development in five species ofErythronium. Amer. J. Bot.42:213–224.

    Google Scholar 

  • Smith, R. W. 1911. The tetranucleate embryo sac ofClintonia. Bot. Gaz.52: 209–216.

    Google Scholar 

  • Stephens, E. L. 1909. The embryo-sac and embryo of certain Penaeaceae. Ann. Bot.23: 363–378.

    Google Scholar 

  • Subba Rao, A. M. 1940. Studies in the Malpighiaceae. I. Embryo sac development and embryogeny in the generaHiptage, Banisteria andStigmatophyllum. J. Indian Bot. Soc.18: 145–156.

    Google Scholar 

  • Subramanyam, K. 1967. Some aspects of the embryology ofSedum chrysanthum (Boissier) Raymond-Hamlet with a discussion of its systematic position. Phytomorphology17:240–247.

    Google Scholar 

  • Thathachar, T. 1952. Morphological studies in the Euphorbiaceae: I.Acalypha lanceolata Willd. Phytomorphology2: 197–201.

    Google Scholar 

  • Tobe, H. &P. H. Raven. 1984. The embryology and relationships of Penaeaceae (Myrtales). Plant Syst. Evol.146: 181–195.

    Google Scholar 

  • Walker, R. I. 1950. Megasporogenesis and development of megagametophyte inUlmus. Amer. J. Bot.37: 47–52.

    Google Scholar 

  • Westoby, M. &B. Rice. 1982. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution36: 713–724.

    Google Scholar 

  • Willemse, M. T. M. &J. L. van Went. 1984. The female gametophyte. Pages 159–196in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.

    Google Scholar 

  • Willson, M. F. &N. Burley. 1983. Mate choice in plants. Princeton University Press, Princeton.

    Google Scholar 

  • Wright, S. 1969. Evolution and the genetics of populations. Vol. 2. University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haig, D. New perspectives on the angiosperm female gametophyte. Bot. Rev 56, 236–274 (1990). https://doi.org/10.1007/BF02858326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858326

Keywords

Navigation