Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2(4):1313–1323
CAS
PubMed
CrossRef
Google Scholar
Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524. doi:10.1038/nature02196
CAS
PubMed
CrossRef
Google Scholar
Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005(272):re3. doi:10.1126/stke.2722005re3
Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. doi:10.1146/annurev.biochem.75.103004.142819
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4(7):529–539. doi:10.1038/nrn1141
CAS
PubMed
CrossRef
Google Scholar
Clapham DE, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology. XLIX Nomenclature and structure-function relationships of transient receptor potential _channels. Pharmacol Rev 57(4):427–450. doi:10.1124/pr.57.4.6
Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1(2):85–92. doi:10.1038/nchembio0705-85
CAS
PubMed
CrossRef
Google Scholar
Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8(7):510–521. doi:10.1038/nrn2149
CAS
PubMed
CrossRef
Google Scholar
Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217. doi:10.1152/physrev.00021.2006
CAS
PubMed
CrossRef
Google Scholar
Vriens J, Nilius B, Vennekens R (2008) Herbal compounds and toxins modulating TRP channels. Curr Neuropharmacol 6(1):79–96. doi:10.2174/157015908783769644
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Wu LJ, Sweet TB, Clapham DE (2010) International Union of Basic and Clinical Pharmacology. LXXVI Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62(3):381–404. doi:10.1124/pr.110.002725
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Numata T, Kiyonaka S, Kato K, Takahashi N, Mori Y (2011) Activation of TRP channels in mammalian systems. In: Zhu MX (ed) TRP channels. CRC Press, Boca Raton
Google Scholar
Santoni G, Farfariello V (2011) TRP channels and cancer: new targets for diagnosis and chemotherapy. Endocr Metab Immune Disord Drug Targets 11(1):54–67
CAS
PubMed
CrossRef
Google Scholar
Gees M, Owsianik G, Nilius B, Voets T (2012) TRP channels. Compr Physiol 2(1):563–608. doi:10.1002/cphy.c110026
PubMed
Google Scholar
Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384. doi:10.1146/annurev-cellbio-101011-155833
CAS
PubMed
CrossRef
Google Scholar
Sousa-Valente J, Andreou AP, Urban L, Nagy I (2014) Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br J Pharmacol 171(10):2508–2527. doi:10.1111/bph.12532
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Bessac BF, Jordt SE (2008) Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology 23:360–370. doi:10.1152/physiol.00026.2008
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress. Adv Exp Med Biol 704:531–544. doi:10.1007/978-94-007-0265-3_29
CAS
PubMed
CrossRef
Google Scholar
Kozai D, Ogawa N, Mori Y (2014) Redox regulation of transient receptor potential channels. Antioxid Redox Signal 21(6):971–986. doi:10.1089/ars.2013.5616
CAS
PubMed
CrossRef
Google Scholar
Simon F, Varela D, Cabello-Verrugio C (2013) Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 25(7):1614–1624. doi:10.1016/j.cellsig.2013.03.023
CAS
PubMed
CrossRef
Google Scholar
Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. doi:10.1152/physrev.00018.2001
CAS
PubMed
CrossRef
Google Scholar
Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659. doi:10.4414/smw.2012.13659
CAS
PubMed
Google Scholar
Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2 + −permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173
CAS
PubMed
CrossRef
Google Scholar
Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2 + influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747. doi:10.1038/nm1758
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Naziroglu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36(3):355–366. doi:10.1007/s11064-010-0347-4
CAS
PubMed
CrossRef
Google Scholar
Knowles H, Li Y, Perraud AL (2013) The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 55(1–3):241–248. doi:10.1007/s12026-012-8373-8
CAS
PubMed
CrossRef
Google Scholar
Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115(7):863–877
CAS
PubMed
CrossRef
Google Scholar
McNulty S, Fonfria E (2005) The role of TRPM channels in cell death. Pflugers Arch: Eur J Physiol 451(1):235–242. doi:10.1007/s00424-005-1440-4
CAS
CrossRef
Google Scholar
Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2(11):596–607. doi:10.1038/nchembio821
CAS
PubMed
CrossRef
Google Scholar
Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103(51):19564–19568. doi:10.1073/pnas.0609598103
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445(7127):541–545. doi:10.1038/nature05544
CAS
PubMed
CrossRef
Google Scholar
Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y (2008) Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels 2(4):287–298
PubMed
CrossRef
Google Scholar
Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S, Knevels E, Carmeliet P, Oga T, Kaneko S, Suga S, Nokami T, Yoshida J, Mori Y (2011) TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 7(10):701–711. doi:10.1038/nchembio.640
CAS
PubMed
CrossRef
Google Scholar
Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116(12):3114–3126. doi:10.1172/JCI27702
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25(22):5305–5316. doi:10.1038/sj.emboj.7601417
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106(13):5400–5405. doi:10.1073/pnas.0808793106
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102(34):12248–12252. doi:10.1073/pnas.0505356102
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol: CB 15(10):929–934. doi:10.1016/j.cub.2005.04.018
CAS
PubMed
CrossRef
Google Scholar
Brone B, Peeters PJ, Marrannes R, Mercken M, Nuydens R, Meert T, Gijsen HJ (2008) Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. Toxicol Appl Pharmacol 231(2):150–156. doi:10.1016/j.taap.2008.04.005
CAS
PubMed
CrossRef
Google Scholar
Escalera J, von Hehn CA, Bessac BF, Sivula M, Jordt SE (2008) TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J Biol Chem 283(35):24136–24144. doi:10.1074/jbc.M710280200
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Zhong J, Minassi A, Prenen J, Taglialatela-Scafati O, Appendino G, Nilius B (2011) Umbellulone modulates TRP channels. Pflugers Arch: Eur J Physiol 462(6):861–870. doi:10.1007/s00424-011-1043-1
CAS
CrossRef
Google Scholar
Zhong J, Pollastro F, Prenen J, Zhu Z, Appendino G, Nilius B (2011) Ligustilide: a novel TRPA1 modulator. Pflugers Arch: Eur J Physiol 462(6):841–849. doi:10.1007/s00424-011-1021-7
CAS
CrossRef
Google Scholar
Riera CE, Menozzi-Smarrito C, Affolter M, Michlig S, Munari C, Robert F, Vogel H, Simon SA, le Coutre J (2009) Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels. Br J Pharmacol 157(8):1398–1409. doi:10.1111/j.1476-5381.2009.00307.x
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Wang S, Dai Y, Kogure Y, Yamamoto S, Zhang W, Noguchi K (2013) Etodolac activates and desensitizes transient receptor potential ankyrin 1. J Neurosci Res 91(12):1591–1598. doi:10.1002/jnr.23274
CAS
PubMed
CrossRef
Google Scholar
Babes A, Fischer MJ, Filipovic M, Engel MA, Flonta ML, Reeh PW (2013) The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential Ankyrin 1 (TRPA1) ion channel. Eur J Pharmacol 704(1–3):15–22. doi:10.1016/j.ejphar.2013.02.018
CAS
PubMed
CrossRef
Google Scholar
Hatano N, Suzuki H, Muraki Y, Muraki K (2013) Stimulation of human TRPA1 channels by clinical concentrations of the antirheumatic drug auranofin. Am J Physiol Cell Physiol 304(4):C354–C361. doi:10.1152/ajpcell.00096.2012
CAS
PubMed
CrossRef
Google Scholar
Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104(33):13519–13524. doi:10.1073/pnas.0705923104
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci: Off J Soc Neurosci 28(10):2485–2494. doi:10.1523/JNEUROSCI.5369-07.2008
CAS
CrossRef
Google Scholar
Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol 75(4):820–829. doi:10.1124/mol.108.054445
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K, Ivanovic-Burmazovic I, Nawroth PP, Bierhaus A, Reeh PW, Sauer SK (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 287(34):28291–28306. doi:10.1074/jbc.M111.328674
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Andersson DA, Gentry C, Light E, Vastani N, Vallortigara J, Bierhaus A, Fleming T, Bevan S (2013) Methylglyoxal evokes pain by stimulating TRPA1. PLoS One 8(10):e77986. doi:10.1371/journal.pone.0077986
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Peyrot des Gachons C, Uchida K, Bryant B, Shima A, Sperry JB, Dankulich-Nagrudny L, Tominaga M, Smith AB 3rd, Beauchamp GK, Breslin PA (2011) Unusual pungency from extra-virgin olive oil is attributable to restricted spatial expression of the receptor of oleocanthal. J Neurosci: Off J Soc Neurosci 31(3):999–1009. doi:10.1523/JNEUROSCI.1374-10.2011
CrossRef
CAS
Google Scholar
Lee SP, Buber MT, Yang Q, Cerne R, Cortes RY, Sprous DG, Bryant RW (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol 153(8):1739–1749. doi:10.1038/bjp.2008.85
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, Wood JD, Zhu MX (2010) Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch: Eur J Physiol 459(4):579–592. doi:10.1007/s00424-009-0749-9
CAS
CrossRef
Google Scholar
Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP (2008) General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc Natl Acad Sci U S A 105(25):8784–8789. doi:10.1073/pnas.0711038105
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Maher M, Ao H, Banke T, Nasser N, Wu NT, Breitenbucher JG, Chaplan SR, Wickenden AD (2008) Activation of TRPA1 by farnesyl thiosalicylic acid. Mol Pharmacol 73(4):1225–1234. doi:10.1124/mol.107.042663
CAS
PubMed
CrossRef
Google Scholar
Liu K, Samuel M, Ho M, Harrison RK, Paslay JW (2010) NPPB structure-specifically activates TRPA1 channels. Biochem Pharmacol 80(1):113–121. doi:10.1016/j.bcp.2010.03.005
CAS
PubMed
CrossRef
Google Scholar
Motter AL, Ahern GP (2012) TRPA1 is a polyunsaturated fatty acid sensor in mammals. PLoS One 7(6):e38439. doi:10.1371/journal.pone.0038439
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Redmond WJ, Gu L, Camo M, McIntyre P, Connor M (2014) Ligand determinants of fatty acid activation of the pronociceptive ion channel TRPA1. PeerJ 2:e248. doi:10.7717/peerj.248
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857
CAS
PubMed
CrossRef
Google Scholar
Shintaku K, Uchida K, Suzuki Y, Zhou Y, Fushiki T, Watanabe T, Yazawa S, Tominaga M (2012) Activation of transient receptor potential A1 by a non-pungent capsaicin-like compound, capsiate. Br J Pharmacol 165(5):1476–1486. doi:10.1111/j.1476-5381.2011.01634.x
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Takaishi M, Fujita F, Uchida K, Yamamoto S, Sawada Shimizu M, Hatai Uotsu C, Shimizu M, Tominaga M (2012) 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol Pain 8:86. doi:10.1186/1744-8069-8-86
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Taylor-Clark TE, Undem BJ, Macglashan DW Jr, Ghatta S, Carr MJ, McAlexander MA (2008) Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 73(2):274–281. doi:10.1124/mol.107.040832
CAS
PubMed
CrossRef
Google Scholar
Wei H, Chapman H, Saarnilehto M, Kuokkanen K, Koivisto A, Pertovaara A (2010) Roles of cutaneous versus spinal TRPA1 channels in mechanical hypersensitivity in the diabetic or mustard oil-treated non-diabetic rat. Neuropharmacology 58(3):578–584. doi:10.1016/j.neuropharm.2009.12.001
CAS
PubMed
CrossRef
Google Scholar
Nakatsuka K, Gupta R, Saito S, Banzawa N, Takahashi K, Tominaga M, Ohta T (2013) Identification of molecular determinants for a potent mammalian TRPA1 antagonist by utilizing species differences. J Mol Neurosci: MN 51(3):754–762. doi:10.1007/s12031-013-0060-2
CAS
PubMed
CrossRef
Google Scholar
Vallin KS, Sterky KJ, Nyman E, Bernstrom J, From R, Linde C, Minidis AB, Nolting A, Narhi K, Santangelo EM, Sehgelmeble FW, Sohn D, Strindlund J, Weigelt D (2012) N-1-Alkyl-2-oxo-2-aryl amides as novel antagonists of the TRPA1 receptor. Bioorg Med Chem Lett 22(17):5485–5492. doi:10.1016/j.bmcl.2012.07.032
CAS
PubMed
CrossRef
Google Scholar
Nativi C, Gualdani R, Dragoni E, Di Cesare ML, Sostegni S, Norcini M, Gabrielli G, la Marca G, Richichi B, Francesconi O, Moncelli MR, Ghelardini C, Roelens S (2013) A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain. Sci Rep 3:2005. doi:10.1038/srep02005
PubMed Central
PubMed
CrossRef
Google Scholar
Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci: Off J Soc Neurosci 25(39):8924–8937. doi:10.1523/JNEUROSCI.2574-05.2005
CAS
CrossRef
Google Scholar
Takaishi M, Uchida K, Fujita F, Tominaga M (2014) Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. J Physiol Sci: JPS 64(1):47–57. doi:10.1007/s12576-013-0289-0
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Klionsky L, Tamir R, Gao B, Wang W, Immke DC, Nishimura N, Gavva NR (2007) Species-specific pharmacology of Trichloro(sulfanyl)ethyl benzamides as transient receptor potential ankyrin 1 (TRPA1) antagonists. Mol Pain 3:39. doi:10.1186/1744-8069-3-39
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A (2008) Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci: Off J Soc Neurosci 28(39):9640–9651. doi:10.1523/JNEUROSCI.2772-08.2008
CAS
CrossRef
Google Scholar
Nagatomo K, Kubo Y (2008) Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc Natl Acad Sci U S A 105(45):17373–17378. doi:10.1073/pnas.0809769105
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Chen J, Zhang XF, Kort ME, Huth JR, Sun C, Miesbauer LJ, Cassar SC, Neelands T, Scott VE, Moreland RB, Reilly RM, Hajduk PJ, Kym PR, Hutchins CW, Faltynek CR (2008) Molecular determinants of species-specific activation or blockade of TRPA1 channels. J Neurosci: Off J Soc Neurosci 28(19):5063–5071. doi:10.1523/JNEUROSCI.0047-08.2008
CAS
CrossRef
Google Scholar
Satoh T, Lipton SA (2007) Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci 30(1):37–45. doi:10.1016/j.tins.2006.11.004
CAS
PubMed
CrossRef
Google Scholar
Bindoli A, Rigobello MP (2013) Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 18(13):1557–1593. doi:10.1089/ars.2012.4655
CAS
PubMed
CrossRef
Google Scholar
Salazar H, Llorente I, Jara-Oseguera A, Garcia-Villegas R, Munari M, Gordon SE, Islas LD, Rosenbaum T (2008) A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat Neurosci 11(3):255–261. doi:10.1038/nn2056
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4(5):372–379
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 5(3):183–190. doi:10.1038/nchembio.146
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nagatomo K, Ishii H, Yamamoto T, Nakajo K, Kubo Y (2010) The Met268Pro mutation of mouse TRPA1 changes the effect of caffeine from activation to suppression. Biophys J 99(11):3609–3618. doi:10.1016/j.bpj.2010.10.014
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Kozai D, Kabasawa Y, Ebert M, Kiyonaka S, Firman OY, Numata T, Takahashi N, Mori Y, Ohwada T (2014) Transnitrosylation directs TRPA1 selectivity in N-nitrosamine activators. Mol Pharmacol 85(1):175–185. doi:10.1124/mol.113.088864
PubMed
CrossRef
CAS
Google Scholar
Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118(5):1899–1910. doi:10.1172/JCI34192
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Sadofsky LR, Boa AN, Maher SA, Birrell MA, Belvisi MG, Morice AH (2011) TRPA1 is activated by direct addition of cysteine residues to the N-hydroxysuccinyl esters of acrylic and cinnamic acids. Pharmacol Res: Off J Ital Pharmacol Soc 63(1):30–36. doi:10.1016/j.phrs.2010.11.004
CAS
CrossRef
Google Scholar
Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27(5):1131–1142. doi:10.1111/j.1460-9568.2008.06093.x
PubMed
CrossRef
Google Scholar
Taylor-Clark TE, Undem BJ (2010) Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. J Physiol 588(Pt 3):423–433. doi:10.1113/jphysiol.2009.183301
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Hill K, Schaefer M (2009) Ultraviolet light and photosensitising agents activate TRPA1 via generation of oxidative stress. Cell Calcium 45(2):155–164. doi:10.1016/j.ceca.2008.08.001
CAS
PubMed
CrossRef
Google Scholar
Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A (2009) TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One 4(10):e7596. doi:10.1371/journal.pone.0007596
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ (2008) Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol 586(14):3447–3459. doi:10.1113/jphysiol.2008.153585
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104(33):13525–13530. doi:10.1073/pnas.0705924104
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain 3:40. doi:10.1186/1744-8069-3-40
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Strassmaier T, Bakthavatchalam R (2011) Transient receptor potential A1 modulators. Curr Top Med Chem 11(17):2227–2236
CAS
PubMed
CrossRef
Google Scholar
Andrade EL, Meotti FC, Calixto JB (2012) TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 133(2):189–204. doi:10.1016/j.pharmthera.2011.10.008
CAS
PubMed
CrossRef
Google Scholar
Brederson JD, Kym PR, Szallasi A (2013) Targeting TRP channels for pain relief. Eur J Pharmacol 716(1–3):61–76. doi:10.1016/j.ejphar.2013.03.003
CAS
PubMed
CrossRef
Google Scholar
Klement G, Eisele L, Malinowsky D, Nolting A, Svensson M, Terp G, Weigelt D, Dabrowski M (2013) Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore. Biophys J 104(4):798–806. doi:10.1016/j.bpj.2013.01.008
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Bianchi BR, Zhang XF, Reilly RM, Kym PR, Yao BB, Chen J (2012) Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels. J Pharmacol Exp Ther 341(2):360–368. doi:10.1124/jpet.111.189902
CAS
PubMed
CrossRef
Google Scholar
Chen J, Kym PR (2009) TRPA1: the species difference. J Gen Physiol 133(6):623–625. doi:10.1085/jgp.200910246
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166. doi:10.1038/nrm1569
CAS
PubMed
CrossRef
Google Scholar
Smith BC, Marletta MA (2012) Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin Chem Biol 16(5–6):498–506. doi:10.1016/j.cbpa.2012.10.016
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357(Pt 3):593–615
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Stamler JS, Hess DT (2010) Nascent nitrosylases. Nat Cell Biol 12(11):1024–1026. doi:10.1038/ncb1110-1024
CAS
PubMed
CrossRef
Google Scholar
Seth D, Stamler JS (2011) The SNO-proteome: causation and classifications. Curr Opin Chem Biol 15(1):129–136. doi:10.1016/j.cbpa.2010.10.012
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Anand P, Stamler JS (2012) Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med 90(3):233–244. doi:10.1007/s00109-012-0878-z
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nakamura T, Lipton SA (2013) Emerging role of protein-protein transnitrosylation in cell signaling pathways. Antioxid Redox Signal 18(3):239–249. doi:10.1089/ars.2012.4703
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Pawloski JR, Hess DT, Stamler JS (2001) Export by red blood cells of nitric oxide bioactivity. Nature 409(6820):622–626. doi:10.1038/35054560
CAS
PubMed
CrossRef
Google Scholar
Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1(3):154–158. doi:10.1038/nchembio720
CAS
PubMed
CrossRef
Google Scholar
Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD, Snyder SH (2010) GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 12(11):1094–1100. doi:10.1038/ncb2114
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA, Clemente AT, Okamoto S, Salvesen GS, Riek R, Yates JR 3rd, Lipton SA (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39(2):184–195. doi:10.1016/j.molcel.2010.07.002
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Foster MW, McMahon TJ, Stamler JS (2003) S-nitrosylation in health and disease. Trends Mol Med 9(4):160–168
CAS
PubMed
CrossRef
Google Scholar
Makita N, Kabasawa Y, Otani Y, Firman SJ, Hashimoto M, Nakaya M, Nishihara H, Nangaku M, Kurose H, Ohwada T, Iiri T (2013) Attenuated desensitization of beta-adrenergic receptor by water-soluble N-nitrosamines that induce S-nitrosylation without NO release. Circ Res 112(2):327–334. doi:10.1161/CIRCRESAHA.112.277665
CAS
PubMed
CrossRef
Google Scholar
Ohwada T, Miura M, Tanaka H, Sakamoto S, Yamaguchi K, Ikeda H, Inagaki S (2001) Structural features of aliphatic N-nitrosamines of 7-azabicyclo[2.2.1]heptanes that facilitate N-NO bond cleavage. J Am Chem Soc 123(42):10164–10172
CAS
PubMed
CrossRef
Google Scholar
Yanagimoto T, Toyota T, Matsuki N, Makino Y, Uchiyama S, Ohwada T (2007) Transnitrosation of thiols from aliphatic N-nitrosamines: S-nitrosation and indirect generation of nitric oxide. J Am Chem Soc 129(4):736–737. doi:10.1021/ja0658259
CAS
PubMed
CrossRef
Google Scholar
Ohwada T, Ishikawa S, Mine Y, Inami K, Yanagimoto T, Karaki F, Kabasawa Y, Otani Y, Mochizuki M (2011) 7-azabicyclo[2.2.1]heptane as a structural motif to block mutagenicity of nitrosamines. Bioorg Med Chem 19(8):2726–2741. doi:10.1016/j.bmc.2011.02.049
CAS
PubMed
CrossRef
Google Scholar
Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742(1–3):21–36. doi:10.1016/j.bbamcr.2004.08.015
CAS
PubMed
CrossRef
Google Scholar
Mio K, Ogura T, Kiyonaka S, Hiroaki Y, Tanimura Y, Fujiyoshi Y, Mori Y, Sato C (2007) The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 367(2):373–383. doi:10.1016/j.jmb.2006.12.043
CAS
PubMed
CrossRef
Google Scholar
Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99(11):7461–7466. doi:10.1073/pnas.102596199
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263. doi:10.1038/16711
CAS
PubMed
CrossRef
Google Scholar
Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396(6710):478–482. doi:10.1038/24890
CAS
PubMed
CrossRef
Google Scholar
Kiselyov KI, Shin DM, Wang Y, Pessah IN, Allen PD, Muallem S (2000) Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol Cell 6(2):421–431
CAS
PubMed
CrossRef
Google Scholar
Vazquez G, Bird GS, Mori Y, Putney JW Jr (2006) Native TRPC7 channel activation by an inositol trisphosphate receptor-dependent mechanism. J Biol Chem 281(35):25250–25258. doi:10.1074/jbc.M604994200
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278(29):27208–27215. doi:10.1074/jbc.M301118200
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Patterson RL, van Rossum DB, Ford DL, Hurt KJ, Bae SS, Suh PG, Kurosaki T, Snyder SH, Gill DL (2002) Phospholipase C-gamma is required for agonist-induced Ca2+ entry. Cell 111(4):529–541
CAS
PubMed
CrossRef
Google Scholar
Nishida M, Sugimoto K, Hara Y, Mori E, Morii T, Kurosaki T, Mori Y (2003) Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCgamma2 in B lymphocytes. EMBO J 22(18):4677–4688. doi:10.1093/emboj/cdg457
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Numaga T, Nishida M, Kiyonaka S, Kato K, Katano M, Mori E, Kurosaki T, Inoue R, Hikida M, Putney JW Jr, Mori Y (2010) Ca2+ influx and protein scaffolding via TRPC3 sustain PKCbeta and ERK activation in B cells. J Cell Sci 123(Pt 6):927–938. doi:10.1242/jcs.061051
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Mery L, Strauss B, Dufour JF, Krause KH, Hoth M (2002) The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 115(Pt 17):3497–3508
CAS
PubMed
Google Scholar
Lussier MP, Lepage PK, Bousquet SM, Boulay G (2008) RNF24, a new TRPC interacting protein, causes the intracellular retention of TRPC. Cell Calcium 43(5):432–443. doi:10.1016/j.ceca.2007.07.009
CAS
PubMed
CrossRef
Google Scholar
Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 15(4):635–646. doi:10.1016/j.molcel.2004.07.010
CAS
PubMed
CrossRef
Google Scholar
Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92(21):9652–9656
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Luckhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2 + −permeable cation channel activated by calcium store depletion. Neuron 16(6):1189–1196
CAS
PubMed
CrossRef
Google Scholar
Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85(5):661–671
CAS
PubMed
CrossRef
Google Scholar
Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(−/−) mice. Proc Natl Acad Sci U S A 104(44):17542–17547. doi:10.1073/pnas.0701254104
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca(2+) entry and Ca(2+) release from endoplasmic reticulum in B lymphocytes. J Exp Med 195(6):673–681
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588–13595. doi:10.1074/jbc.M512205200
CAS
PubMed
CrossRef
Google Scholar
Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2):179–185. doi:10.1038/ncb1218
CAS
PubMed
CrossRef
Google Scholar
Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103(44):16586–16591. doi:10.1073/pnas.0606894103
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Seo K, Rainer PP, Lee DI, Hao S, Bedja D, Birnbaumer L, Cingolani OH, Kass DA (2014) Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation. Circ Res 114(5):823–832. doi:10.1161/CIRCRESAHA.114.302614
10.1161/CIRCRESAHA.114.302614
Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, Meissner M, Freichel M, Offermanns S, Veit F, Pak O, Krause KH, Schermuly RT, Brewer AC, Schmidt HH, Seeger W, Shah AM, Gudermann T, Ghofrani HA, Dietrich A (2012) Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat Commun 3:649. doi:10.1038/ncomms1660
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Inoue R, Jensen LJ, Jian Z, Shi J, Hai L, Lurie AI, Henriksen FH, Salomonsson M, Morita H, Kawarabayashi Y, Mori M, Mori Y, Ito Y (2009) Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ Res 104(12):1399–1409. doi:10.1161/CIRCRESAHA.108.193227
CAS
PubMed
CrossRef
Google Scholar
Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347(18):1397–1402. doi:10.1056/NEJMoa020265
PubMed
CrossRef
Google Scholar
Klein L, O’Connor CM, Gattis WA, Zampino M, de Luca L, Vitarelli A, Fedele F, Gheorghiade M (2003) Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. Am J Cardiol 91(9A):18F–40F
CAS
PubMed
CrossRef
Google Scholar
Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322(22):1561–1566. doi:10.1056/NEJM199005313222203
CAS
PubMed
CrossRef
Google Scholar
Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79. doi:10.1146/annurev.physiol.65.092101.142243
CAS
PubMed
CrossRef
Google Scholar
Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108(2):265–272. doi:10.1161/CIRCRESAHA.110.225888
CAS
PubMed
CrossRef
Google Scholar
Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281(44):33487–33496. doi:10.1074/jbc.M605536200
CAS
PubMed
CrossRef
Google Scholar
Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94(1):110–118. doi:10.1161/01.RES.0000109415.17511.18
CAS
PubMed
CrossRef
Google Scholar
Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600. doi:10.1038/nrm1983
CAS
PubMed
CrossRef
Google Scholar
Roderick HL, Bootman MD (2007) Pacemaking, arrhythmias, inotropy and hypertrophy: the many possible facets of IP3 signalling in cardiac myocytes. J Physiol 581(Pt 3):883–884. doi:10.1113/jphysiol.2007.133819
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Colella M, Grisan F, Robert V, Turner JD, Thomas AP, Pozzan T (2008) Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci U S A 105(8):2859–2864. doi:10.1073/pnas.0712316105
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Brenner JS, Dolmetsch RE (2007) TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size. PLoS One 2(8):e802. doi:10.1371/journal.pone.0000802
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Nishida M, Onohara N, Sato Y, Suda R, Ogushi M, Tanabe S, Inoue R, Mori Y, Kurose H (2007) Galpha12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through nuclear factor of activated T cells activation. J Biol Chem 282(32):23117–23128. doi:10.1074/jbc.M611780200
CAS
PubMed
CrossRef
Google Scholar
Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD (2012) A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23(4):705–715. doi:10.1016/j.devcel.2012.08.017
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J: Off Publ Fed Am Soc Exp Biol 20(10):1660–1670. doi:10.1096/fj.05-5560com
CAS
CrossRef
Google Scholar
Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP Jr, Birnbaumer L, Schnackenberg CG, Kass DA (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111(4):1551–1556. doi:10.1073/ pnas.1308963111
10.1073/pnas.1308963111
Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 25(16):6980–6989. doi:10.1128/MCB.25.16.6980-6989.2005
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T, Ito H (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42(3):498–507
CAS
PubMed
CrossRef
Google Scholar
Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105(10):1023–1030. doi:10.1161/CIRCRESAHA.109.206581
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586(Pt 17):4209–4223. doi:10.1113/jphysiol.2008.156083
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nishioka K, Nishida M, Ariyoshi M, Jian Z, Saiki S, Hirano M, Nakaya M, Sato Y, Kita S, Iwamoto T, Hirano K, Inoue R, Kurose H (2011) Cilostazol suppresses angiotensin II-induced vasoconstriction via protein kinase A-mediated phosphorylation of the transient receptor potential canonical 6 channel. Arterioscler Thromb Vasc Biol 31(10):2278–2286. doi:10.1161/ATVBAHA.110.221010
CAS
PubMed
CrossRef
Google Scholar
Koitabashi N, Aiba T, Hesketh GG, Rowell J, Zhang M, Takimoto E, Tomaselli GF, Kass DA (2010) Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol 48(4):713–724. doi:10.1016/j.yjmcc.2009.11.015
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106(12):1849–1860. doi:10.1161/CIRCRESAHA.109.208314
CAS
PubMed
CrossRef
Google Scholar
Nishida M, Watanabe K, Sato Y, Nakaya M, Kitajima N, Ide T, Inoue R, Kurose H (2010) Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 285(17):13244–13253. doi:10.1074/jbc.M109.074104
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Kitajima N, Watanabe K, Morimoto S, Sato Y, Kiyonaka S, Hoshijima M, Ikeda Y, Nakaya M, Ide T, Mori Y, Kurose H, Nishida M. (2011) TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts. Biochem Biophys Res Commun 409(1):108–113
Google Scholar
Steinberg X, Lespay-Rebolledo C, Brauchi S (2014) A structural view of ligand-dependent activation in thermoTRP channels. Front Physiol 5:171. doi:10.3389/fphys.2014.00171
PubMed Central
PubMed
CrossRef
Google Scholar
Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282(18):13180–13189. doi:10.1074/jbc.M607849200
CAS
PubMed
CrossRef
Google Scholar
Fujita F, Uchida K, Moriyama T, Shima A, Shibasaki K, Inada H, Sokabe T, Tominaga M (2008) Intracellular alkalization causes pain sensation through activation of TRPA1 in mice. J Clin Invest 118(12):4049–4057
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Zhang XF, Chen J, Faltynek CR, Moreland RB, Neelands TR (2008) Transient receptor potential A1 mediates an osmotically activated ion channel. Eur J Neurosci 27(3):605–611. doi:10.1111/j.1460-9568.2008.06030.x
PubMed
CrossRef
Google Scholar
Caspani O, Heppenstall PA (2009) TRPA1 and cold transduction: an unresolved issue? J Gen Physiol 133(3):245–249. doi:10.1085/jgp.200810136
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nilius B, Prenen J, Owsianik G (2011) Irritating channels: the case of TRPA1. J Physiol 589(Pt 7):1543–1549. doi:10.1113/jphysiol.2010.200717
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch: Eur J Physiol 464(5):425–458. doi:10.1007/s00424-012-1158-z
CAS
CrossRef
Google Scholar
Bautista DM, Pellegrino M, Tsunozaki M (2013) TRPA1: a gatekeeper for inflammation. Annu Rev Physiol 75:181–200
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol 167(8):1712–1722
PubMed Central
CAS
PubMed
CrossRef
Google Scholar