Skip to main content

Agrobacterium rhizogenes-Mediated Transformation of Plants

  • Chapter
Genetic Transformation of Plants

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 23))

Abstract

The soil bacterium Agrobacterium rhizogenes generates the “hairy root” syndrome in infected plants and is characterized by the neoplastic outgrowth of roots (Riker et al. 1930). The molecular basis of this phenomenon is the transfer and integration of a specific part of the root-inducing (Ri) plasmid of A. rhizogenes, called “transfer DNA” (T-DNA) into the genome of plant cells (Chilton et al. 1982; White et al. 1982; Willmitzer et al. 1982). The initial molecular events resemble those involved in the induction of the crown gall disease by Agrobacterium tumefaciens, its close relative (reviewed in Zupan et al. 2000). In the latter case, the T-DNA is located on the tumor-inducing (Ti) plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Belny M, Hérouart D, Thomasset B, David H, Jacquin-Dubreuil A, David A (1997) Transformation of Papaver somniferum cell suspension cultures with saml from A. thaliana results in cell lines of different S-adenosyl-L-methionine synthetase activity. Physiol Plant 99: 233240

    Google Scholar 

  • Berthomieu P, Jouanin L (1992) Transformation of rapid cycling cabbage (Brassica oleracea var. capitata) with Agrobacterium rhizogenes. Plant Cell Rep 11: 334–338

    Article  CAS  Google Scholar 

  • Bhadra R, Shanks JV (1995) Statistical design of the effect of inoculum conditions on growth of hairy root cultures of Catharanthus roseus. Biotechnol Techn 9: 681–686

    Article  CAS  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14: 695–700

    Google Scholar 

  • Bourgaud F, Nguyen C, Guckert A (1995) Psoralea species: in vitro culture and production of furanocoumarins and other secondary metabolites. In: Bajaj YPS (ed) Medicinal and aromatic plants VIII. Biotechnology in agriculture and forestry, vol 33. Springer, Berlin Heidelberg New York, pp 388–411

    Google Scholar 

  • Bowie LJ, Irwin R, Loken M, De Luca M, Brand L (1973) Excited-state proton transfer and the mechanism of action of firefly luciferase. Biochemistry 12: 1852–1857

    Article  PubMed  CAS  Google Scholar 

  • Cardarelli M, Spanò L, De Paolis A, Mauro ML, Nitali G, Costantino P (1985) Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855. Plant Mol Biol 5: 385–391

    Article  CAS  Google Scholar 

  • Cardarelli M, Spanò L, Mariotti D, Mauro ML, Van Sluys MA, Costantino P (1987) The role of auxin in hairy root induction. Mol Gen Genet 208: 457–463

    Article  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z-M, Schnurr JA, Kapaun JA (1998) Timentin as an alternative antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. Plant Cell Rep 17: 646–649

    Article  CAS  Google Scholar 

  • Cheon C-I, Lee N-G, Siddique A-B M, Bal AK, Verma DPS (1993) Roles of plant homologs of Rab 1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12: 4125–4135

    CAS  Google Scholar 

  • Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizo- genes inserts T-DNA into the genomes of the host plant root cells. Nature 295: 432–434

    Google Scholar 

  • Christey MC (1997) Transgenic crop plants using Agrobacterium rhizogenes-mediated transformation. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, pp 99–111

    Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation of production of transgenic plants. In Vitro Cell Dev Biol Plant 37: 687–700

    Google Scholar 

  • Christey MC, Sinclair BK (1992) Regeneration of transgenic kale (Brassica oleracea var. acephala), rape (B. napus) and turnip (B. campestris var. rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci 87: 161–169

    Article  CAS  Google Scholar 

  • Christey MC, Sinclair BK, Braun RH (1994) Phenotype of transgenic Brassica napus and B. oleracea plants obtained from Agrobacterium rhizogenes mediated transformation. Abstract presented at the 8th International Congress on Plant tissue and cell culture, Florence, Italy

    Google Scholar 

  • Combard A, Brevet J, Borowski D, Cam K, Tempé J (1987) Physical map of the T-DNA region of Agrobacterium rhizogenes strain NCPPB2659. Plasmid 18: 70–75

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Takayanagi K, Kamada H, Nishimura S, Handa T (2000) Transformation of Antirrhinum majus L. by a roi-type multi-auto-transformation ( MAT) vector system. Plant Sci 159: 273280

    Google Scholar 

  • Cui M, Takayanagi K, Kamada H, Nishimura S, Handa T (2001) Efficient shoot regeneration from hairy roots of Antirrhinum majus L. transformed by the rol type MAT vector system. Plant Cell Rep 20: 55–59

    Article  CAS  Google Scholar 

  • Daimon H, Fukami M, Mii M (1990) Hairy root formation in peanut by the wild type strains of Agrobacterium rhizogenes. Plant Tissue Cult Lett 7: 31–34

    Article  Google Scholar 

  • Damiani F, Paolocci F, Consonni G, Crea F, Tonelli C, Arcioni S (1998) A maize anthocyanin trans-activator induces pigmentation in hairy roots of dicotyledonous species. Plant Cell Rep 17: 339–344

    Article  CAS  Google Scholar 

  • Davioud E, Petit A, Tate ME, Ryder MH, Tempé J (1988) Cucumopine–a new T-DNA encoded opine in hairy root and crowngall. Phytochemistry 27: 2429–2433

    Article  CAS  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20: 295–304

    Article  PubMed  Google Scholar 

  • De Cleene M, De Ley J (1981) The host range of infectious hairy root. Bot Rev 47: 147–194

    Article  Google Scholar 

  • De Greef W, Jacobs M (1979) In vitro culture of the sugarbeet: description of a cell line with high regeneration capacity. Plant Sci Lett 17: 55–61

    Article  Google Scholar 

  • De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spanò L, Costantino P (1985) Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13: 1–7

    Article  PubMed  Google Scholar 

  • Dillen W, De Clercq J, Kapila J, Zambre M, Van Montagu M, Angenon G (1997) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J 12: 1459–1463

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M, Komamine A (1997a) Principle of MAT vector system. Plant Biotechnol 14: 133–139

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997b) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94: 2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20: 383–392

    Article  CAS  Google Scholar 

  • Filetici P, Spanò L, Costantino P (1987) Conserved regions in the T-DNA of different Agrobacterium rhizogenes root-inducing plasmids. Plant Mol Biol 9: 19–26

    Article  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206: 192–199

    Google Scholar 

  • Fortin C, Nester EW, Dion P (1992) Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone. J Bacteriol 174: 5676–5685

    PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9: 671–675

    Article  CAS  Google Scholar 

  • Greer LF III, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17: 43–74

    Article  PubMed  CAS  Google Scholar 

  • Guivarc’h A, Boccara M, Prouteau M, Chriqui D (1999) Instability of phenotype and gene expression in long-term culture of carrot hairy root clones. Plant Cell Rep 19: 43–50

    Article  Google Scholar 

  • Hammerschlag FA, Zimmerman RH,Yadava UL, Hunsucher S, Gercheva P (1997) Effects of antibiotics and exposure to an acidified medium on the elimination of Agrobacterium tumefaciens from apple leaf explants and on regeneration. J Am Soc Hortic Sci 122: 758–763

    CAS  Google Scholar 

  • Han KH, Keathley DE, Davis JM, Gordon MP (1993) Regeneration of a transgenic woody legume (Robinia pseudoacacia L, black locust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Plant Sci 88: 149–157

    Article  Google Scholar 

  • Hashimoto RY, Menck CFM, Van Sluys MA (1999) Negative selection driven by cytosine deaminase gene in Lycopersicon esculentum hairy roots. Plant Sci 141: 175–181

    Article  CAS  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL (2000) Factors that influence Agrobacterium rhizogenesmediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep 19: 994–999

    Article  CAS  Google Scholar 

  • Holford P, Hernandez N, Newbury HJ (1992) Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum majus with Agrobacterium tumefaciens. Plant Cell Rep 11: 196–199

    CAS  Google Scholar 

  • Hosoki T, Kigo T (1994) Transformation of Brussels sprouts (Brassica oleracea var. gemminifera Zenk) by Agrobacterium rhizogenes harboring a reporter ß-glucuronidase gene. J Jpn Soc Hortic Sci 63: 589–592

    Article  CAS  Google Scholar 

  • Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157: 269–276

    PubMed  CAS  Google Scholar 

  • Ionkova I, Kartnig T, Alfermann W (1997) Cycloartane saponin production in hairy root cultures of Astragalus mongholicus. Phytochemistry 45: 1597–1600

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: 13-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907

    CAS  Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12: 91–102

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production of hairy root cultures in Atropa belladonna. Plant Cell Rep 5: 239–242

    Article  CAS  Google Scholar 

  • Kanokwaree K, Doran PM (1997) The extent to which external oxygen transfer limits growth in shake flask culture of hairy roots. Biotechnol Bioeng 55: 520–526

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Van Montagu M, Gheysen G (1999) Hairy root production in Arabidopsis thaliana: cotransformation with a promoter-trap vector results in complex T-DNA integration patterns. Plant Cell Rep 19: 133–142

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY’ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7: 193–195

    Article  PubMed  CAS  Google Scholar 

  • Kifle S, Shao M, Jung C, Cai D (1999) An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.). Plant Cell Rep 18: 514–519

    Article  CAS  Google Scholar 

  • Koplow J, Byrne MC, Jen G, Tempé J, Chilton M-D (1984) Physical map of the Agrobacterium rhi-zogenes strain 8196 virulence plasmid. Plasmid 11: 17–27

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Kim SW, Lee K-W, Eriksson T, Liu JR (1995) Agrobacterium-mediated transformation of ginseng (Panax ginseng) and mitotic stability of the inserted 3-glucuronidase gene in regenerants from isolated protoplasts. Plant Cell Rep 14: 545–549

    Google Scholar 

  • Ling H-Q, Kriseleit D, Ganal MW (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep 17: 843–847

    Article  CAS  Google Scholar 

  • Lipp Joao KH, Brown TA (1993) Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58C1Rif`::pGSFR1161 in the presence of acetosyringone. Plant Cell Rep 12: 422–425

    Google Scholar 

  • Lippincott BB, Lippincott JA (1969) Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. J Bacteriol 97: 620–628

    PubMed  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium. Characterization and stability of tropane alkaloid production during long periods of subculturing. Plant Cell Tissue Organ Cult 33: 321–329

    Google Scholar 

  • Manners JM, Way H (1989) Efficient transformation with regeneration of the tropical pasture legume Stylosanthes humilis using Agrobacterium rhizogenes and a Ti plasmid-binary vector system. Plant Cell Rep 8: 341–345

    Article  CAS  Google Scholar 

  • Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59: 191–201

    Article  CAS  Google Scholar 

  • Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Radutoiu SE, Iaccarino M, Gresshoff PM, Chiurazzi M (1999) T-DNA tagging of nodulation-and root-related genes in Lotus japonicus: expression patterns and potential for promoter trapping and insertional mutagenesis. Mol Plant-Microbe Interact 12: 275–284

    Article  CAS  Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2: 617–626

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NSN, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic ( Sym) plasmids in Rhizobiaceae. J Mol Biol 307: 771–784

    Google Scholar 

  • Mugnier J (1997) Mycorrhizal interactions and the effects of fungicides, nematicides and herbicides on hairy root cultures. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, pp 123–131

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Noda T, Tanaka N, Mano Y, Nabeshima S, Ohkawa H, Matsui C (1987) Regeneration of horserad- ish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Rep 6: 283–286

    Article  Google Scholar 

  • Ohara A, Akasaka Y, Daimon H, Mii M (2000) Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep 19: 563568

    Google Scholar 

  • Oksman-Caldentey K-M, Kivelä O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78: 129–136

    Article  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Sevón N, Vanhala L, Hiltunen R (1994) Effect of nitrogen and sucrose on the primary and secondary metabolism of transformed root cultures of Hyoscyamus muticus. Plant Cell Tissue Org Cult 38: 263–272

    Article  CAS  Google Scholar 

  • Park S-U, Facchini PJ (2000) Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L, California poppy, Eschscholzia californica Cham, root cultures. J Exp Bot 51: 1005–1016

    Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204–214

    Article  CAS  Google Scholar 

  • Petit A, Stougaard J, Kühle A, Marcker KA, Tempé J (1987) Transformation and regeneration of the legume Lotus corniculatus: a system for molecular studies of symbiotic nitrogen fixation. Mol Gen Genet 207: 245–250

    Article  CAS  Google Scholar 

  • Pomponi M, Spanò L, Sabbadini MG, Costantino P (1983) Restriction endonuclease mapping of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 10: 119–129

    Article  PubMed  CAS  Google Scholar 

  • Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10: 387–421

    Article  Google Scholar 

  • Puddephat IJ, Riggs TJ, Fenning TM (1996) Transformation of Brassica oleracea L.: a critical review. Mol Breeding 2: 185–210

    Article  Google Scholar 

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenesmediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7: 229–242

    Article  CAS  Google Scholar 

  • Rech EL, Golds TJ, Husnain T, Vainstein MH, Jones B, Hammatt N, Mulligan BJ, Davey MR (1989) Expression of a chimaeric kanamycin resistance gene introduced into the wild soybean Glycine canescens using a cointegrate Ri plasmid vector. Plant Cell Rep 8: 33–36

    Article  CAS  Google Scholar 

  • Riker A, Banfield W, Wright W, Keitt G, Sagen H (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41: 887–912

    Google Scholar 

  • Sanità di Toppi L, Pecchioni N, Durante M (1997) Cucurbita pepo L. can be transformed by Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 51: 89–93

    Google Scholar 

  • Savka MA, Ravillion B, Noel GR, Farrand SK (1990) Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80: 503–508

    Article  Google Scholar 

  • Savka MA, Liu L, Farrand SK, Berg RH, Dawson JO (1992) Induction of hairy roots or pseudoactinorhizae on Alnus glutinosa, A. acuminate and Elaeagnus angustifolia by Agrobacterium rhizogenes. Acta Oecol 13: 423–431

    Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32: 33–57

    Article  PubMed  CAS  Google Scholar 

  • Senior I, Holford P, Cooley RN, Newbury HJ (1995) Transformation of Antirrhinum majus using Agrobacterium rhizogenes. J Exp Bot 46: 1233–1239

    Article  CAS  Google Scholar 

  • Sevón N, Oksman-Caldentey K-M, Hiltunen R (1995) Efficient plant regeneration from hairy root-derived protoplasts of Hyoscyamus muticus. Plant Cell Rep 14: 738–742

    Article  Google Scholar 

  • Shackelford NJ, Chlan CA (1996) Identification of antibiotics that are effective in eliminating Agrobacterium tumefaciens. Plant Mol Biol Rep 14: 50–57

    Article  CAS  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant “hairy root” culture. Curr Opin Biotechnol 10: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Shiomi T, Shirakata T, Takeuchi A, Oizumi T, Uematsu S (1987) Hairy root of melon caused by Agrobacterium rhizogenes biovar 1. Ann Phytopath Soc Jpn 53: 454–459

    Article  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629

    Article  Google Scholar 

  • Stewart CN Jr (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep 20: 376–382

    Article  PubMed  CAS  Google Scholar 

  • Stiller J, Martirani L, Tuppale S, Chian R-J, Chiurazzi M, Gresshoff PM (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48: 1357–1365

    Article  CAS  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22: 461–469

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Ren Z, Krczal G (2000) An evaluation of antibiotics for the elimination of Agrobacterium tumefaciens from walnut somatic embryos and for the effects on the proliferation of somatic embryos and regeneration of transgenic plants. Plant Cell Rep 19: 881–887

    Article  CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967

    Article  PubMed  CAS  Google Scholar 

  • Tepfer D (1989) Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology, and evolution. In: Kosuge T, Nester EW (eds) Plant-microbe interactions: molecular and genetic perspectives, vol 3. McGraw-Hill, New York, pp 294–342

    Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79: 140–146

    Article  CAS  Google Scholar 

  • Torregrosa L, Bouquet A (1997) Agrobacterium rhizogenes and A. tumefaciens co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tissue Organ Cult 49: 53–62

    Google Scholar 

  • Trypsteen M, Van Lijsebettens M, Van Severen R, Van Montagu M (1991) Agrobacterium rhizogenes-mediated transformation of Echinacea purpurea. Plant Cell Rep 10: 85–89

    Google Scholar 

  • Uozumi N, Kobayashi T (1997) Artificial seed production through hairy root regeneration. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, pp 113–121

    Google Scholar 

  • Uzé M, Potrykus I, Sautter C (2000) Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.). Cereal Res Commun 28: 17–23

    Google Scholar 

  • van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43: 495–502

    Article  PubMed  Google Scholar 

  • van der Salm TPM, Hänisch ten Cate CH, Dons HJM (1996) Prospects for applications of rol genes for crop improvement. Plant Mol Biol Rep 14: 207–228

    Article  Google Scholar 

  • Van Sluys MA, Tempé J, Fedoroff N (1987) Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J 6: 3881–3889

    Google Scholar 

  • Vanhala L, Hiltunen R, Oksman-Caldentey K-M (1995) Virulence of different Agrobacterium strains on hairy root formation of Hyoscyamus muticus. Plant Cell Rep 14: 236–240

    Article  CAS  Google Scholar 

  • Veluthambi K, Ream W, Gelvin SB (1988) Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. J Bacteriol 170: 1523–1532

    PubMed  CAS  Google Scholar 

  • Webb KJ, Jones S, Robbins MP, Minchin FR (1990) Characterization of transgenic root cultures of Trifolium repens, Trifolium pratense and Lotus corniculatus and transgenic plants of Lotus corniculatus. Plant Sci 70: 243–254

    Article  Google Scholar 

  • White FF, Nester EW (1980) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141: 1134–1141

    PubMed  CAS  Google Scholar 

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79: 3193–3197

    Article  PubMed  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164: 33–44

    PubMed  CAS  Google Scholar 

  • Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186: 16–22

    Article  CAS  Google Scholar 

  • Yepes LM, Aldwinckle HS (1994) Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tissue Organ Cult 37: 257–269

    CAS  Google Scholar 

  • Zupan J, Muth TR, Draper 0, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23: 11–28

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van de Velde, W., Karimi, M., Den Herder, G., Van Montagu, M., Holsters, M., Goormachtig, S. (2003). Agrobacterium rhizogenes-Mediated Transformation of Plants. In: Jackson, J.F., Linskens, H.F. (eds) Genetic Transformation of Plants. Molecular Methods of Plant Analysis, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07424-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07424-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05553-9

  • Online ISBN: 978-3-662-07424-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics