Skip to main content

Lipids of Mycorrhizae

  • Chapter
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

Research dealing with the composition, diversity and role of lipids in mycorrhizal associations has, during the past decades, attracted the interest of an increasing number of investigators from diverse disciplines. First considered as a biochemical tool for the quantitative evaluation of mycorrhizae in a given system (Seitz et al. 1979; Salmanowicz and Nylund 1988; Salmanowicz et al. 1990; Schmitz et al. 1991; Davis and Lamar 1992; Nylund and Wallender 1992; Bermingham et al. 1995; Olsson et al. 1995), the composition and the transformation of plant and fungal lipids during the establishment of the symbiosis has been gradually pursued (Olsson et al. 1998) and is now, to a certain extent, considered as a potential biochemical approach for the comprehension of evolutionary (Bentivenga and Morton 1994a; Weete and Gandhi 1997) and chemotaxonomic studies (Sancholle and Dalpe 1993; Bentivenga and Morton 1994b; Graham et al. 1995, GrandmouginFerjani et al. 1996, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho L, Kurkela R (1978) Free fatty acids of some wood mushrooms. Nahrung 7:603–607

    Article  Google Scholar 

  • Al-Karaki GN, Al-Raddad A, Clark RB (1998) Water stress and mycorrhizal isolate effect on growth and nutrient acquisition of wheat. J Plant Nutr 21:891–902

    Article  CAS  Google Scholar 

  • Allen WK, Allaway WG, Cox GC, Valder PG (1989) Ultra-structure of mycorrhizas of Dracophyllum secundum R. Br. (Ericales: Epacridaceae). Aust J Plant Physiol 16:147–153

    Article  Google Scholar 

  • Al-Shabibi MMA, Toma SJ, Haddad BA (1982) Studies of Iraqi truffles. I. Proximate analysis and characterization of lipids. Can Inst Food Sci Technol J 15:200–202

    CAS  Google Scholar 

  • Amijee F, Stribley DP (1987) Soluble carbohydrates of vesicular-arbuscular mycorrhizal fungi. Mycologist 21:20–21

    Article  Google Scholar 

  • Antibus RK, Sinsabaugh RL (1993) The extraction and quantification of ergosterol from ectomycorrhizal fungi and roots. Mycorrhiza 3:137–144

    Article  CAS  Google Scholar 

  • Asselineau J (1966) Bacterial lipids. Hermann, Paris

    Google Scholar 

  • Baath E, Frostegaard A, Fritze H (1992) Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl Environ Microbiol 58:4026–4031

    CAS  PubMed  Google Scholar 

  • Bago B, Donaire JP, Azcon-Aguilar C (1995) Biochemical characterization of membranes in arbuscular mycorrhiza: fatty acid analysis. In: 4th Eur Symp on Mycorrhizae, Granada, Spain (11–14 July 1994) pp 211–214

    Google Scholar 

  • Barroso J, Neves HC, Pais MSS (1986) Isolation and chemical characterisation of odd fatty acids present in Ophrys lutea roots during invasion by the endophyte. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Dijon, pp 437–440

    Google Scholar 

  • Barroso J, Neves HC, Pais MSS (1987) Production of free sterols by infected tubers of Ophrys lutea Con.: identification by gas chromatography-mass spectrometry. New Phytol 106:147–152

    Article  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bécard G, Piché Y (1988) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112:77–83

    Article  Google Scholar 

  • Bécard G, Piché Y (1992) Establishment of vesicular-arbuscular mycorrhiza in root organ culture: review and proposed methodology. Methods in microbiology, vol 24. pp 90–108

    Article  Google Scholar 

  • Beilby JP (1980) Fatty acid and sterol composition of ungerminated spores of the vesicular arbuscular mycorrhizal fungus Acaulospora laevis. Lipids 15:949–952

    Article  CAS  Google Scholar 

  • Beilby JP (1983) Effects of inhibitors on early protein, RNA, and lipid synthesis in germinating vesicular-arbuscular mycorrhizal fungal spores of Glomus caledonium. Can J Microbiol 29:96–601

    Article  Google Scholar 

  • Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonium: changes in neutral and polar lipids. J Lipid Res 21:739–750

    CAS  PubMed  Google Scholar 

  • Bentivenga SP, Morton JB (1994a) Stability and heritabil-ity of fatty acid methyl ester profiles of glomalean endomycorrhizal fungi. Mycol Res 98:1419–1426

    Article  CAS  Google Scholar 

  • Bentivenga SP, Morton JB (1994b) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc Natl Acad Sci USA 93:659–662

    Google Scholar 

  • Bermingham S, Maltby L, Cooke RC (1995) A critical assessment of the validity of ergosterol as an indicator of fungal biomass. Mycol Res 99:479–484

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Mihara KL, Schreiner RP (1994) Myc-orrhizae alter protein and lipid contents and yield of pea seeds. Crop Sci 34:998–1003

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Schreiner RP, Mihara KL (1997) Mycorrhizal fungi effect on nutrient composition and yield of soybean seeds. J Plant Nutr 20:581–591

    Article  CAS  Google Scholar 

  • Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto and endomycor-rhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 149–174

    Google Scholar 

  • Birraux D, Fries N (1981) Germination of Thelephora terrestris basidiospores. Can J Bot 59:2062–2064

    Article  Google Scholar 

  • Blom J (1981) Utilization of fatty acids and NH4 by Frankia AvcII. FEMS Microbiol Lett 10:143–145

    Article  CAS  Google Scholar 

  • Blom J (1983) Carbon and nitrogen source requirements of Frankia strains. FEMS Microbiol Lett 13:51–55

    Article  Google Scholar 

  • Bokhary HA, Parvez S (1993) Chemical composition of desert truffles Terfezia claveryi. J Food Compos Anal 3:285–293

    Article  Google Scholar 

  • Bonfante-Fasolo P, Scannerini S (1977) Cytological observations on the mycorrhiza Endogone flammicorona -Pinus strobus. Allionia 22:23–54

    Google Scholar 

  • Bonfante-Fasolo P, Grippiolo R (1984) Cytochemical and biochemical observations on the cell wall of the spore of Glomus epigaeum. Protoplasma 123:140–151

    Article  CAS  Google Scholar 

  • Bonfante-Fasolo P, Schubert A (1987) Spore wall architecture of Glomus spp. Can J Bot 65:539–546

