Skip to main content

Advertisement

Log in

The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

TRPM2 (transient receptor potential melastatin 2) is the unique fusion of a Ca2+-permeable pore with an enzymatic domain that binds the NAD+-metabolite ADP-ribose (ADPR), resulting in channel opening. ADPR formation is a metabolic corollary of cellular stress, but can also be elicited enzymatically through NAD glycohydrolases like CD38. TRPM2 thus functions as a metabolic and oxidative stress sensor and translates this information into ion fluxes that can affect Ca2+ signaling and the membrane potential. TRPM2 is strongly represented in immune cells of the phagocytic lineage, themselves professional generators of oxidants. The recent characterization of TRPM2-deficient mouse models has revealed the involvement of this channel in various aspects of immunity. Monocytes lacking TRPM2 show reduced production of the CXCL2 chemokine, resulting in diminished neutrophilic influx to the colon in chemically induced colitis, and thus protection against tissue ulceration in TRPM2−/− mice. However, the insufficient production of proinflammatory cytokines leads to high morbidity and lethality of the TRPM2−/− mice following infection with the bacterial pathogen Listeria monocytogenes. In the context of endotoxin-induced pulmonary inflammation, TRPM2’s absence was found to promote inflammation and ROS production. TRPM2 acts thereby as a negative feedback loop by interfering through membrane depolarization with ROS generation by NADPH oxidases. In dendritic cells, TRPM2 is a lysosomal Ca2+-release channel that promotes chemokine responsiveness and cell migration, which is reminiscent of CD38-mediated functions. The discovery of TRPM2 has unveiled an unsuspected signaling pathway and established ADPR as a novel second messenger. Understanding TRPM2’s complex involvement in inflammation is crucial to evaluating the potential of manipulating TRPM2 activity and ADPR metabolism for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233–52.

    Article  PubMed  CAS  Google Scholar 

  2. Clapham DE. TRP channels as cellular sensors. Nature. 2003;426:517–24.

    Article  PubMed  CAS  Google Scholar 

  3. Clare JJ. Targeting ion channels for drug discovery. Discov Med. 2011;9:253–60.

    Google Scholar 

  4. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993–6.

    Article  PubMed  CAS  Google Scholar 

  5. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397–407.

    Article  PubMed  CAS  Google Scholar 

  6. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, et al. LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–5.

    Article  PubMed  CAS  Google Scholar 

  7. Perraud AL, Knowles HM, Schmitz C. Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol. 2004;41:657–73.

    Article  PubMed  CAS  Google Scholar 

  8. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001;411:595–9.

    Article  PubMed  CAS  Google Scholar 

  9. Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, et al. Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics. 1998;54:124–31.

    Article  PubMed  CAS  Google Scholar 

  10. Perraud AL, Schmitz C, Scharenberg AM. TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium. 2003;33:519–31.

    Article  PubMed  CAS  Google Scholar 

  11. Mederos y Schnitzler M, Waring J, Gudermann T, Chubanov V. Evolutionary determinants of divergent calcium selectivity of TRPM channels. Faseb J. 2008;22:1540–51.

    Article  PubMed  CAS  Google Scholar 

  12. Montell C. Mg2+ homeostasis: the Mg2+ nificent TRPM chanzymes. Curr Biol. 2003;13:R799–801.

    Article  PubMed  CAS  Google Scholar 

  13. McLennan AG. The Nudix hydrolase superfamily. Cell Mol Life Sci. 2006;63:123–43.

    Article  PubMed  CAS  Google Scholar 

  14. Lee HC. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997;77:1133–64.

    PubMed  CAS  Google Scholar 

  15. Koch-Nolte F, Haag F, Guse AH, Lund F, Ziegler M. Emerging roles of NAD+ and its metabolites in cell signaling. Sci Signal. 2009;2:mr1.

    Article  PubMed  Google Scholar 

  16. Csanady L, Torocsik B. Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol. 2009;133:189–203.

    Article  PubMed  CAS  Google Scholar 

  17. McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem. 2003;278:11002–6.

    Article  PubMed  CAS  Google Scholar 

  18. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008;88:841–86.

    Article  PubMed  CAS  Google Scholar 

  19. Partida-Sanchez S, Rivero-Nava L, Shi G, Lund FE. CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses. Adv Exp Med Biol. 2007;590:171–83.

    Article  PubMed  Google Scholar 

  20. Gally F, Hartney JM, Janssen WJ, Perraud AL. CD38 plays a dual role in allergen-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2009;40:433–42.

    Article  PubMed  CAS  Google Scholar 

  21. Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, et al. Transient receptor potential melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. PNAS USA. 2011;108:11578–83.

    Article  PubMed  CAS  Google Scholar 

  22. Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med. 2008;14:738–47.

    Article  PubMed  CAS  Google Scholar 

  23. Partida-Sanchez S, Goodrich S, Kusser K, Oppenheimer N, Randall TD, et al. Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity. 2004;20:279–91.

    Article  PubMed  CAS  Google Scholar 

  24. Sumoza-Toledo A, Lange I, Cortado H, Bhagat H, Mori Y, et al. Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release. FASEB J. 2011;25:3529–42.

    Article  PubMed  CAS  Google Scholar 

  25. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell. 2002;9:163–73.

    Article  PubMed  CAS  Google Scholar 

  26. Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem. 2005;280:6138–48.

    Article  PubMed  CAS  Google Scholar 

  27. Blenn C, Wyrsch P, Bader J, Bollhalder M, Althaus FR. Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Cell Mol Life Sci. 2010;68:1455–66.

    Article  PubMed  Google Scholar 

  28. Buelow B, Song Y, Scharenberg AM. The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem. 2008;283:24571–83.

    Article  PubMed  CAS  Google Scholar 

  29. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol. 2004;143:186–92.

    Article  PubMed  CAS  Google Scholar 

  30. Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, et al. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem. 2002;277:23150–6.

    Article  PubMed  CAS  Google Scholar 

  31. Toth B, Csanady L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem. 2010;285:30091–102.

    Article  PubMed  CAS  Google Scholar 

  32. Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, et al. Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J. 2003;371:1045–53.

    Article  PubMed  CAS  Google Scholar 

  33. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science. 2001;293:1327–30.

    Article  PubMed  CAS  Google Scholar 

  34. Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, et al. Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J. 2006;398:225–32.

    Article  PubMed  CAS  Google Scholar 

  35. Starkus JG, Fleig A, Penner R. The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol. 2010;588:1227–40.

    Article  PubMed  CAS  Google Scholar 

  36. Du J, Xie J, Yue L. Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol. 2009;134:471–88.

    Article  PubMed  CAS  Google Scholar 

  37. Starkus J, Beck A, Fleig A, Penner R. Regulation of TRPM2 by extra- and intracellular calcium. J Gen Physiol. 2007;130:427–40.

    Article  PubMed  CAS  Google Scholar 

  38. Wehrhahn J, Kraft R, Harteneck C, Hauschildt S. Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. J Immunol. 2010;184:2386–93.

    Article  PubMed  CAS  Google Scholar 

  39. Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci. 2012;32:3931–41.

    Article  PubMed  CAS  Google Scholar 

  40. Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity. 2011;34:665–79.

    Article  PubMed  CAS  Google Scholar 

  41. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang Z, Zhang W, Jung DY, Ko HJ, Lee Y, et al. TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab. 2012;302:E807–16.

    Article  PubMed  CAS  Google Scholar 

  43. Di A, Gao XP, Qian F, Kawamura T, Han J, et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol. 2011;13:29–34.

    Article  PubMed  Google Scholar 

  44. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol. 2010;11:232–9.

    Article  PubMed  CAS  Google Scholar 

  45. Hardaker L, Bahra P, Cochin de Billy B, Freeman M, Kupfer N, et al. The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases. Respir Res. 2012;13:30.

    Article  PubMed  CAS  Google Scholar 

  46. Beck A, Kolisek M, Bagley LA, Fleig A, Penner R. Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J. 2006;20:962–4.

    Article  PubMed  CAS  Google Scholar 

  47. Heiner I, Eisfeld J, Luckhoff A. Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium. 2003;33:533–40.

    Article  PubMed  CAS  Google Scholar 

  48. Lange I, Penner R, Fleig A, Beck A. Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium. 2008;44:604–15.

    Article  PubMed  CAS  Google Scholar 

  49. Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, et al. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal. 2009;2:ra23.

    Article  PubMed  Google Scholar 

  50. Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, et al. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol. 2004;286:C129–37.

    Article  PubMed  CAS  Google Scholar 

  51. Hill K, Tigue NJ, Kelsell RE, Benham CD, McNulty S, et al. Characterisation of recombinant rat TRPM2 and a TRPM2-like conductance in cultured rat striatal neurones. Neuropharmacology. 2006;50:89–97.

    Article  PubMed  CAS  Google Scholar 

  52. Olah ME, Jackson MF, Li H, Perez Y, Sun HS, et al. Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol. 2009;587:965–79.

    Article  PubMed  CAS  Google Scholar 

  53. Belrose JC, Xie YF, Gierszewski LJ, Macdonald JF, Jackson MF. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain. 2012;5:11.

    Article  PubMed  CAS  Google Scholar 

  54. Chung KK, Freestone PS, Lipski J. Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat. J Neurophysiol. 2011;106:2865–75.

    Article  PubMed  CAS  Google Scholar 

  55. Mrejeru A, Wei A, Ramirez JM. Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta. J Physiol. 2011;589:2497–514.

    Article  PubMed  CAS  Google Scholar 

  56. Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, et al. Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem. 2005;95:715–23.

    Article  PubMed  CAS  Google Scholar 

  57. Ishii M, Oyama A, Hagiwara T, Miyazaki A, Mori Y, et al. Facilitation of H2O2-induced A172 human glioblastoma cell death by insertion of oxidative stress-sensitive TRPM2 channels. Anticancer Res. 2007;27:3987–92.

    PubMed  CAS  Google Scholar 

  58. Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci. 2006;101:66–76.

    Article  PubMed  CAS  Google Scholar 

  59. Yang KT, Chang WL, Yang PC, Chien CL, Lai MS, et al. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ. 2006;13:1815–26.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, et al. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem. 2003;278:16222–9.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, et al. TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol. 2006;290:C1146–59.

    Article  PubMed  CAS  Google Scholar 

  62. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47:122–9.

    Article  PubMed  CAS  Google Scholar 

  63. MacDonald JF, Jackson MF. Transient receptor potential channels of the melastatin family and ischemic responses of central neurons. Stroke. 2007;38:665–9.

    Article  PubMed  CAS  Google Scholar 

  64. Hermosura MC, Cui AM, Go RC, Davenport B, Shetler CM, et al. Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. PNAS USA. 2008;105:18029–34.

    Article  PubMed  CAS  Google Scholar 

  65. McQuillin A, Bass NJ, Kalsi G, Lawrence J, Puri V, et al. Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry. 2006;11:134–42.

    Article  PubMed  CAS  Google Scholar 

  66. Xu C, Li PP, Cooke RG, Parikh SV, Wang K, et al. TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disord. 2009;11:1–10.

    Article  PubMed  Google Scholar 

  67. Cook NL, Vink R, Helps SC, Manavis J, van den Heuvel C. Transient receptor potential melastatin 2 expression is increased following experimental traumatic brain injury in rats. J Mol Neurosci. 2010;42:192–9.

    Article  PubMed  CAS  Google Scholar 

  68. Fonfria E, Mattei C, Hill K, Brown JT, Randall A, et al. TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J Recept Signal Transduct Res. 2006;26:179–98.

    Article  PubMed  CAS  Google Scholar 

  69. Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011;31:2160–8.

    Article  PubMed  CAS  Google Scholar 

  70. Herson PS, Hurn PD. Gender and the injured brain. Prog Brain Res. 2010;186:177–87.

    Article  PubMed  CAS  Google Scholar 

  71. Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, et al. The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium. 2012;51:179–85.

    Article  PubMed  CAS  Google Scholar 

  72. Islam MS. TRP channels of islets. Adv Exp Med Biol. 2011;704:811–30.

    Article  PubMed  CAS  Google Scholar 

  73. Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y. Roles of TRPM2 in oxidative stress. Cell Calcium. 2011;50:279–87.

    Article  PubMed  CAS  Google Scholar 

  74. Colsoul B, Vennekens R, Nilius B. Transient receptor potential cation channels in pancreatic beta cells. Rev Physiol Biochem Pharmacol. 2011;161:87–110.

    PubMed  Google Scholar 

Download references

Acknowledgments

Support by an Early Excellence Award of the Sandler Program in Asthma Research (A.-L. P.), by NIH grant R01GM068801 (A. -L. P.), and by NIH training grant #5 T32 AI07405 (H. K.), is acknowledged. We would also like to thank Carsten Schmitz (UC Denver & National Jewish Health) for carefully reviewing the manuscript. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Laure Perraud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, H., Li, Y. & Perraud, AL. The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 55, 241–248 (2013). https://doi.org/10.1007/s12026-012-8373-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8373-8

Keywords

Navigation