Skip to main content
Log in

Connective tissue growth factor: a crucial cytokine-mediating cardiac fibrosis in ongoing enterovirus myocarditis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy (DCM) as a consequence of viral myocarditis is a worldwide cause of morbidity and death. The deposition of matrix proteins, such as collagen, in the course of ongoing viral myocarditis results in cardiac remodeling and finally in cardiac fibrosis, the hallmark of DCM. To identify mediators of virus-induced cardiac fibrosis, microarray analysis was conducted in a murine model of chronic coxsackievirus B3 (CVB3) myocarditis. By this attempt, we identified connective tissue growth factor (CTGF) as a novel factor highly expressed in infected hearts. Further investigations by quantitative reverse transcription polymerase chain reaction and Western blot analysis confirmed a strong induction of cardiac CTGF expression in the course of CVB3 myocarditis. By in situ hybridization and immunohistochemistry, basal CTGF messenger ribonucleic acid (mRNA) and protein expression were confined in noninfected control hearts mainly to endothelial cells, whereas in CVB3-infected hearts, also numerous fibroblasts were found to express CTGF. Regulation of CTGF is known to be basically mediated by transforming growth factor (TGF)-β. In the course of CVB3 myocarditis, CTGF upregulation coincided with increased cardiac TGF-β and procollagen type I mRNA expression, preceding the formation of fibrotic lesions. In in vitro experiments, we found that downregulation of CVB3 replication by means of small interfering RNAs (siRNAs) reverses the upregulation of CTGF mRNA expression. In contrast, downregulation of CTGF by siRNA molecules did not significantly reduce viral load, indicating that CTGF is not essential for CVB3 life cycle. The significantly enhanced transcript levels of TGF-β, CTGF, and procollagen type I in cultivated CVB3-infected primary cardiac fibroblasts substantiate the role of fibroblasts as a relevant cell population in cardiac remodeling processes. We conclude that CTGF is a crucial molecule in the development of fibrosis in ongoing enteroviral myocarditis. Thus, downregulation of cardiac CTGF expression may open novel therapeutic approaches counteracting the development of cardiac fibrosis and subsequent heart muscle dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martino TA, Liu P, Sole MJ (1994) Viral infection and the pathogenesis of dilated cardiomyopathy. Circ Res 74:182–188

    PubMed  CAS  Google Scholar 

  2. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    Article  PubMed  CAS  Google Scholar 

  3. Allessie M, Schotten U, Verheule S, Harks E (2005) Gene therapy for repair of cardiac fibrosis: a long way to Tipperary. Circulation 111:391–393

    Article  PubMed  Google Scholar 

  4. Klingel K, Hohenadl C, Canu A, Albrecht M, Seemann M, Mall G, Kandolf R (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci USA 89:314–318

    Article  PubMed  CAS  Google Scholar 

  5. Andreoletti L, Hober D, Becquart P, Belaich S, Copin MC, Lambert V, Wattre P (1997) Experimental CVB3-induced chronic myocarditis in two murine strains: evidence of interrelationships between virus replication and myocardial damage in persistent cardiac infection. J Med Virol 52:206–214

    Article  PubMed  CAS  Google Scholar 

  6. Moussad EE, Brigstock DR (2000) Connective tissue growth factor: what’s in a name? Mol Genet Metab 71:276–292

    Article  PubMed  CAS  Google Scholar 

  7. Crean JK, Finlay D, Murphy M, Moss C, Godson C, Martin F, Brady HR (2002) The role of p42/44 MAPK and protein kinase B in connective tissue growth factor induced extracellular matrix protein production, cell migration, and actin cytoskeletal rearrangement in human mesangial cells. J Biol Chem 277:44187–44194

    Article  PubMed  CAS  Google Scholar 

  8. Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR (1996) Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 107:404–411

    Article  PubMed  CAS  Google Scholar 

  9. Dean RG, Balding LC, Candido R, Burns WC, Cao Z, Twigg SM, Burrell LM (2005) Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53:1245–1256

    Article  PubMed  CAS  Google Scholar 

  10. Matsui Y, Sadoshima J (2004) Rapid upregulation of CTGF in cardiac myocytes by hypertrophic stimuli: implication for cardiac fibrosis and hypertrophy. J Mol Cell Cardiol 37:477–481

    Article  PubMed  CAS  Google Scholar 

  11. Vallon V, Wyatt AW, Klingel K, Huang DY, Hussain A, Berchtold S, Friedrich B, Grahammer F, BelAiba RS, Gorlach A, Wulff P, Daut J, Dalton ND, Ross J Jr, Flogel U, Schrader J, Osswald H, Kandolf R, Kuhl D, Lang F (2006) SGK1-dependent cardiac CTGF formation and fibrosis following DOCA treatment. J Mol Med 84:396–404

    Article  PubMed  CAS  Google Scholar 

  12. Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Fujimoto M, Grotendorst GR, Takehara K (1996) Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106:729–33

    Article  PubMed  CAS  Google Scholar 

  13. Sato S, Nagaoka T, Hasegawa M, Tamatani T, Nakanishi T, Takigawa M, Takehara K (2000) Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol 27:149–154

    PubMed  CAS  Google Scholar 

  14. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827

    Article  PubMed  CAS  Google Scholar 

  15. Chen MM, Lam A, Abraham JA, Schreiner GF, Joly AH (2000) CTGF expression is induced by TGF-beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 32:1805–1819

    Article  PubMed  CAS  Google Scholar 

  16. Glück B, Schmidtke M, Merkle I, Stelzner A, Gemsa D (2001) Persistent expression of cytokines in the chronic stage of CVB3-induced myocarditis in NMRI mice. J Mol Cell Cardiol 33:1615–1626

    Article  PubMed  Google Scholar 

  17. Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K (1999) Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol 181:153–159

    Article  PubMed  CAS  Google Scholar 

  18. Szalay G, Meiners S, Voigt A, Lauber J, Spieth C, Speer N, Sauter M, Kuckelkorn U, Zell A, Klingel K, Stangl K, Kandolf R (2006) Ongoing coxsackievirus myocarditis is associated with increased formation and activity of myocardial immunoproteasomes. Am J Pathol 168:1542–1552

    Article  PubMed  CAS  Google Scholar 

  19. Nijhuis M, van Maarseveen N, Schuurman R, Verkuijlen S, de Vos M, Hendriksen K, van Loon AM (2002) Rapid and sensitive routine detection of all members of the genus enterovirus in different clinical specimens by real-time PCR. J Clin Microbiol 40:3666–3670

    Article  PubMed  CAS  Google Scholar 

  20. Werner S, Klump WM, Schonke H, Hofschneider PH, Kandolf R (1988) Expression of coxsackievirus B3 capsid proteins in Escherichia coli and generation of virus-specific antisera. DNA 7:307–316

    PubMed  CAS  Google Scholar 

  21. Klingel K, Rieger P, Mall G, Selinka HC, Huber M, Kandolf R (1998) Visualization of enteroviral replication in myocardial tissue by ultrastructural in situ hybridization: identification of target cells and cytopathic effects. Lab Invest 78:1227–1237

    PubMed  CAS  Google Scholar 

  22. Grotendorst GR, Rahmanie H, Duncan MR (2004) Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J 18:469–479

    Article  PubMed  CAS  Google Scholar 

  23. Esfandiarei M, Luo H, Yanagawa B, Suarez A, Dabiri D, Zhang J, McManus BM (2004) Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J Virol 78:4289–4298

    Article  PubMed  CAS  Google Scholar 

  24. Li J, Schwimmbeck PL, Tschöpe C, Leschka S, Husmann L, Rutschow S, Reichenbach F, Noutsias M, Kobalz U, Poller W, Spillmann F, Zeichhardt H, Schultheiss HP, Pauschinger M (2002) Collagen degradation in a murine myocarditis model: relevance of matrix metalloproteinase in association with inflammatory induction. Cardiovasc Res 56:235–247

    Article  PubMed  CAS  Google Scholar 

  25. Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Gatewood SJ, Njoku DB, Rose NR (2004) Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am J Pathol 165:1883–1894

    PubMed  CAS  Google Scholar 

  26. Chujo S, Shirasaki F, Kawara S, Inagaki Y, Kinbara T, Inaoki M, Takigawa M, Takehara K (2005) Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model. J Cell Physiol 203:447–456

    Article  PubMed  CAS  Google Scholar 

  27. Zhao Q, Chen N, Wang WM, Lu J, Dai BB (2004) Effect of transforming growth factor-beta on activity of connective tissue growth factor gene promoter in mouse NIH/3T3 fibroblasts. Acta Pharmacol Sin 25:485–489

    PubMed  CAS  Google Scholar 

  28. Utsugi M, Dobashi K, Ishizuka T, Masubuchi K, Shimizu Y, Nakazawa T, Mori M (2003) C-Jun-NH2-terminal kinase mediates expression of connective tissue growth factor induced by transforming growth factor-beta1 in human lung fibroblasts. Am J Respir Cell Mol Biol 28:754–761

    Article  PubMed  CAS  Google Scholar 

  29. Suzuma K, Naruse K, Suzuma I, Takahara N, Ueki K, Aiello LP, King GL (2000) Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem 275:40725–40731

    Article  PubMed  CAS  Google Scholar 

  30. Opavsky MA, Martino T, Rabinovitch M, Penninger J, Richardson C, Petric M, Trinidad C, Butcher L, Chan J, Liu PP (2002) Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis. J Clin Invest 109:1561–1569

    Article  PubMed  CAS  Google Scholar 

  31. Si X, Luo H, Morgan A, Zhang J, Wong J, Yuan J, Esfandiarei M, Gao G, Cheung C, McManus BM (2005) Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release. J Virol 79:13875–13881

    Article  PubMed  CAS  Google Scholar 

  32. Kim SM, Park JH, Chung SK, Kim JY, Hwang HY, Chung KC, Jo I, Park SI, Nam JH (2004) Coxsackievirus B3 infection induces cyr61 activation via JNK to mediate cell death. J Virol 78:13479–13488

    Article  PubMed  CAS  Google Scholar 

  33. Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, Brenner DA, Rippe RA (2003) The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem 278:8083–8090

    Article  PubMed  CAS  Google Scholar 

  34. Runyan CE, Schnaper HW, Poncelet AC (2004) The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-beta1. J Biol Chem 279:2632–2639

    Article  PubMed  CAS  Google Scholar 

  35. Merl S, Michaelis C, Jaschke B, Vorpahl M, Seidl S, Wessely R (2005) Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation 111:1583–1592

    Article  PubMed  CAS  Google Scholar 

  36. Blom IE, Goldschmeding R, Leask A (2002) Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy? Matrix Biol 21:473–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft, SFB/TR 19-04, the fortüne program of the Medical Faculty of Tübingen (1271-0), and in part by the “Fondazione Cassa di Risparmio of Trieste,” by the “Fondazione Benefica Katleen-Foreman Casali of Trieste.” G. Grassi is supported by the program “Rientro cervelli” art. 1 DM n.13, MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca Scientifica.” The support of S. Berchtold, Institute for Medical Microbiology and of Sandra Bundschuh, Department of Molecular Pathology, University Hospital Tübingen, is acknowledged. There are no potential conflicts of interest anywhere, relating to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Klingel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, C., Sauter, M., Szalay, G. et al. Connective tissue growth factor: a crucial cytokine-mediating cardiac fibrosis in ongoing enterovirus myocarditis. J Mol Med 86, 49–60 (2008). https://doi.org/10.1007/s00109-007-0249-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0249-3

Keywords

Navigation