    Article  Google Scholar 

  • Boullard B (1957) La mycotrophie chez les ptéridophytes. Sa fréquence, ses caractères, sa signification. Botaniste 45:5–185

    Google Scholar 

  • Brussaard L, Behan-Pelletier VM, Bigneil DE, Brown VK, Didden W, Folgarait P, Fragoso C, Wall D, Gupta VSR, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Söderstrom B, Tiedje JM, Ross AV (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570

    Google Scholar 

  • Burden RS, Cooke DT, Carter GA (1989) Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochemistry 28:1791–1804

    Article  CAS  Google Scholar 

  • Caldwell BA, Castellano MA, Griffiths RP (1991) Fatty acid esterase production by ectomycorrhizal fungi. Mycologia 83:233–236

    Article  CAS  Google Scholar 

  • Caporn SJM, Song W, Read DJ, Lee JA (1995) The effect of repeated nitrogen fertilization on mycorrhizal infection in heather Calluna vulgaris (L.) Hull. New Phytol 129:605–609

    Article  Google Scholar 

  • Casana M, Bonfante-Fasolo P (1982) Intercellular and arbuscular hyphae of Glomus fasciculatum (Thaxter) Gerd. and Trappe isolated after enzymic maceration. Allionia 25:17–25

    Google Scholar 

  • Cerri R, De Simone F, Senatore F (1981) Sterols of three Lactarius species. Biochem Syst Ecol 19:247–248

    Article  Google Scholar 

  • Chen Xy, Hampp R (1993) Sugar uptake by protoplasts of the ectomycorrhizal fungus, Amanita muscaria (L. ex. Fr.) Hokler. New Phytol 125:601–608

    Article  Google Scholar 

  • Cooke RC, Rayner ADM (1984) Ecology of saprophytic fungi. Longman, London

    Google Scholar 

  • Cooper KM, Lösel DM (1978) Lipid physiology of vesicular-arbuscular mycorrhiza. I. Composition of lipids in roots of onion, clover and ryegrass infected with Glomus mosseae. New Phytol 80:143–151

    Article  CAS  Google Scholar 

  • Cordell CE, Marx DH (1994) Effects of nursery cultural practices on management of specific ectomycorrhizae on bare root seedlings. In: Pfleger FL, Lindermann RG (eds) Mycorrhizae and plant health St. Paul (Minnesota). APS Press, pp 133–151

    Google Scholar 

  • Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host-endophyte transfer in a vesicular-arbusular mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 297–311

    Google Scholar 

  • Dalpé Y, Neumann PJ (1977) L’induction chez Ceratocystis de fructifications de types Graphium et Leptographium par des acides gras insaturés. Can J Bot 55:2159–2167

    Article  Google Scholar 

  • Davis MW, Lamar RT (1992) Evaluation of methods to extract ergosterol for quantification of soil fungal biomass. Soil Biol Biochem 24:189–198

    Article  CAS  Google Scholar 

  • De Kok LJ, Kuiper PJC, Bruins AP (1982) A polyunsaturated octadecanoic acid derivative, a major fatty acid in sporophores of Cantharellus cibarius Fr. In: Wintermans JFGM, Kuiper PJC (eds) Biochemistry and metabolism of plant lipids. Elsevier, Amsterdam, pp 47–50

    Google Scholar 

  • Dell B, Malajczuk N, Thompson GT (1990) Ectomycorrhiza formation in Eucalyptus: VA tuberculate ectomycorrhiza of Eucalyptus pilularis. New Phytol 114:633–640

    Article  Google Scholar 

  • Dembitskii VM, Pechenkina EE (1991) Phospholipid and fatty acid compositions of higher fungi. Chem Nat Compd 27:155–156

    Article  Google Scholar 

  • De Simone F, Senatore F, Sica D, Zollo F (1979) Sterols from Badisiomycetes. Phytochemistry 18: 1572–1573

    Article  Google Scholar 

  • Despaties S, Furlan V, Fortin JA (1989) Effects of successive applications of fosetyl-Al on growth of Allium cepa L. associated with endomycorrhizal fungi. Plant Soil 113:175–180

    Article  Google Scholar 

  • Dijkstra FI, Scheffers WA, Wiken TO (1972) Submerged growth of the cultivated mushroom Agaricus bisporus. Antonie van Leeuwenhoek Microbiol Serol 38: 329–340

    Article  CAS  Google Scholar 

  • Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared-root inocula of vesicular-arbuscular. Mycorrhiza 5:17–22

    Article  Google Scholar 

  • Dodd JC, Jeffries P (1989) Effects of fungicides on three vesicular-arbuscular mycorrhizal fungi associated with winter wheat (Triticum aestivum L.). Biol Fertil Soils 7:120–128

    Article  CAS  Google Scholar 

  • Douds DD Jr, Johnson CR, Koch KE (1988) Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol 86:491–496

    Article  CAS  PubMed  Google Scholar 

  • Dugassa GD, Von Alten H, Schönbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185:173–182

    Article  CAS  Google Scholar 

  • Dzamic M, Miljkovic B, Zoric D (1985) Dry matter carbohydrates and lipids in some edible mushrooms in Toplica country, Yugoslavia. Agrohemija 0:143–158

    CAS  Google Scholar 

  • Edwards HH, Gessner RV (1984) Light microscopy and transmission electron microscopy of English oak (Quercus robur) ectomycorrhizal short roots. Can J Bot 62:1327–1335

    Article  Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann Bot (Lond) 71:1–10

    Article  CAS  Google Scholar 

  • Ekblad ALF, Wallander H, Carlsson R, Huss-Danell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451

    Article  Google Scholar 

  • Elliott CG (1977) Sterols in fungi. Their function in fungal growth and reproduction. Adv Microb Physiol 15:121–173

    Article  CAS  PubMed  Google Scholar 

  • Endo S, Zhiping G, Takagi T (1991) Lipid components of seven species of Basidiomycotina and three species of Ascomycotina. J Jpn Oil Chem Soc 40:574–577

    Article  CAS  Google Scholar 

  • Fanelli C, Fabbri AA, Passi S (1980) Growth requirements and lipid metabolism of Aspergillus flavus. Trans Br Mycol Soc 75:371–375

    Article  CAS  Google Scholar 

  • Fontaine J, Grandmougin-Ferjani A, Hartmann MA, Sancholle M (1998) Is the vesicular arbuscular mycorrhizal fungus Glomus intraradices able to synthesize its own lipids? In: Sanchez J, Cerra-Olmedo E, Martinez-Force E (eds) Advances on Plant Lipid Research. Universidad de Sevilla. Secretario de Pub-licaciones Sevilla, pp 560–563

    Google Scholar 

  • Fonvieille JL, Touzé-Soulet JM, Kulifaj M, Montant C, Dargent R (1990) The composition of ascopsores of Tuber melanosporum and of their isolated walls. CR Acad Sci III 30:557–563

    Google Scholar 

  • Fox FM (1986) Ultrastructure and infectivity of sclerotium-like bodies of the ectomycorrhizal fungus Hebeloma sacchariolens, on birch (Betula spp.). Trans Br Mycol Soc 87:359–369

    Article  Google Scholar 

  • Frankland JC, Harisson AF (1985) Mycorrhizal infection of Betula pendula and Acer pseudoplatanus: relationship with seedling growth and soil factors. New Phytol 101:108–112

    Article  Google Scholar 

  • Franz F, Acker G (1995) Rhizomorphs of Picea abies ecto-mycorrhizae: ultrastructural aspects and elemental analysis (EELS and ESI) on hyphal inclusions. Nova Hedwigia 60(1–2):253–267

    Google Scholar 

  • Frey B, Buse HR, Schüepp H (1992) Identification of ergos-terol in vesicular-arbuscular mycorrhizae. Biol Fertil Soils 13:229–234

    Article  CAS  Google Scholar 

  • Frey B, Vilarino A, Schüepp H, Arines J (1994) Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 26:711–717

    Article  CAS  Google Scholar 

  • Fries N, Bardt M, Serck-Hanssen K (1985) Growth of ectomycorrhizal fungi stimulated by lipids from a pine root exudate. Plant Soil 86:287–290

    Article  CAS  Google Scholar 

  • Frostegaard A, Tunlid A, Baath E (1993) Phospholipids fatty acid composition biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    CAS  Google Scholar 

  • Gaspar ML, Pollero RJ (1994) Glomus antarcticum: the lipids and fatty acid composition. Mycotaxon 51: 129–136

    Google Scholar 

  • Gaspar ML, Pollero RJ, Cabello MN (1994) Triacylglycerol consumption during spore germination of vesicular-arbuscular mycorrhizal fungi. J Am Oil Chem Soc 71:449–452

    Article  CAS  Google Scholar 

  • Gaspar L, Pollero R, Cabello M (1997) Variations in the lipid composition of alfalfa roots during colonization with the arbuscular mycorrhizal fungus Glomus versiforme. Mycology 89:37–82

    Article  CAS  Google Scholar 

  • Gnekow M, Marschner H (1989) Role of VA mycorrhiza in growth and mineral nutrition of apple (Malus pumila var. domestica) rootstock cuttings. Plant Soil 119: 285–293

    Article  Google Scholar 

  • Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58–64

    CAS  PubMed  Google Scholar 

  • Graham JH, Drouillard DL, Hodge NC (1996) Carbon economy of sour orange in response to different Glomus spp. Tree Physiol 16:1023–1029

    Article  PubMed  Google Scholar 

  • Graham JH, Duncan LW, Eissenstat DM (1997) Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytol 135:335–343

    Article  CAS  Google Scholar 

  • Grandmougin-Ferjani A, Dalpé Y, Veignie E, Hartmann MA, Rafin C, Sancholle M (1995) Infection by arbuscular mycorrhizal fungus Glomus mosseae of leek plants (Allium porrum L.) effects of lipids. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer, Dordrecht, pp 444–446

    Google Scholar 

  • Grandmougin-Ferjani A, Dalpé Y, Hartmann MA, Lamelle F, Couturier D, Sancholle M (1996) Taxonomic aspects of the sterol and 11-hexadecenoic acid (C16:1A11) distribution in arbuscular mycorrhizal spores. In: Williams JP, Khan MU, Lern NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer, Dordrecht, pp 195–197

    Google Scholar 

  • Grandmougin-Ferjani A, Dalpé Y, Hartmann MA, Lamelle F, Sancholle M (1999) Sterol distribution in arbuscular mycorrhizal fungi. Phytochemistry 50:1027–1031

    Article  CAS  Google Scholar 

  • Grenville DJ, Peterson RL, Piché Y (1985a) The development, structure, and histochemistry of sclerotia of ectomycorrhizal fungi: I. Pisolithus tinctorius. Can J Bot 63:1402–1411

    Article  Google Scholar 

  • Grenville DJ, Peterson RL, Piché Y (1985b) The development, structure, and histochemistry of sclerotia of ectomycorrhizal fungi: II. Paxillus involutus. Can J Bot 63:1412–1417

    Article  Google Scholar 

  • Griffith JM, Davis AJ, Grant BR (1992) Target site of fungicides to control Oomycetes. In: Köller W (ed) Sites of fungicides action. CRC Press, Boca Raton, Fl, pp 69–100

    Google Scholar 

  • Hale MG, Moore LD, Orcutt DM (1981) Effects of gib-berellinA3 and 2,4-D on plant and root exudate lipids and susceptibility of Pythium muriotylum. Soil Biol Biochem 13:395–399

    Article  CAS  Google Scholar 

  • Hampp R, Schaeffer C, Wallenda T, Stulten C, Johann P, Einig W (1994) Changes in carbon partitioning of allocation due to ectomycorrhiza formation. Biochemical evidence. Can J Bot 73:448–556

    Google Scholar 

  • Harley JL (1989) The significance of mycorrhiza. Mycol Res 92:129–139

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Harriott PT, Khairallah L, Benson DR (1991) Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of Frankia sp. strain CpII. J Bacteriol 173:2061–2067

    CAS  PubMed  Google Scholar 

  • Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol 101:427–440

    Article  CAS  Google Scholar 

  • Hepper CM (1977) A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots. Soil Biol Biochem 9:15–18

    Article  Google Scholar 

  • Hepper CM (1979) Germination and growth of Glomus caledonium spores: the effects of inhibitors and nutrients. Soil Biol Biochem 11:269–277

