Skip to main content

Transforming Growth Factor-ß and Connective Tissue Growth Factor

  • Chapter
  • First Online:
Systemic Sclerosis

Abstract

Systemic sclerosis (SSc) is a disorder of connective tissue characterized by excessive fibrosis affecting different organs such as the skin, lung, and heart. Increasing evidence has demonstrated the fundamental role of cytokines in the pathogenesis. Transforming growth factor-β (TGF-β) is a very potent stimulator of collagen synthesis by fibroblasts. While TGF-β has been considered as a primary cytokine involved in the pathogenesis of SSc (LeRoy et al. Arthritis Rheum32:817–825, 1989; Takehara. J Rheumatol 30:755–759, 2003; Varga and Pasche. Nat Rev Rheumatol 5:200–206, 2009; Lafyatis. Nat Rev Rheumatol 10:706–719, 2014; Ihn. J Dermatol Sci 49:103–113, 2008), additional factors are also likely to play an important role in the initiation and maintenance. These include connective tissue growth factor (CTGF) (Takehara. J Rheumatol 30:755–759, 2003; Ihn. Curr Opin Rheumatol 14:681–685, 2002; Leask. Cell Signal 20:1409–1414, 2008; Jinnin. J Dermatol 37:11–25, 2010). This review summarizes the biology of TGF-β and CTGF and their involvement in SSc, especially in its fibrotic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takehara K. Hypothesis: pathogenesis of systemic sclerosis. J Rheumatol. 2003;30(4):755–9.

    PubMed  Google Scholar 

  2. Lafyatis R. Transforming growth factor beta – at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10(12):706–19.

    Article  PubMed  CAS  Google Scholar 

  3. Ihn H. Autocrine TGF-beta signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci. 2008;49(2):103–13.

    Article  PubMed  CAS  Google Scholar 

  4. Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010;37(1):11–25.

    Article  PubMed  CAS  Google Scholar 

  5. Attisano L, Wrana JL. Signal transduction by members of the transforming growth factor-beta superfamily. Cytokine Growth Factor Rev. 1996;7(4):327–39.

    Article  PubMed  CAS  Google Scholar 

  6. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.

    Article  PubMed  CAS  Google Scholar 

  7. Shull MM, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Sanford LP, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development. 1997;124(13):2659–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Proetzel G, et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet. 1995;11(4):409–14.

    Article  PubMed  CAS  Google Scholar 

  10. Takehara K, LeRoy EC, Grotendorst GR. TGF-beta inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell. 1987;49(3):415–22.

    Article  PubMed  CAS  Google Scholar 

  11. Varga J, Rosenbloom J, Jimenez SA. Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J. 1987;247(3):597–604.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors. 1993;8(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  13. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6:597–641.

    Article  PubMed  CAS  Google Scholar 

  14. Munger JS, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96(3):319–28.

    Article  PubMed  CAS  Google Scholar 

  15. Mu D, et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol. 2002;157(3):493–507.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Markovics JA, et al. Interleukin-1beta induces increased transcriptional activation of the transforming growth factor-beta-activating integrin subunit beta8 through altering chromatin architecture. J Biol Chem. 2011;286(42):36864–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Schultz-Cherry S, et al. Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem. 1995;270(13):7304–10.

    Article  PubMed  CAS  Google Scholar 

  18. Crawford SE, et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 1998;93(7):1159–70.

    Article  PubMed  CAS  Google Scholar 

  19. Wrana JL, et al. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370(6488):341–7.

    Article  PubMed  CAS  Google Scholar 

  20. Saitoh M, et al. Identification of important regions in the cytoplasmic juxtamembrane domain of type I receptor that separate signaling pathways of transforming growth factor-beta. J Biol Chem. 1996;271(5):2769–75.

    Article  PubMed  CAS  Google Scholar 

  21. Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14(6):627–44.

    PubMed  CAS  Google Scholar 

  22. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19(8):1745–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J. 1999;13(15):2105–24.

    PubMed  CAS  Google Scholar 

  24. Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95(6):737–40.

    Article  PubMed  CAS  Google Scholar 

  25. Shi Y, et al. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997;388(6637):87–93.

    Article  PubMed  CAS  Google Scholar 

  26. Rossi P, et al. A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta. Cell. 1988;52(3):405–14.

    Article  PubMed  CAS  Google Scholar 

  27. Inagaki Y, Truter S, Ramirez F. Transforming growth factor-beta stimulates alpha 2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem. 1994;269(20):14828–34.

    PubMed  CAS  Google Scholar 

  28. Greenwel P, et al. Sp1 is required for the early response of alpha2(I) collagen to transforming growth factor-beta1. J Biol Chem. 1997;272(32):19738–45.

    Article  PubMed  CAS  Google Scholar 

  29. Chen SJ, et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol. 1999;112(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  30. Chen SJ, et al. Interaction of smad3 with a proximal smad-binding element of the human alpha2(I) procollagen gene promoter required for transcriptional activation by TGF-beta. J Cell Physiol. 2000;183(3):381–92.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang W, et al. Synergistic cooperation between Sp1 and Smad3/Smad4 mediates transforming growth factor beta1 stimulation of alpha 2(I)-collagen (COL1A2) transcription. J Biol Chem. 2000;275(50):39237–45.

    Article  PubMed  CAS  Google Scholar 

  32. Poncelet AC, Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J Biol Chem. 2001;276(10):6983–92.

    Article  PubMed  CAS  Google Scholar 

  33. Inagaki Y, et al. Interaction between GC box binding factors and Smad proteins modulates cell lineage-specific alpha 2(I) collagen gene transcription. J Biol Chem. 2001;276(19):16573–9.

    Article  PubMed  CAS  Google Scholar 

  34. Ghosh AK, et al. Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-beta involves functional cooperation with p300/CBP transcriptional coactivators. Oncogene. 2000;19(31):3546–55.

    Article  PubMed  CAS  Google Scholar 

  35. Ghosh AK, et al. Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/CBP transcriptional coactivators. J Biol Chem. 2001;276(14):11041–8.

    Article  PubMed  CAS  Google Scholar 

  36. Janknecht R, Wells NJ, Hunter T. TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 1998;12(14):2114–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Czuwara-Ladykowska J, et al. Ets1 is an effector of the transforming growth factor beta (TGF-beta) signaling pathway and an antagonist of the profibrotic effects of TGF-beta. J Biol Chem. 2002;277(23):20399–408.

    Article  PubMed  CAS  Google Scholar 

  38. Flanders KC, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol. 2002;160(3):1057–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Zhao J, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L585–93.

    Article  PubMed  CAS  Google Scholar 

  40. Lee DK, et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev. 2001;15(4):455–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Schnabl B, et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001;34(1):89–100.

    Article  PubMed  CAS  Google Scholar 

  42. Inagaki Y, et al. Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physiol. 2001;187(1):117–23.

    Article  PubMed  CAS  Google Scholar 

  43. Terada Y, et al. Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int. 2002;61(1 Suppl):S94–8.

    Article  PubMed  Google Scholar 

  44. Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679–92.

    Article  PubMed  CAS  Google Scholar 

  45. Ihn H, Tamaki K. Increased phosphorylation of transcription factor Sp1 in scleroderma fibroblasts: association with increased expression of the type I collagen gene. Arthritis Rheum. 2000;43(10):2240–7.

    Article  PubMed  CAS  Google Scholar 

  46. Reunanen N, et al. Activation of extracellular signal-regulated kinase 1/2 inhibits type I collagen expression by human skin fibroblasts. J Biol Chem. 2000;275(44):34634–9.

    Article  PubMed  CAS  Google Scholar 

  47. Hocevar BA, Brown TL, Howe PH. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 1999;18(5):1345–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Ihn H, et al. IL-4 up-regulates the expression of tissue inhibitor of metalloproteinase-2 in dermal fibroblasts via the p38 mitogen-activated protein kinase dependent pathway. J Immunol. 2002;168(4):1895–902.

    Article  PubMed  CAS  Google Scholar 

  49. Okkenhaug K. Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev Immunol. 2013;31:675–704.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Bakin AV, et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275(47):36803–10.

    Article  PubMed  CAS  Google Scholar 

  51. Runyan CE, Schnaper HW, Poncelet AC. The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-beta1. J Biol Chem. 2004;279(4):2632–9.

    Article  PubMed  CAS  Google Scholar 

  52. Tsukazaki T, et al. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998;95(6):779–91.

    Article  PubMed  CAS  Google Scholar 

  53. Asano Y, et al. Phosphatidylinositol 3-kinase is involved in alpha2(I) collagen gene expression in normal and scleroderma fibroblasts. J Immunol. 2004;172(11):7123–35.

    Article  PubMed  CAS  Google Scholar 

  54. Goldman JM, Melo JV. Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1084–6.

    Article  PubMed  CAS  Google Scholar 

  55. Daniels CE, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004;114(9):1308–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Bhattacharyya S, et al. A non-Smad mechanism of fibroblast activation by transforming growth factor-beta via c-Abl and Egr-1: selective modulation by imatinib mesylate. Oncogene. 2009;28(10):1285–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Distler JH, et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 2007;56(1):311–22.

    Article  PubMed  CAS  Google Scholar 

  58. Distler JH, Distler O. Imatinib as a novel therapeutic approach for fibrotic disorders. Rheumatology (Oxford). 2009;48(1):2–4.

    Article  CAS  Google Scholar 

  59. Weiss RH, Yabes AP, Sinaee R. TGF-beta and phorbol esters inhibit mitogenesis utilizing parallel protein kinase C-dependent pathways. Kidney Int. 1995;48(3):738–44.

    Article  PubMed  CAS  Google Scholar 

  60. Ignotz RA, Honeyman T. TGF-beta signaling in A549 lung carcinoma cells: lipid second messengers. J Cell Biochem. 2000;78(4):588–94.

    Article  PubMed  CAS  Google Scholar 

  61. Bujor AM, et al. The c-Abl tyrosine kinase controls protein kinase Cdelta-induced Fli-1 phosphorylation in human dermal fibroblasts. Arthritis Rheum. 2011;63(6):1729–37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Mimura Y, et al. Constitutive thrombospondin-1 overexpression contributes to autocrine transforming growth factor-beta signaling in cultured scleroderma fibroblasts. Am J Pathol. 2005;166(5):1451–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest. 1974;54(4):880–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Falanga V, et al. Transforming growth factor-beta: selective increase in glycosaminoglycan synthesis by cultures of fibroblasts from patients with progressive systemic sclerosis. J Invest Dermatol. 1987;89(1):100–4.

    Article  PubMed  CAS  Google Scholar 

  65. Peltonen J, et al. Increased expression of type VI collagen genes in systemic sclerosis. Arthritis Rheum. 1990;33(12):1829–35.

    Article  PubMed  CAS  Google Scholar 

  66. Xu WD, Leroy EC, Smith EA. Fibronectin release by systemic sclerosis and normal dermal fibroblasts in response to TGF-beta. J Rheumatol. 1991;18(2):241–6.

    PubMed  CAS  Google Scholar 

  67. Rudnicka L, et al. Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. Regulation by transforming growth factor-beta. J Clin Invest. 1994;93(4):1709–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Jelaska A, et al. Heterogeneity of collagen synthesis in normal and systemic sclerosis skin fibroblasts. Increased proportion of high collagen-producing cells in systemic sclerosis fibroblasts. Arthritis Rheum. 1996;39(8):1338–46.

    Article  PubMed  CAS  Google Scholar 

  69. Kirk TZ, et al. Myofibroblasts from scleroderma skin synthesize elevated levels of collagen and tissue inhibitor of metalloproteinase (TIMP-1) with two forms of TIMP-1. J Biol Chem. 1995;270(7):3423–8.

    Article  PubMed  CAS  Google Scholar 

  70. Takeda K, et al. Decreased collagenase expression in cultured systemic sclerosis fibroblasts. J Invest Dermatol. 1994;103(3):359–63.

    Article  PubMed  CAS  Google Scholar 

  71. Sappino AP, et al. Smooth muscle differentiation in scleroderma fibroblastic cells. Am J Pathol. 1990;137(3):585–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Asano Y, et al. Increased expression levels of integrin alphavbeta5 on scleroderma fibroblasts. Am J Pathol. 2004;164(4):1275–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Ihn H, et al. Blockade of endogenous transforming growth factor beta signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor beta receptors. Arthritis Rheum. 2001;44(2):474–80.

    Article  PubMed  CAS  Google Scholar 

  74. Kubo M, et al. Upregulated expression of transforming growth factor-beta receptors in dermal fibroblasts of skin sections from patients with systemic sclerosis. J Rheumatol. 2002;29(12):2558–64.

    PubMed  CAS  Google Scholar 

  75. Yamane K, et al. Increased transcriptional activities of transforming growth factor beta receptors in scleroderma fibroblasts. Arthritis Rheum. 2002;46(9):2421–8.

    Article  PubMed  CAS  Google Scholar 

  76. Yamane K, et al. Antagonistic effects of TNF-alpha on TGF-beta signaling through down-regulation of TGF-beta receptor type II in human dermal fibroblasts. J Immunol. 2003;171(7):3855–62.

    Article  PubMed  CAS  Google Scholar 

  77. Yamane K, Ihn H, Tamaki K. Epidermal growth factor up-regulates expression of transforming growth factor beta receptor type II in human dermal fibroblasts by phosphoinositide 3-kinase/Akt signaling pathway: resistance to epidermal growth factor stimulation in scleroderma fibroblasts. Arthritis Rheum. 2003;48(6):1652–66.

    Article  PubMed  CAS  Google Scholar 

  78. Leask A, et al. Dysregulation of transforming growth factor beta signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum. 2002;46(7):1857–65.

    Article  PubMed  CAS  Google Scholar 

  79. Pannu J, et al. An increased transforming growth factor beta receptor type I: type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor beta receptor type II in scleroderma. Arthritis Rheum. 2004;50(5):1566–77.

    Article  PubMed  CAS  Google Scholar 

  80. Holmes A, et al. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem. 2001;276(14):10594–601.

    Article  PubMed  CAS  Google Scholar 

  81. Mori Y, Chen SJ, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum. 2003;48(7):1964–78.

    Article  PubMed  CAS  Google Scholar 

  82. Asano Y, et al. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts. J Clin Invest. 2004;113(2):253–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Dong C, et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci U S A. 2002;99(6):3908–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Needleman BW, et al. Secretion and binding of transforming growth factor beta by scleroderma and normal dermal fibroblasts. Arthritis Rheum. 1990;33(5):650–6.

    Article  PubMed  CAS  Google Scholar 

  85. Yamane K, et al. Anti-U3 snRNP antibodies in localised scleroderma. Ann Rheum Dis. 2001;60(12):1157–8.

    Article  PubMed Central  Google Scholar 

  86. Ihn H, Yamane K, Tamaki K. Increased phosphorylation and activation of mitogen-activated protein kinase p38 in scleroderma fibroblasts. J Invest Dermatol. 2005;125(2):247–55.

    PubMed  CAS  Google Scholar 

  87. Chung L, et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum. 2009;60(2):584–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Kubo M, et al. Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am J Pathol. 2003;163(2):571–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Asano Y, Bujor AM, Trojanowska M. The impact of Fli1 deficiency on the pathogenesis of systemic sclerosis. J Dermatol Sci. 2010;59(3):153–62.

    Article  PubMed  CAS  Google Scholar 

  90. Denton CP, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007;56(1):323–33.

    Article  PubMed  CAS  Google Scholar 

  91. Pope J, et al. Imatinib in active diffuse cutaneous systemic sclerosis: results of a six-month, randomized, double-blind, placebo-controlled, proof-of-concept pilot study at a single center. Arthritis Rheum. 2011;63(11):3547–51.

    Article  PubMed  CAS  Google Scholar 

  92. Fraticelli P, et al. Low-dose oral imatinib in the treatment of systemic sclerosis interstitial lung disease unresponsive to cyclophosphamide: a phase II pilot study. Arthritis Res Ther. 2014;16(4):R144.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Prey S, et al. Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: a phase II multicentre randomized double-blinded controlled trial. Br J Dermatol. 2012;167(5):1138–44.

    Article  PubMed  CAS  Google Scholar 

  94. Bournia VK, Evangelou K, Sfikakis PP. Therapeutic inhibition of tyrosine kinases in systemic sclerosis: a review of published experience on the first 108 patients treated with imatinib. Semin Arthritis Rheum. 2013;42(4):377–90.

    Article  PubMed  CAS  Google Scholar 

  95. Tamaki Z, et al. Efficacy of low-dose imatinib mesylate for cutaneous involvement in systemic sclerosis: a preliminary report of three cases. Mod Rheumatol. 2012;22(1):94–9.

    Article  PubMed  CAS  Google Scholar 

  96. Spiera RF, et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis. 2011;70(6):1003–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Daniels CE, et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010;181(6):604–10.

    Article  PubMed  CAS  Google Scholar 

  98. Sabnani I, et al. A novel therapeutic approach to the treatment of scleroderma-associated pulmonary complications: safety and efficacy of combination therapy with imatinib and cyclophosphamide. Rheumatology (Oxford). 2009;48(1):49–52.

    Article  CAS  Google Scholar 

  99. Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res. 1999;248(1):44–57.

    Article  PubMed  CAS  Google Scholar 

  100. Perbal B. CCN proteins: multifunctional signalling regulators. Lancet. 2004;363(9402):62–4.

    Article  PubMed  CAS  Google Scholar 

  101. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 1993;327(2):125–30.

    Article  PubMed  CAS  Google Scholar 

  102. Bradham DM, et al. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114(6):1285–94.

    Article  PubMed  CAS  Google Scholar 

  103. Paradis V, et al. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999;30(4):968–76.

    Article  PubMed  CAS  Google Scholar 

  104. Ito Y, et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 1998;53(4):853–61.

    Article  PubMed  CAS  Google Scholar 

  105. Chen Y, et al. Connective tissue growth factor is secreted through the Golgi and is degraded in the endosome. Exp Cell Res. 2001;271(1):109–17.

    Article  PubMed  CAS  Google Scholar 

  106. Chen Y, et al. CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int. 2002;62(4):1149–59.

    Article  PubMed  CAS  Google Scholar 

  107. Van Beek JP, et al. The induction of CCN2 by TGFbeta1 involves Ets-1. Arthritis Res Ther. 2006;8(2):R36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Shi-wen X, et al. Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts. Arthritis Rheum. 2007;56(12):4189–94.

    Article  PubMed  CAS  Google Scholar 

  109. Abraham D. Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford). 2008;47 Suppl 5:v8–9.

    Article  CAS  Google Scholar 

  110. Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008;19(2):133–44.

    Article  PubMed  CAS  Google Scholar 

  111. Leask A, et al. The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Mol Pathol. 2001;54(3):180–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Leask A, et al. Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem. 2003;278(15):13008–15.

    Article  PubMed  CAS  Google Scholar 

  113. Shi-Wen X, et al. Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell. 2004;15(6):2707–19.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Higgins DF, et al. Hypoxic induction of Ctgf is directly mediated by Hif-1. Am J Physiol Renal Physiol. 2004;287(6):F1223–32.

    Article  PubMed  CAS  Google Scholar 

  115. Frazier K, et al. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol. 1996;107(3):404–11.

    Article  PubMed  CAS  Google Scholar 

  116. Ball DK, et al. The heparin-binding 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion. J Endocrinol. 2003;176(2):R1–7.

    Article  PubMed  CAS  Google Scholar 

  117. Chen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem. 2001;276(13):10443–52.

    Article  PubMed  CAS  Google Scholar 

  118. Segarini PR, et al. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. J Biol Chem. 2001;276(44):40659–67.

    Article  PubMed  CAS  Google Scholar 

  119. Igarashi A, et al. Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol. 1995;105(2):280–4.

    Article  PubMed  CAS  Google Scholar 

  120. Igarashi A, et al. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol. 1996;106(4):729–33.

    Article  PubMed  CAS  Google Scholar 

  121. Shi-wen X, et al. Autocrine overexpression of CTGF maintains fibrosis: RDA analysis of fibrosis genes in systemic sclerosis. Exp Cell Res. 2000;259(1):213–24.

    Article  PubMed  CAS  Google Scholar 

  122. Holmes A, et al. Constitutive connective tissue growth factor expression in scleroderma fibroblasts is dependent on Sp1. J Biol Chem. 2003;278(43):41728–33.

    Article  PubMed  CAS  Google Scholar 

  123. Chen Y, et al. Contribution of activin receptor-like kinase 5 (transforming growth factor beta receptor type I) signaling to the fibrotic phenotype of scleroderma fibroblasts. Arthritis Rheum. 2006;54(4):1309–16.

    Article  PubMed  CAS  Google Scholar 

  124. Shi-Wen X, et al. Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol. 2007;26(8):625–32.

    Article  PubMed  CAS  Google Scholar 

  125. Leask A. Scar wars: is TGFbeta the phantom menace in scleroderma? Arthritis Res Ther. 2006;8(4):213.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Leask A, et al. Regulation of CCN2 mRNA expression and promoter activity in activated hepatic stellate cells. J Cell Commun Signal. 2008;2(1-2):49–56.

    Article  PubMed Central  PubMed  Google Scholar 

  127. Giusti B, et al. A model of anti-angiogenesis: differential transcriptosome profiling of microvascular endothelial cells from diffuse systemic sclerosis patients. Arthritis Res Ther. 2006;8(4):R115.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Serrati S, et al. Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor beta-dependent mesenchymal-to-mesenchymal transition. Arthritis Rheum. 2013;65(1):258–69.

    Article  PubMed  CAS  Google Scholar 

  129. Sato S, et al. Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol. 2000;27(1):149–54.

    PubMed  CAS  Google Scholar 

  130. Fonseca C, et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. N Engl J Med. 2007;357(12):1210–20.

    Article  PubMed  CAS  Google Scholar 

  131. Kawaguchi Y, et al. Association study of a polymorphism of the CTGF gene and susceptibility to systemic sclerosis in the Japanese population. Ann Rheum Dis. 2009;68(12):1921–4.

    Article  PubMed  CAS  Google Scholar 

  132. Lasky JA, et al. Chrysotile asbestos induces PDGF-A chain-dependent proliferation in human and rat lung fibroblasts in vitro. Chest. 1996;109(3 Suppl):26S–8.

    Article  PubMed  CAS  Google Scholar 

  133. Bonniaud P, et al. Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am J Respir Cell Mol Biol. 2004;31(5):510–6.

    Article  PubMed  CAS  Google Scholar 

  134. Liu S, Taghavi R, Leask A. Connective tissue growth factor is induced in bleomycin-induced skin scleroderma. J Cell Commun Signal. 2010;4(1):25–30.

    Article  PubMed Central  PubMed  Google Scholar 

  135. Sonnylal S, et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 2010;62(5):1523–32.

    Article  PubMed  CAS  Google Scholar 

  136. Uchio K, et al. Down-regulation of connective tissue growth factor and type I collagen mRNA expression by connective tissue growth factor antisense oligonucleotide during experimental liver fibrosis. Wound Repair Regen. 2004;12(1):60–6.

    Article  PubMed  Google Scholar 

  137. Okada H, et al. Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J Am Soc Nephrol. 2005;16(1):133–43.

    Article  PubMed  CAS  Google Scholar 

  138. Lang C, et al. Connective tissue growth factor: a crucial cytokine-mediating cardiac fibrosis in ongoing enterovirus myocarditis. J Mol Med (Berl). 2008;86(1):49–60.

    Article  CAS  Google Scholar 

  139. Bogatkevich GS, Ludwicka-Bradley A, Silver RM. Dabigatran, a direct thrombin inhibitor, demonstrates antifibrotic effects on lung fibroblasts. Arthritis Rheum. 2009;60(11):3455–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Roberts AB, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A. 1986;83(12):4167–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  141. Shinozaki M, et al. Induction of subcutaneous tissue fibrosis in newborn mice by transforming growth factor beta--simultaneous application with basic fibroblast growth factor causes persistent fibrosis. Biochem Biophys Res Commun. 1997;240(2):292–7.

    Article  PubMed  CAS  Google Scholar 

  142. Mori T, et al. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol. 1999;181(1):153–9.

    Article  PubMed  CAS  Google Scholar 

  143. Denton CP, et al. Inducible lineage-specific deletion of TbetaRII in fibroblasts defines a pivotal regulatory role during adult skin wound healing. J Invest Dermatol. 2009;129(1):194–204.

    Article  PubMed  CAS  Google Scholar 

  144. de Winter P, Leoni P, Abraham D. Connective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein. Growth Factors. 2008;26(2):80–91.

    Article  PubMed  CAS  Google Scholar 

  145. Chujo S, et al. Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model. J Cell Physiol. 2005;203(2):447–56.

    Article  PubMed  CAS  Google Scholar 

  146. Arai M, et al. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. J Dermatol Sci. 2013;69(3):250–8.

    Article  PubMed  CAS  Google Scholar 

  147. Chujo S, et al. Role of connective tissue growth factor and its interaction with basic fibroblast growth factor and macrophage chemoattractant protein-1 in skin fibrosis. J Cell Physiol. 2009;220(1):189–95.

    Article  PubMed  CAS  Google Scholar 

  148. Ikawa Y, et al. Neutralizing monoclonal antibody to human connective tissue growth factor ameliorates transforming growth factor-beta-induced mouse fibrosis. J Cell Physiol. 2008;216(3):680–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Fujimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fujimoto, M., Takehara, K. (2016). Transforming Growth Factor-ß and Connective Tissue Growth Factor. In: Takehara, K., Fujimoto, M., Kuwana, M. (eds) Systemic Sclerosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55708-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55708-1_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55707-4

  • Online ISBN: 978-4-431-55708-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics