Skip to main content

The Agrobacterium rhizogenes GALLS Gene Provides an Alternative Method to Transform Plants

  • Chapter
  • First Online:
Production of Plant Derived Natural Compounds through Hairy Root Culture
  • 872 Accesses

Abstract

Agrobacterium rhizogenes and A. tumefaciens transfer DNA and effector proteins into plant cells, where transferred DNA (T-DNA) is inherited and expressed. Most transgenic plants are created using A. tumefaciens, but transformation by A. rhizogenes yields desirable single-copy transgenes more frequently than A. tumefaciens does. DNA transfer from both species resembles plasmid conjugation, but later events differ between species. Efficient transformation by A. tumefaciens requires single-strand DNA-binding protein VirE2, which A. rhizogenes lacks, so substrates for T-DNA integration differ greatly. In A. rhizogenes, the GALLS proteins substitute for (but do not resemble) VirE2. GALLS proteins occur in two forms: full-length (FL) and a more abundant C-terminal domain (CT). Both have protein-binding domains and type IV secretion signals. GALLS-FL has ATPase/strand transferase and nuclear localization (NLS) domains, allowing it to enter the nucleus and bind VirD2, a pilot protein attached to single-stranded T-DNA (T-strands). GALLS-FL ATPase may pull T-strands into the nucleus. GALLS-CT stimulates an early step in gene transfer to plants; this effector protein alters host gene expression and stimulates T-DNA transfer, apparently by suppressing host defenses. These observations challenge the assumption that A. rhizogenes and A. tumefaciens transform plants and mitigate host defenses by the same mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright LM, Yanofsky MF, Leroux B, Ma D, Nester EW (1987) Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol 169:1046–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci U S A 94:10723–10728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Lee LY, Oltmanns H, Cao H, Veena, Cuperus J, Gelvin SB (2008) IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20:2661–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blume B, Nurnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boccara M, Sarazin A, Thiebeauld O, Jay F, Voinnet O, Navarro L, Colot V (2014) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 10(1):e1003883. https://doi.org/10.1371/journalppat1003883

    Article  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci U S A 77:4060–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179:3085–3094

    Google Scholar 

  • Christie PJ, Ward JE, Winans SC, Nester EW (1988) The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 170:2659–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citovsky V, De Vos G, Zambryski P (1988) Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240:501–504

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, Wong ML, Zambryski P (1989) Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci U S A 86:1193–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citovsky V, Zupan J, Warnick D, Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–1805

    Article  CAS  PubMed  Google Scholar 

  • Crane YM, Gelvin SB (2007) RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation. Proc Natl Acad Sci U S A 104:15156–15161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A (1988) Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein. Proc Natl Acad Sci U S A 85:2909–2913

    Google Scholar 

  • Djamei A, Pitschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    Article  CAS  PubMed  Google Scholar 

  • Duckely M, Hohn B (2003) The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223:1–6

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Durrenberger F, Crameri A, Hohn B, Koukolikova-Nicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci U S A 86:9154–9158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engstrom P, Zambryski P, Van Montagu M, Stachel SE (1987) Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197:635–645

    Article  CAS  PubMed  Google Scholar 

  • Farrand SK, Hwang I, Cook DM (1996) The tra region of the nopaline-type Ti plasmid is a chimera with elements related to the transfer systems of RSF1010, RP4, and F. J Bacteriol 178:4233–4247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (1998) Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J Bacteriol 180:4300–4302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gietl C, Koukolikova-Nicola Z, Hohn B (1987) Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci U S A 84:9006–9010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grange W, Duckely M, Husale S, Jacob S, Engel A, Hegner M (2008) VirE2: a unique ssDNA-compacting molecular machine. PLoS Biol 6:343–351

    Article  CAS  Google Scholar 

  • Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23:441–450

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Estrella A, Chen Z, Van Montagu M, Wang K (1988) VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5′ terminus of T-strand molecules. EMBO J 7:4055–4062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiruma K, Nishiuchi T, Kato T, Bednarek P, Okuno T, Schulze-Lefert P, Takano Y (2011) Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J 67:980–992

    Google Scholar 

  • Hodges LD, Cuperus J, Ream W (2004) Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 186:3065–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges LD, Vergunst AC, Neal-McKinney J, den Dulk-Ras A, Moyer DM, Hooykaas PJJ, Ream W (2006) Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion. J Bacteriol 188:8222–8230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges LD, Lee LY, McNett H, Gelvin SB, Ream W (2009) Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for gene transfer to plants. J Bacteriol 191:355–364

    Article  CAS  PubMed  Google Scholar 

  • Howard EA, Winsor BA, De Vos G, Zambryski P (1989) Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: tight association of VirD2 with the 5′ ends of T-strands. Proc Natl Acad Sci U S A 86:4017–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard EA, Zupan JR, Citovsky V, Zambryski PC (1992) The VirD2 protein of Agrobacterium tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68:109–118

    Article  CAS  PubMed  Google Scholar 

  • Jabs T, Colling T, Tschope M, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and reactive oxygen species from the oxidative burst signal defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci U S A 94:4800–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaswal RK, Veluthambi K, Gelvin SB, Slightom JL (1987) Double-stranded T-DNA cleavage and the generation of single-stranded T-DNA molecules in E coli by a virD encoded border specific endonuclease from Agrobacterium tumefaciens. J Bacteriol 169:5035–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MC, Panstruga R, Elliot C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–450

    Article  CAS  PubMed  Google Scholar 

  • Kleinboelting N, Huep G, Appelhagen I, Viehoever P, Li Y, Weisshaar B (2015) The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair based insertion mechanism. Mol Plant 8:1651–1664

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307:771–784

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar MS, Nishimura MT, Dangl J (2009) NPR1 in plant defense: It’s not over ’til it’s turned over. Cell 137:804–806

    Article  CAS  PubMed  Google Scholar 

  • Nimchuk Z, Eulgem T, Holt BF III, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Toyoda-Yamamoto A, Ito K, Takebe I, Machida Y (1991) Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in the cell membrane. Mol Gen Genet 228:24–32

    Article  CAS  PubMed  Google Scholar 

  • Peralta EG, Ream LW (1985) T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci U S A 82:5112–5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta EG, Hellmiss R, Ream W (1986) Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5:1137–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ream W (2009) Agrobacterium tumefaciens and A. rhizogenes use different proteins to transport bacterial DNA into the plant cell nucleus. Microbial Biotechnol 2:416–427

    Google Scholar 

  • Romeis T, Piedras P, Jones JDG (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12:803–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 93:126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  CAS  PubMed  Google Scholar 

  • Sen P, Pazour GJ, Anderson D, Das A (1989) Cooperative binding of the VirE2 protein to single-stranded DNA. J Bacteriol 171:2573–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw CH, Watson M, Carter G (1984) The right hand copy of the nopaline Ti plasmid 25 bp repeat is required for tumour formation. Nucleic Acids Res 12:6031–6041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos ACM, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shurvinton CE, Hodges L, Ream W (1992) A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci U S A 89:11837–11841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Stachel SE, Timmerman B, Zambryski P (1986) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322:706–712

    Article  CAS  Google Scholar 

  • Tinland B, Koukolikova-Nicola Z, Hall MN, Hohn B (1992) The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A 89:7442–7446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Vergunst AC, van Lier MCM, den Dulk-Ras A, Stuve TAG, Ouwehand A, Hooykaas PJJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102:832–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455–462

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Stachel SE, Timmerman B, Van Montagu M, Zambryski P (1987) Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235:587–591

    Article  CAS  PubMed  Google Scholar 

  • Ward ER, Barnes WM (1988) VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242:927–930

    Article  CAS  Google Scholar 

  • Ward DV, Zambryski P (2001) The six functions of Agrobacterium VirE2. Proc Natl Acad Sci U S A 98:385–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willmitzer L, Debeuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287:359–361

    Article  CAS  Google Scholar 

  • Winans SC, Burns DL, Christie PJ (1996) Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol 4:64–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basdiospore-derived infection of the cowpea rust fungus. Plant Cell 10:585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471–477

    Article  CAS  PubMed  Google Scholar 

  • Young C, Nester EW (1988) Association of the VirD2 protein with the 5′ end of T strands in Agrobacterium tumefaciens. J Bacteriol 170:3367–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusibov VM, Steck TR, Gupta V, Gelvin SB (1994) Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci U S A 91:2994–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13:369–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann S, Nurnberger T, Wirtz W, Guern J, Hedrich R, Scheel D (1997) Receptor-mediated activation of a plant calcium-permeable ion channel involved in pathogen defense. Proc Natl Acad Sci U S A 94:2751–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zupan JR, Citovsky V, Zambryski P (1996) Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci U S A 93:2392–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walt Ream .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ream, W., Wei, W., Maselko, M., Hodges, L. (2017). The Agrobacterium rhizogenes GALLS Gene Provides an Alternative Method to Transform Plants. In: Malik, S. (eds) Production of Plant Derived Natural Compounds through Hairy Root Culture . Springer, Cham. https://doi.org/10.1007/978-3-319-69769-7_1

Download citation

Publish with us

Policies and ethics