    Article  CAS  Google Scholar 

  • Herr DG, Peterson RL (1996) Morphology, anatomy and histochemistry of Fagus grandifolia Ehrh. (North American beech) ectomycorrhizas. Bot Acta 109: 64–71

    Google Scholar 

  • Hetrick BAD, Wilson GT, Kitt DG, Schwab AP (1988) Effects of soil microorganisms on mycorrhizal contribution to growth of big bluestem grass in non sterile soil. Soil Biol Biochem 20:501–507

    Article  Google Scholar 

  • Hiroi M (1978) Identification of 6-oxooctadecanoic acid in mushroom, Lactarius chrysorheus Fr lipid. J Agric Chem Soc Jpn 52:351–353

    CAS  Google Scholar 

  • Ho I (1977) Phytosterols in root systems of mycorrhizal and non-mycorrhizal Zea mays L. Lloydia 40:476–478

    CAS  Google Scholar 

  • Ho I, Trappe JM (1973) Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature (Lond) 244:30

    Article  CAS  Google Scholar 

  • Hommel RK, Stegner S, Weber L, Kleber HP (1994) The effect of ammonium ions on glycolipid production by Candida (Torulopsis) apicola. Cell Technol (Leipzig) 42:192–197

    CAS  Google Scholar 

  • Hua X, Liu G, Zhang X, Yu L, Zeng P, Huang D (1995) Study on mycorrhization of pine in nursery and field by cutting off primary root apex of young seedlings. For Res 8:535–543

    Google Scholar 

  • Huss-Danell K (1997) Transley Review No. 93. Actinorhizal symbioses and their N2 fixation. New Phytol 136: 375–405

    Article  CAS  Google Scholar 

  • Hutchinson LJ (1990) Studies on the systematics of ecto-mycorrhizal fungi in axenic culture: II. the enzymatic degradation of selected carbon and nitrogen compounds. Can J Bot 68:1522–1530

    Article  Google Scholar 

  • Jabaji-Hare SH (1988) Lipid and fatty acid profiles of some vesicular-arbuscular mycorrhizal fungi contribution to taxonomy. Mycologia 80:622–629

    Article  CAS  Google Scholar 

  • Jabaji-Hare SH, Kendrick WB (1985) Effect of fosetyl-Al on root exudation and on composition of extracts of mycorrhizal and non-mycorrhizal leek roots. Can J Plant Pathol 7:18–126

    Article  Google Scholar 

  • Jabaji-Hare SH, Deschene A, Kendrick B (1984) Lipid content and composition of vesicles of a vesicular-arbuscular mycorrhizal fungus. Mycologia 76:1024–1030

    Article  CAS  Google Scholar 

  • Jabaji-Hare SH, Piché Y, Fortin JA (1986) Isolation and structural characterization of soil borne auxiliary cells of Gigaspora margarita, a vesicular-arbuscular mycorrhizal fungus. New Phytol 103:77–784

    Article  Google Scholar 

  • Jakobsen I (1991) Carbon metabolism in mycorrhiza. In: Varma AK (ed) Methods in microbiology, vol 23. Academic Press, London, pp 149–180

    Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jeffries P, Young TWK (1994) Ecological aspects of myco-parasitism. In: Jeffries P, Young TWK (eds) Inter-fungal parasitic relationships. CAB International, Wallingford, pp 147–180

    Google Scholar 

  • Johansen A, Finlay RD, Olsson PA (1996) Nitrogen metabolism of external hyphae of the arbuscuclar mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712

    Article  CAS  Google Scholar 

  • Johnson BN, McGill WB (1990) Comparison of ergosterol and chitin as quantitative estimate of mycorrhizal infection and Pinus contorta seedling response to inoculation. Can J For Res 20:1125–1131

    Article  CAS  Google Scholar 

  • Karaboz I, Oner M (1988) The chemical composition and use as single cell protein of Morchella conica var. costata Vent, mycelium grown in submerged culture. Doga,Turk Bioyol Dergisi 12(3):190–196

    CAS  Google Scholar 

  • Kling M, Jakobsen I (1997) Direct application of carbendazim and propiconazole at field rates to the external mycelium of three arbuscular mycorrhizal fungi species: effect on 32P transport and succinate dehydrogenase activity. Mycorrhiza 7:33–37

    Article  CAS  Google Scholar 

  • Köller W (1992) Antifungal agents with target sites in sterol functions and biosynthesis. In: Koller W (ed) Target sites of fungicides action. CRC Press, Boca Raton, Fl, pp 119–206

    Google Scholar 

  • Kroppenstedt RM (1985) Fatty acids and menaquinone analysis of Actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 73–199

    Google Scholar 

  • Kroppenstedt RM, Kutzner HJ (1978) Biochemical taxonomy of some problem Actinomycetes. In: Mordarski M, Kurylowicz W, Jeljaszewicz J (eds) Proc Int Symp on Nocardia and Streptomyces. Gustav Fischer, Stuttgart, pp 125–133

    Google Scholar 

  • Kucey RMN, Paul EA (1983) Vesicular arbuscular mycorrhizal spore populations in various Saskatchewan Canada soils and the effect of inoculation with Glomus mosseae on faba bean Vicia faba growth in greenhouse and field trials. Can J Soil Sci 63:87–96

    Article  Google Scholar 

  • Kutaf eva NP, Tsapalova IE (1989) The biochemical composition of little known edible fungi from Siberia: Lyophyllum decastes (Fr.) Sing, and Tricholoma caligatum (VIV) Rick Rastit Resur 25:278–283

    CAS  Google Scholar 

  • Lamont HC, Silvester WB, Torrey JG (1988) Nile red fluorescence demonstrates lipid in the envelope of vesicles from N2-fixing cultures of Frankia. Can J Microbiol 34:656–666

    Article  CAS  Google Scholar 

  • Larsen J, Olsson PA, Jakobsen I (1998) The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprotrophic fungus Fusarium culmorum in root-free soil. Mycol Res 102(12): 1491–1496

    Article  CAS  Google Scholar 

  • Lechevalier MP (1977) Lipids in bacterial taxonomy — a taxonomist’s view. Crit Rev Microbiol 5:109–210

    Article  CAS  Google Scholar 

  • Lechevalier MP, Horrière R, Lechevalier HA (1982) The biology of Frankia and related organisms. Dev Ind Microbiol 23:51–60

    Google Scholar 

  • Lechevalier MP, Baker D, Horrière F (1983) Physiology, chemistry, serology, and infectivity of two Frankia isolates from Alnus incana subsp. rugosa. Can J Bot 61:2826–2833

    Article  CAS  Google Scholar 

  • Lehrian DW, Shisler LC, Patton S (1976) The effects of linoleate and acetate on the growth and lipid composition of mycelium of Agaricus bisporus. Mycologia 68:453–462

    Article  CAS  Google Scholar 

  • Leu SW, Chang DCN (1989) Physiological studies on Asparagus mycorrhizae III. Histochemical studies on asparagus mycorrhizae. Mem Coll Agric Natl Taiwan Univ 29:118–123

    Google Scholar 

  • Lindeberg G, Lindeberg M (1974) Effect of short chain fatty acids on the growth of some mycorrhizal and saprophytic hymenomycetes. Arch Microbiol 101:109–114

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Zhou X (1987) Studies on the endomycorrhiza of Galeola faberi Rolfe. J Wuhan Bot Res 5:101–110

    Google Scholar 

  • Lopez MF, Whaling CS, Torrey JG (1983) The polar lipids and free sugars of Frankia in culture. Can J Bot 61:2834–2842

    Article  CAS  Google Scholar 

  • Lösel DM (1980) The effect of biotrophic fungal infection on the lipid metabolism of green plants. In: Mazliak P, Benveniste P, Costes C, Douce R (eds) Biogenesis and function of plant lipids. Elsevier/North Holland, Amsterdam, pp 263–268

    Google Scholar 

  • Lösel DM (1988) Fungal lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 699–806

    Google Scholar 

  • Lösel DM (1989) Functions of lipids: Specialized roles in fungi and algae. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 367–437

    Google Scholar 

  • Lösel DM, Cooper KM (1979) Incorporation of Relabelled substrates by uninfected and VA mycorrhizal roots of onion. New Phytol 83:415–426

    Article  Google Scholar 

  • Lösel DM, Sancholle M (1996) Fungal lipids. In: Prasad R, Ghannoum MA (eds) Lipids of pathogenic fungi. CRC Press, Boca Raton, FL, pp 27–62

    Google Scholar 

  • Lu X, Koïde RT (1991) Avena fortma L. seedling nutrient dynamics as influenced by mycorrhizal infection of natural generation. Plant Cell Environ 14:931–939

    Google Scholar 

  • Lynd JQ, Ansman TR (1989) Effects of phosphorus, calcium with four potassium levels on nodule histology, nitrogenase activity and improve Spanco peanut yields. J Plant Nutr 12:65–84

    Article  CAS  Google Scholar 

  • Marschner H (1996) Mineral nutrient acquisition in non-mycorrhizal and mycorrhizal plants. Phyton 36:61–68

    Google Scholar 

  • Martin F, Canet D, Marchai JP (1984a) In vivo natural abundance of carbon 13 NMR studies of the carbohydrate storage in ectomycorrhizal fungi. Physiol Veg 22:733–744

    CAS  Google Scholar 

  • Martin F, Canet D, Marchai JP, Brondeau J (1984b) In vivo natural abundance 13C nuclear magnetic resonance studies of living ectomycorrhizal fungi. Plant Physiol 75:151–153

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Delaruelle C, Hubert JL (1990) An improved ergosterol assay to estimate fungal biomass in ecto-mycorrhizas. Mycol Res 94:1059–1064

    Article  Google Scholar 

  • Marx DH, Cordell CE, France RC (1986) Effects of tri-adimefon on growth and ectomycorrhizal development of loblolly slash pines in nursery. Phytopathology 76:824–831

    Article  CAS  Google Scholar 

  • Massicotte HB, Ackerley CA, Peterson RL (1989) Ontogeny of Alnus rubra, Alpova diplophloeus ecto-mycorrhizae: II Transmission electron microscopy. Can J Bot 67:201–210

    Article  Google Scholar 

  • Matcham SE, Jordan BR, Wood DA (1985) Estimation of fungal biomass in a solid substrate by three independent methods. Appl Microbiol Biotechnol 21: 108–112

    Article  CAS  Google Scholar 

  • Maudinas B, Chemardin M, Gadal P (1982) Fatty acid composition of root nodules of Alnus species. Phytochemistry 21:1271–1273

    Article  CAS  Google Scholar 

  • Meier R, Charvat I (1992) Germination of Glomus mosseae spores: procedure and ultrastructural analysis. Int J Plant Sci 15:541–549

    Article  Google Scholar 

  • Melhuish JH, Janerette CA (1979) The effects of the carbon-nitrogen ratios on carbohydrate, protein, lipid and fatty acid production in Pisolithus tinc-torius. Proc 4th North American Conf on Mycorrhizae, 67 pp Fort Collins, Colorado USA (24–28 June 1979)

    Google Scholar 

  • Melhuish JH Jr, Bean GA, Hacskaylo E (1972) Fatty acids and sterols of some mycorrhizal fungi. Phytopathology 62:77–778

    Article  Google Scholar 

  • Melin E (1962) Physiological aspects of mycorrhizae of forest trees. In: Kozlowski TT (ed) Tree growth. Ronald Press, New York, pp 247–263

    Google Scholar 

  • Moore AEP, Ashford AE, Peterson RL (1991) Reserve substances in Paxillus involutus sclerotia: determination by histochemistry and X-ray microanalysis. Protoplasma 163:67–81

    Article  Google Scholar 

  • Morelli I, Pistelli L, Catalano S (1981) Constituents of Clitocybe nebularis and of Hydnum repandum. Fitoterapia 52(l):45–47

    CAS  Google Scholar 

  • Mosse B, Bowen GD (1968) A key to the recognition of some Endogone spore types. Trans Br Mycol Soc 51:469–483

    Article  Google Scholar 

  • Nagahashi G, Douds DD Jr, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408

    Article  CAS  Google Scholar 

  • Nagy S, Nordby HE, Nemec S (1980) Composition of lipids in roots of six Citrus cultivars infected with the vesicular-arbuscular mycorrhizal fungus, Glomus mosseae. New Phytol 85:377–384

    Article  CAS  Google Scholar 

  • Nandan R, Raisuddin S (1992) Fungal degradation of industrial wastes and wastewater. In: Arora DK, Elander RP, Mukerji KJ (eds) Handbook of applied mycology, vol 4, Fungal biotechnology. Marcel Dekker, New York, pp 931–961

    Google Scholar 

  • Nemec S (1981) Histochemical characteristics of Glomus etunicatum infection of Citrus limon fibrous roots. Can J Bot 59:609–617

    Article  Google Scholar 

  • Nemec S (1985) Influence of selected pesticides on Glomus species and their infection in Citrus. Plant Soil 84:133–137

    Article  CAS  Google Scholar 

  • Newcomb W, Wood SM (1987) Morphogenesis and fine structure of Frankia (Actinomycetales): the microsymbiont of nitrogen-fixing actinorhizal root nodules. Int Rev Cytol 109:1–88

    Article  CAS  PubMed  Google Scholar 

  • Newcomb W, Peterson RL, Callaham D, Torrey JG (1978) Structure and host actinomycete interactions in developing root nodules of Comptonia peregrina. Can J Bot 56:502–531

    Article  Google Scholar 

  • Newell SY, Arsuffi TL, Fallon RD (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54:1876–1879

    CAS  PubMed  Google Scholar 

  • Nordby HE, Nemec S, Nagy S (1981) Fatty acids and sterols asociated with Citrus root mycorrhizae. J Agric Food Chem 29:396–401

    Article  CAS  Google Scholar 

  • Nylund JE, Wallender H (1992) Ergosterol analysis as a mean of quantifying mycorrhizal biomas. In: Norris JR, Redd D, Varmd AK (eds) Methods in microbiology, vol 24, pp 77–88

    Google Scholar 

  • Ogundero VW (1981) Degradation of nigerian palm product by thermophilic fungi. Trans Br Mycol Soc 77:267–271

    Article  CAS  Google Scholar 

  • Ohta A (1988) Effects of butyric acid and related compounds on basidiospore germination of some mycorrhizal fungi. Trans Mycol Soc Jpn 29:375–382

    CAS  Google Scholar 

  • Olsson PA, Baath E, Jacobsen I, Söderstrom B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–639

    Article  CAS  Google Scholar 

  • Olsson PA, Bääth E, Jakobsen I (1997) Phophorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63:3531–3538

    CAS  PubMed  Google Scholar 

  • Olsson PA, Francis R, Read DJ, Söderstrom B (1998) Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil 201:9–16

    Article  CAS  Google Scholar 

  • Ourisson G, Rohmer M (1982) Prokaryotic polyterpenes: phylogenetic precursors of sterols. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, vol 17. Academic Press, London, pp 153–182

    Google Scholar 

  • Pacovsky RS (1989) Metabolic difference in Zea-Glomus-Azospirillum symbioses. Soil Biol Biochem 21:953–960

    Article  CAS  Google Scholar 

  • Pacovsky RS, Fuller G (1987) Lipids of soybean inoculated with microsymbionts. In: Stumpf PK, Mudd JB, Nes WD (eds) The metabolism structure and function of plant lipids. Plenum Press, New York, pp 349–351

    Chapter  Google Scholar 

  • Pacovsky RS, Fuller G (1988) Mineral and lipid composition of Glycine, Glomus, Bradyrhizobium symbioses. Physiol Plant 72:733–746

    Article  CAS  Google Scholar 

  • Pang PC, Paul EA (1980) Effects of vesicular-arbuscular mycorrhiza on C and N distribution in nodulated faba beans. Can J Soil Sci 60:241–250

    Article  CAS  Google Scholar 

  • Paul EA, Kucey RMN (1981) Carbon flow in microbial associations. Science 213:473–474

    Article  CAS  PubMed  Google Scholar 

  • Pedersen TA (1970) Effects of fatty acids and methyl octanoate on resting mycelium of Boletus variegatus. Physiol Plant 23:654–666

    Article  CAS  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal Citrus at high phosphorus supply. Analysis of carbon costs. Plant Physiol 101:1063–1071

    CAS  Google Scholar 

  • Pfeffer PE, Douds DD, Becart G, Brouillette J, Bago B, Shach AR, Hill Y (1998) The uptake, metabolism and transport of different carbon substrates in VA mycorrhizal carrot roots. 2nd Int Conf on Mycorrhiza Uppsala, Sweden, 136 pp (5–10 July 1998)

    Google Scholar 

  • Plassard C, Coll A, Mousain D (1983) Dosage de la chitine fongique: application à l’estimation de la masse mycélienne présente dans les racines mycorhizées du pin maritime cultivé in vitro ou en pépinière. C R Acad Sci III 297:233–236

    Google Scholar 

  • Prostenik M, Burcar I, Castek A, Cosovic C, Golem J, Jandric Z, Kljaic K, Ondrusek V (1978) Lipids of higher fungi. III The fatty acids and 2-hydroxy-fatty acids in some species of basidiomycetes. Chem Phys Lipids 22:97–103

    Article  CAS  Google Scholar 

  • Ouispel A, Burggraaf H, Borsj H, Tak T (1983) The role of lipids in the growth of Frankia isolates. Can J Bot 61:2801–2806

    Article  Google Scholar 

  • Raper KB (1965) The genus Aspergillus. Williams and Wilkins, Baltimore

    Google Scholar 

  • Ratnayake M, Leonard RT, Menge JA (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytol 81:543–552

    Article  CAS  Google Scholar 

  • Rolin D, Le Tacon F, Larher F (1984) Characterization of the different forms of phosphorus in the mycelium of the ectomycorrhizal fungus Hebeloma cylindrosporum cultivated in pure culture. New Phytol 98:335–344

    Article  CAS  Google Scholar 

  • Ruzic R, Gogala N, Jerman I (1997) Sinusoidal magnetic fields: Effects on the growth and ergosterol content in mycorrhizal fungi. Electro Magnetobiol 16(2): 129–142

    CAS  Google Scholar 

  • Salmanowicz B, Nylund JE (1988) High performance liquid chromatography determination of ergosterol as a measure of ectomycorrhizal infection in Scots pine. Eur J For Pathol 18:291–298

    Article  CAS  Google Scholar 

  • Salmanowicz B, Nylund JE, Wallander H (1990) High performance liquid chromatography assay of ergosterol: a technique to estimate fungal biomass in roots with ectomycorrhiza. Agric Ecosyst Environ 28:437–440

    Article  CAS  Google Scholar 

  • Samra A, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (1996) Soluble proteins and polypeptide profiles of spores of arbuscular mycorrhizal fungi. Interspecific variability and effects of host (myc+) and non-host (myc-) Pisum sativum root exudates. Agronomie (Paris) 16:709–719

    Article  Google Scholar 

  • Sancholle M, Dalpé Y (1993) Taxonomic relevance of fatty acids of arbuscular mycorrhizal fungi and related species. Mycotaxon 49:187–193

    Google Scholar 

  • Sancholle M, Lösel DM (1995) Lipids in fungal biotechnology. In: Kück (ed) The Mycota II Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 339–367

    Chapter  Google Scholar 

  • Sancholle M, Weete JD, Touzé-Soulet JM (1984a) Composition of a plasma membrane enriched fraction from Taphrina deformans. Effects of propiconazole. In: Siegenthaler PA, Eichenberger W (eds) Structure, function and metabolism of plant lipids. Elsevier, Amsterdam, pp 347–352

    Google Scholar 

  • Sancholle M, Weete JD, Montant C (1984b) Effects of tri-azoles on fungi. I. Growth and celllular permeability. Pest Biochem Physiol 21:31–44

    Article  CAS  Google Scholar 

  • Sancholle M, Dargent R, Weete JD, Rushing AE, Miller KS, Montant C (1988) Effects of triazoles on fungi. IV. Ultrastructure of Taphrina deformans. Mycologia 80:162–175

    Article  CAS  Google Scholar 

  • Scannerini S, Bonfante-Fasolo PB (1975) Preliminary data on the ultrastructure of intracelllular vesicles in endomycorrhiza of Ornithogalum umbellatum L. Atti Accad Sci Torino 109:619–621

    Google Scholar 

  • Schisler LC, Volkoff O (1977) The effects of safflower oil on mycelial growth of Boletacea in submerged liquid cultures. Mycologia 69:118–125

    Article  Google Scholar 

  • Schmitz O, Danneberg G, Hundeshagen B, Klingner A, Bothe H (1991) Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J Plant Physiol 139:106–114

    Article  CAS  Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1997) Mycorrhizae, bio-cides, and biocontrol 3. Effects of three different fungicides on developmental stages of three AM fungi. Biol Fertil Soils 24:18–26

    Article  CAS  Google Scholar 

  • Schubert A, Wys P, Wiemken A (1992) Occurrence of trehalose in vesicular-arbuscular mycorrhizal fungi and in in mycorrhizal roots. J Plant Physiol 140: 41–45

    Article  CAS  Google Scholar 

  • Scitz LM, Mohr HE, Burroughs R, Sauer DB (1977) Ergosterol as an indicator of fungal invasion in grains. Cereal Chem 54:1207–1217

    Google Scholar 

  • Scitz LM, Sauer DB, Burroughs R, Mohr HE, Hubbard JD (1979) Ergosterol as a measure of fungal growth. Phytopathology 69:1202–1203

    Article  Google Scholar 

  • Selvaraj T, Subramanian G (1990) Phenols and lipids in mycorrhizal and non-mycorrhizal roots of Sesamum indicum. Curr Sci 59:471–473

    CAS  Google Scholar 

  • Senatore F (1988) Chemical constituents of some species of Agaricaceae. Biochem Syst Ecol 16:601–604

    Article  CAS  Google Scholar 

  • Senatore F, Dini A, Marino A, Schettino O (1988) Chemical constituents of some Basidiomycetes. J Sci Food Agric 45(4):337–345

    Article  CAS  Google Scholar 

  • Siegel RR (1981) Sterol-inhibiting fungicides: effects on sterol biosynthesis and sites of action. Plant Dis 65:986–989

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Phys Plant Mol Biol 39:221–244

    Article  CAS  Google Scholar 

  • Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distibution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbucular mycorrhizae. New Phytol 92:75–87

    Article  Google Scholar 

  • Söderstrom B (1977) Vital staining of fungi in pure culture and in soil with fluorescein diacetate. Soil Biol Biochem 9:59–63

    Article  Google Scholar 

  • Solberg Y (1989) A literature review of the lipid constituents of higher fungi new investigations of Agari-cales species. Int J Mycol Lichenol 4:137–154

    Google Scholar 

  • Strullu DG, Charnel A, Eloy JF, Gourret JP (1983) Ultra-structure and analysis, by laser probe mass spectrography, of the mineral composition of the vesicles of Trifolium pratense endomycorrhizas. New Phytol 94:81–88

    Article  CAS  Google Scholar 

  • Sugai A, Itoh T, Kanako H, Kinjoj N, Muramatsu T (1986) Pyrophosphatidic acid in mushrooms. Lipids 21:666–668

    Article  CAS  Google Scholar 

  • Sumner JL (1973) The fatty acid composition of Basid-iomycetes. N Z J Bot 11:435–442

    Article  CAS  Google Scholar 

  • Sung SJS, White LM, Marx DH, Otrosina WJ (1995) Seasonal ectomycorrhizal fungal biomass development on loblolly pine (Pinus taeda L.) seedling. Mycorrhiza 5:439–447

    Google Scholar 

  • Sward RJ (1981a) The structure of the spores of Gigaspora margarita. I. The dormant spore. New Phytol 87:761–768

    Article  Google Scholar 

  • Sward RJ (1981b) The structure of the spores of Gigaspora margarita. III. Germ-tube emergence and growth. New Phytol 88:667–673

    Article  Google Scholar 

  • Sylvia DM, Wilson DO, Graham JH, Maddo JJ, Miliner P, Morton JB, Skipper HD, Wright SF, Jarstfer AG (1993) Evaluation of vesicular-arbuscular mycorrhizal fungi in diverse plants and soils. Soil Biol Biochem 25:705–713

    Article  Google Scholar 

  • Taber WA, Taber RA (1982) Nutrition and respiration of basidiospores and mycelium of Pisolithus tinctorius. Phytopathology 72:316–322

    CAS  Google Scholar 

  • Tanaka Y, Kawahara S, Eng AH, Takei A, Ohya N (1994) Structure of cis-polyisoprene from Lactarius mushrooms. Acta Biochim Pol 41:303–309

    CAS  PubMed  Google Scholar 

  • Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996) Effect of onion {Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59

    Article  Google Scholar 

  • Thompson LK, Hale MG (1983) Effects of kinetin in the rooting medium on root exudation of free fatty acids and sterols from roots of Arachis hypogea L. “Argentine” under axenic conditions. Soil Biol Biochem 15:125–126

    Article  CAS  Google Scholar 

  • Torrey JG, Callaham D (1982) Structural features of the vesicle of Frankia sp. CpII in culture. Can J Microbiol 28:749–757

    Article  Google Scholar 

  • Trappe JM (1972) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:508–606

    Google Scholar 

  • Trent JD, Svejcar TJ, Christiansen S (1989) Effects of fumigation on growth, photosynthesis water relations and mycorrhizal development of winter wheat in the field. Can J Plant Sci 69:535–540

    Article  CAS  Google Scholar 

  • Tunlid A, Schultz NA, Benson DR, Steele DB, White DC (1989) Differences in fatty acid composition between vegetative cells and N2-fixing vesicles of Frankia sp. strain Cp11. Proc Natl Acad Sci USA 86:3399–3403

    Article  CAS  PubMed  Google Scholar 

  • Turner WD, Aldrige B (1983) Fungal metabolites. Academic Press, London

    Google Scholar 

  • Vaskovsky VE, Khotimchenko SV, Benson AA (1991) Identification of diacylglycero-4-o-n n n-trimethylho-moserine in mushrooms. Lipids 326:254–256

    Article  Google Scholar 

  • Vignon C, Plassard C, Mousain D, Salsac L (1986) Assay of fungal chitin and estimation of mycorrhizal infection. Physiol Vég 24:201–207

    CAS  Google Scholar 

  • von Alten H, Lindermann A, Schonnbeck F (1993) Stimulation of vesicular-arbuscular mycorrhiza by fungicides or rhizosphere bacteria. Mycorrhiza 2:167–173

    Article  Google Scholar 

  • Vrkoc J, Budesinsky M, Dolejs L (1976) Constituents of the basidiomycete Scleroderma aurantium. Phytochemistry 15:1782–1784

    Article  CAS  Google Scholar 

  • Wallander H, Massicotte HB, Nylund JE (1997) Seasonal variation in protein, ergosterol and chitn in five morphotypes of Pinus sylvestris L. ectomycorrhizae in a mature Swedish forest. Soil Biol Biochem 29:45–53

    Article  CAS  Google Scholar 

  • Wallenda T, Schaeffer C, Einig W, Wingler A, Hampp U, Scith B, George E, Marschner H (1996) Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L.] Karst.) Plant Soil 186:361–369

    Article  CAS  Google Scholar 

  • Wang GM, Coleman DC, Freckman DW, Dyer MI, McNaughton SJ, Acra MA, Goeschl JD (1989) Carbon partioning patterns of mycorrhizal versus non-mycorrhizal plants: real-time dynamic measurements using CO2. New Phytol 112:489–493

    Article  Google Scholar 

  • Wardle KS, Schisler LC (1969) The effects of various lipids on growth of mycelium of Agaricus bisporus. Mycologia 61:305–314

    Article  CAS  PubMed  Google Scholar 

  • Wathelet JP, Severin M, Impens R (1972) Etude des lipides de Morchella rotunda Pers. Analyse des acids gras. Bull Rech Agron Gembloux 7:350–357

    CAS  Google Scholar 

  • Weete JD (1980) Lipid biochemistry of fungi and other organisms. Plenum Press, New York

    Book  Google Scholar 

  • Weete JD (1989) Structure and function of sterols in fungi. Adv Lipid Res 23:115–167

    CAS  Google Scholar 

  • Weete JD, Gandhi SR (1986) Biochemistry and molecular biology of fungal sterols. In: Bramble R, Marzluf GA (eds) The Mycota III. Springer, Berlin Heidelberg New York, pp 421–438

    Google Scholar 

  • Weete JD, Gandhi SR (1997) Sterols of the phylum Zygomycota: phylogenetic implications. Lipids 32: 1309–1316

    Article  CAS  PubMed  Google Scholar 

  • Weete JD, Kulifaj M, Montant C, Nes WR, Sancholle M (1985a) Distribution of sterols in fungi II Brassicasterol in Tuber and Terfezia species. Can J Microbiol 31:1127–1130

    Article  CAS  Google Scholar 

  • Weete JD, Sancholle M, Touzé-Soulet JM, Bradley J, Dargent R (1985b) Effects of triazoles on fungi. III. Composition of a plasma membrane-enriched fraction of Taphrina deformans. Biochim Biophys Acta 812:633–642

    Article  CAS  Google Scholar 

  • Weete JD, Sancholle M, Patterson KA, Miller KS, Huang MQ, Campbell F, Van den Reek M (1991) Fatty acid metabolism in Taphrina deformans treated with sterol biosynthesis inhibitors. Lipids 26:669–674

    Article  CAS  Google Scholar 

  • Whipps JM, Haselwandter K, McGee EEM, Lewis DH (1982) Use of biochemical markers to determine growth, development and biomass of fungi in infected tissues, with particular reference to antagonistic and mutualistic biotrophs. Trans Br Mycol Soc 79:385–400

    Article  CAS  Google Scholar 

  • Yokokawa H (1994) Sterol compositions of the fruit-bodies of higher fungi. 5th Int Mycological Congr Abstr, Vancouver BC, Canada, 250 pp (14–21 July 1994)

    Google Scholar 

  • Yokokawa H, Mitsuhashi T (1981) The sterol composition of mushrooms. Phytochemistry 206:1349–1351

    Article  Google Scholar 

  • Zel J, Svetek J, Crne H, Schara M (1993) Effects of aluminium on membrane fluidity of the mycorrhizal fungus Amanita muscaria. Physiol Plant 89:172–176

    Article  CAS  Google Scholar 

  • Zhuk YT, Tsapalova IE, Stepanova EN (1981) Lipids of some edible fungi growing in Siberia. Rastit Resur 17:109–114 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sancholle, M., Dalpé, Y., Grandmougin-Ferjani, A. (2001). Lipids of Mycorrhizae. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07334-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07334-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08310-5

  • Online ISBN: 978-3-662-07334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics