Skip to main content

Catecholamine-Peptide Interactions in the Hypothalamus

  • Conference paper
Morphology of Hypothalamus and Its Connections

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 7))

Abstract

Besides the neurohypophyseal hormones oxytocin (OT) and vasopressin (VP), which belong to the classic neurosecretory systems, several other kinds of biologically active peptide have been detected in the mammalian hypothalamus. Of the latter peptides, the following are known to be present in the hypothalamus:

  1. 1.

    Hypophyseotropic hormones, or so-called hypothalamic hormones — thyrotropin-releasing hormone (TRH); luteinizing hormone-releasing hormone (LHRH); corticotropin-releasing hormone (CRH, CRF); somatostatin (somatotropin release-inhibiting hormone, SRIF); and growth hormone-releasing factor (GRF)

  2. 2.

    Anterior pituitary hormones — corticotropin (ACTH) and others

  3. 3.

    Opioid peptides — endorphins, enkephalins, and dynorphins

  4. 4.

    Gastrointestinal peptides — neurotensin (NT), substance P,

  5. 5.

    Peptides in a central angiotensin system.

The work on which this study was based was supported by grants (Nos. 57570025 and 59480092) from the Japanese Ministry of Education, Science, and Culture

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajika K (1979) Simultaneous localization of LHRH and catecholamines in rat hypothalamus. J Anat 128:331–347

    PubMed  CAS  Google Scholar 

  • Ajika K (1980) Relationship between catecholaminergic neurons and hypothalamic hormone-containing neurons in the hypothalamus. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 6. Raven, New York, pp 1–32

    Google Scholar 

  • Antoni FA, Palkovits M, Makara GB, Linton EA, Lowry PJ, Kiss JZ (1983) Immunoreactive corticotropin-releasing hormone in the hypothalamoinfundibular tract. Neuroendocrinology 36:415–423

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Glazer EJ, Lord BAP (1982) Simultaneous ultrastructural localization of tritiated serotonin and immunoreactive peptides. J Histochem Cytochem 30:780–784

    Article  PubMed  CAS  Google Scholar 

  • Bennett GW, Edwardson JA, Holland D, Jeffcoate SL, White N (1975) Release of immunoreactive luteinising hormone-releasing hormone and thyrotropin-releasing hormone from hypothalamic synaptosomes. Nature 257:323–324

    Article  PubMed  CAS  Google Scholar 

  • Björklund A, Nobin A (1973) Fluorescence, histochemical and microspectrofluorometric mapping of dopamine and noradrenaline cell groups in the rat diencephalon. Brain Res 51:193–205

    Article  PubMed  Google Scholar 

  • Bloch B, Bugnon C, Fellmann D, Lenys D, Gouget A (1979) Neurons of the rat hypothalamus reactive with antisera against endorphins, ACTH, MSH, and β-LPH. Cell Tissue Res 204:1–15

    Article  PubMed  CAS  Google Scholar 

  • Bloom F, Battenberg E, Rossier J, Ling N, Guillemin R (1978) Neurons containing β-endorphin in rat brain exist separately from those containing enkephalin: immunocyto-chemical studies. Proc Natl Acad Sci USA 75:1591–1595

    Article  PubMed  CAS  Google Scholar 

  • Bridges TE, Hillhouse EW, Jones MT (1976) The effect of dopamine on neurohypophysial hormone release in vivo and from the rat neural lobe and hypothalamus in vitro. J Physiol (Lond) 260:647–666

    CAS  Google Scholar 

  • Bugnon C, Bloch B, Lenys D, Gouget A, Fellmann D (1979) Comparative study of the neuronal populations containing β-endorphin, corticotropin and dopamine in the arcuate nucleus of the rat hypothalamus. Neurosci Lett 14:43–48

    Article  PubMed  CAS  Google Scholar 

  • Bugnon C, Bloch B, Lenys D (1981) Ultrastructural study of presumptive pro-opiocortin producing neurons in the rat hypothalamus. Neuroscience 6:1299–1313

    Article  PubMed  CAS  Google Scholar 

  • Bugnon C, Fellman D, Gouget A, Cardot J (1982) Corticoliberin in rat brain: immunocytochemical identification and localization of a novel neuroglandular system. Neurosci Lett 30:25–30

    Article  PubMed  CAS  Google Scholar 

  • Chihara K, Arimura A, Schally AV (1979) Effect of intraventricular injection of dopamine, norepinephrine, acetylcholine, and 5-hydroxytryptamine on immunoreactive somatostatin release into rat hypophyseal portal blood. Endocrinology 104:1656–1662

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62[Suppl 232]: 1–55

    Google Scholar 

  • Descarries L, Dupin JC (1974) Retention of noradrenaline-3H in brain and preferential extraction of labeled metabolites by glutaraldehyde fixation. Experientia 30:1164–1165

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Bosler O, Berthelet F, Des Rosiers MH (1980) Dopaminergic nerve endings visualized by high resolution autoradiography in adult rat neostriatum. Nature 284:620–622

    Article  PubMed  CAS  Google Scholar 

  • Doi H, Nakai Y (1985) Electron microscopic cytochemistry of catecholaminergic innervation of neurotensin neurons in the rat hypothalamus. J Clin Electron Microscopy 18(4):367–374

    Google Scholar 

  • Dubé D, Pelletier G (1979) Effect of colchicine on the immunohistochemical localization of somatostatin in the rat brain: light and electron microscopic studies. J Histochem Cytochem 27:1577–1581

    Article  PubMed  Google Scholar 

  • Dyer RG, Dyball REG (1974) Evidence for a direct effect of LRF and TRH on single unit activity in the rostral hypothalamus. Nature 252:486–488

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 247:37–85

    CAS  Google Scholar 

  • Glazer EJ, Basbaum AI (1984) Axons which take up [3H]serotonin are presynaptic to enkephalin-immunoreactive neurons in cat dorsal horn. Brain Res 298:386–391

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 76:6666–6670

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Porter JC (1979) Morphine and opioid peptide-induced inhibition of the release of dopamine from tuberoinfundibular neurons. Life Sci 25:1697–1702

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A (1982) Electron microscopic cytochemistry on the innervation of oxytocin-producing cells (in Japanese, abstract in English). J Showa Med Assoc 42:805–818

    Google Scholar 

  • Haskins JT, Gudelsky G A, Moss RL, Porter JC (1981) Iontophoresis of morphine into the arcuate nucleus: effects on dopamine concentrations in hypophysial portal plasma and serum prolactin concentrations. Endocrinology 108:767–771

    Article  PubMed  CAS  Google Scholar 

  • Hisano S, Kawano H, Maki Y, Daikoku S (1981) Electron microscopic study of immunoreactive LHRH perikarya with special reference to neuronal regulation. Cell Tissue Res 220:511–518

    Article  PubMed  CAS  Google Scholar 

  • Hisano S, Kawano H, Nishiyama T, Daikoku S (1982) Immunoreactive ACTH/β-endorphin neurons in the tubero-infundibular hypothalamus of rats. Cell Tissue Res 224:303–314

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66:235–251

    Article  Google Scholar 

  • Hökfelt T, Elde R, Fuxe K, Johansson O, Ljungdahl Ä, Goldstein M, Luft R, Efendic S, Nilsson G, Terenius L, Ganten D, Jeffcoate SL, Rehfeld J, Said S, Perez de la Mora M, Possani L, Tapin R, Teran L, Palacios R (1978) Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York, pp 69–135

    Google Scholar 

  • Ibata Y, Obata HL, Kubo S, Fukui K, Okamura H, Ishigami T, Imagawa K, Sin S (1983) Some cellular characteristics of somatostatin neurons and terminals in the periventricular nucleus of the rat hypothalamus and median eminence. Electron microscopic immunohistochemistry. Brain Res 258:291–295

    Article  PubMed  CAS  Google Scholar 

  • Ibata Y, Kawakami F, Fukui K, Obata-Tsuto HL, Tanaka M, Kubo T, Okamura H, Morimoto N, Yanaihara C, Yanaihara N (1984 a) Light and electron microscopic immunocytochemistry of neurotensin-like immunoreactive neurons in the rat hypothalamus. Brain Res 302:221–230

    Article  PubMed  CAS  Google Scholar 

  • Ibata Y, Kawakami F, Fukui K, Okamura H, Obata-Tsuto HL, Tsuto T, Terubayashi H (1984 b) Morphological survey of neurotensin-like immunoreactive neurons in the hypothalamus. Peptides 5:109–120

    Article  PubMed  CAS  Google Scholar 

  • Ibata Y, Kawakami F, Okamura H, Obata-Tsuto HL, Morimoto N, Zimmermann EA (1985) Light and electron microscopic immunocytochemistry of β-endorphin/β-LPH-like immunoreactive neurons in the arcuate nucleus and surrounding areas of the rat hypothalamus. Brain Res 341:233–242

    Article  PubMed  CAS  Google Scholar 

  • Jennes L, Beckman WC, Stumpf WE, Grzanna R (1982) Anatomical relationships of serotoninergic and noradrenergic projections with the GnRH system in septum and hypothalamus. Exp Brain Res 46:331–338

    Article  PubMed  CAS  Google Scholar 

  • Jennes L, Stumpf WE, Tappaz ML (1983) Anatomical relationships of dopaminergic and GABAergic systems with the GnRH-system in the septo-hypothalamic area. Immunohistochemical studies. Exp Brain Res 50:91–99

    Article  PubMed  CAS  Google Scholar 

  • Jennes L, Stumpf WE, Sheedy ME (1985) Ultrastructural characterization of gonadotropin-releasing hormone (GnRH)-producing neurons. J Comp Neurol 232:534–547

    Article  PubMed  CAS  Google Scholar 

  • Johansson O, Hökfelt T (1980) Thyrotropin releasing hormone, somatostatin, and enkephalin: distribution studies using immunohistochemical techniques. J Histochem Cytochem 28:364–366

    Article  PubMed  CAS  Google Scholar 

  • Johansson O, Hökfelt T, Jeffcoate SL, White N, Sternberger LA (1980) Ultrastructural localization of TRH-like immunoreactivity. Exp Brain Res 38:1–10

    Article  PubMed  CAS  Google Scholar 

  • Jones MT, Hillhouse EW (1977) Neurotransmitter regulation of corticotropin-releasing factor in vitro. Ann NY Acad Sci 297:536–560

    Article  PubMed  CAS  Google Scholar 

  • Kawakami F, Fukui K, Okamura H, Nakajima T, Yanaihara N, Ibata Y (1984) Influence of ascending noradrenergic fibers on the neurotensin-like immunoreactive neurons in the rat paraventricular nucleus. Neurosci Lett 44:149–154

    Article  PubMed  CAS  Google Scholar 

  • Kawano H, Daikoku S, Saito S (1982) Immunohistochemical studies of intrahypothalamic somatostatin-containing neurons in rat. Brain Res 242:227–232

    Article  PubMed  CAS  Google Scholar 

  • Kawata M, Hashimoto K, Takahara J, Sano Y (1983) Immunohistochemical identification of neurons containing corticotropin-releasing factor in the rat hypothalamus. Cell Tissue Res 230:239–246

    PubMed  CAS  Google Scholar 

  • Khachaturian H, Watson SJ, Lewis M, Coy D, Golstein A, Akil H (1982) Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3:941–954

    Article  PubMed  CAS  Google Scholar 

  • Kiss J, Halász B (1985) Demonstration of serotoninergic axons terminating on luteinizing hormone-releasing hormone neurons in the preoptic area of the rat using a combination of immunocytochemistry and high resolution autoradiography. Neuroscience 14:69–78

    Article  PubMed  CAS  Google Scholar 

  • Kiss J, Léránth CS, Halász B (1984) Serotoninergic endings on VIP-neurons in the suprachiasmatic nucleus and on ACTH-neurons in the arcuate nucleus of the rat hypothalamus. A combination of high resolution autoradiography and electron microscopic immunocytochemistry. Neurosci Lett 44:119–124

    Article  PubMed  CAS  Google Scholar 

  • Krisch B (1980) Differing immunoreactivities of somatostatin in the cortex and the hypothalamus of the rat. A light and electron microscopic study. Cell Tissue Res 212:457–464

    PubMed  CAS  Google Scholar 

  • Krisch B, Leonhardt H (1980) Luliberin and somatostatin fiber-terminals in the subfornical organ of the rat. Cell Tissue Res 210:33–45

    Article  PubMed  CAS  Google Scholar 

  • Krulich L, Giachetti A, Marchlewska-Koj A, Helco E, Jameson HE (1977) On the role of the central noradrenergic and dopaminergic systems in the regulation of TSH secretion in the rat. Endocrinology 100:496–505

    Article  PubMed  CAS  Google Scholar 

  • Kühn ER (1974) Cholinergic and adrenergic release mechanisms of vasopressin in the male rat: a study with injections of neurotransmitters and blocking agents into the third ventricle. Neuroendocrinology 16:255–264

    Article  PubMed  Google Scholar 

  • Lechan RM, Jackson IMD (1982) Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111:55–65

    Article  PubMed  CAS  Google Scholar 

  • Leranth C, MacLusky NJ, Sakamoto H, Shanabrough M, Naftolin F (1985) Glutamic acid decarboxylase-containing axons synapse on LHRH neurons in the rat medial preoptic area. Neuroendocrinology 40:536–539

    Article  PubMed  CAS  Google Scholar 

  • Leung PCK (1985) Interaction of norephinephrine and LHRH on luteinizing hormone release in vivo. In: Kobayashi H, Bern H, Urano A (eds) Neurosecretion and the biology of neuropeptides. Japan Sci Soc Press, Tokyo/Springer, Berlin Heidelberg New York Tokyo, pp 196–201

    Google Scholar 

  • Liposits Z, Görcs T, Sétáló G, Lengvári I, Flerkó B, Vigh S, Schally A (1983) Ultrastructural characteristics of immunolabeled, corticotropin releasing factor (CRF)-synthesizing neurons in the rat brain. Cell Tissue Res 229:191–196

    Article  PubMed  CAS  Google Scholar 

  • Locatelli V, Petraglia F, Penalva A, Panerai AE (1983) Effect of dopaminergic drugs on hypothalamic and pituitary immunoreactive β-endorphin concentrations in the rat. Life Sci 33:1711–1717

    Article  PubMed  CAS  Google Scholar 

  • Marx JL (1983) Synthesizing the opioid peptides. Science 220:395–397

    Article  PubMed  CAS  Google Scholar 

  • Merchenthaler I, Vigh S, Petrusz P, Schally AV (1982) Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain. Am J Anat 165:385–396

    Article  PubMed  CAS  Google Scholar 

  • Merchenthaler I, Hynes MA, Vigh S, Schally AV, Petrusz P (1984) Corticotropin releasing factor (CRF): origin and course of afferent pathways to the median eminence (ME) of the rat hypothalamus. Neuroendocrinology 39:296–306

    Article  PubMed  CAS  Google Scholar 

  • Mezey É, Kiss JZ, Skirboll LR, Goldstein M, Axelrod J (1984) Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurones by depletion of hypothalamic adrenaline. Nature 310:140–141

    Article  PubMed  CAS  Google Scholar 

  • Moos F, Richard P (1982) Excitatory effect of dopamine on oxytocin and vasopressin reflex release in the rat. Brain Res 241:249–260

    Article  PubMed  CAS  Google Scholar 

  • Moss RL, Dudley CA, Kelly M (1978) Hypothalamic polypeptide releasing hormones: modifiers of neuronal activity. Neuropharmacology 17:87–93

    Article  PubMed  CAS  Google Scholar 

  • Nakada H, Nakai Y (1985) Electron microscopic examination of the catecholaminergic innervation of neurophysin-or vasopressin-containing neurons in the rat hypothalamus. Brain Res 361:247–257

    Article  PubMed  CAS  Google Scholar 

  • Nakai Y, Ochiai H, Shioda S, Kudo J, Nakada H (1982) Simultaneous demonstration of monoamines and neuropeptides by combined autoradiography and immunocytoehemistry in the same tissue section. In: Electron microscopy 1982. 10th international congress of electron microscopy 3:279–280 (abstract)

    Google Scholar 

  • Nakai Y, Shioda S, Ochiai H, Kudo J, Hashimoto A (1983) Ultrastructural relationship between monoamine-and TRH-containing axons in the rat median eminence as revealed by combined autoradiography and immunocytochemistry in the same tissue section. Cell Tissue Res 230:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nakai Y, Ochiai H, Kitazawa S, Shioda S, Watanabe T (1985) Electron microscopic cytochemistry of the relationship between catecholaminergic axons and peptidergic neurons in the rat hypothalamus. In: Kobayashi H, Bern HA, Urano A (eds) Neurosecretion and the biology of neuropeptides. Japan Sci Soc Press, Tokyo/Springer, Berlin Heidelberg New York Tokyo, pp 121–129

    Google Scholar 

  • Negro-Vilar A, Ojeda SR, McCann SM (1979) Catecholaminergic modulation of luteinizing hormone-releasing hormone release by median eminence terminals in vitro. Endocrinology 104:1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Nilaver G, Zimmerman EA, Defendini R, Liotta AS, Krieger AS, Brownstein MJ (1979) Adrenocorticotropin and β-lipotropin in the hypothalamus. J Cell Biol 81:50–58

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka M, Hisano S, Daikoku S (1983) Electron microscopic study of somatostatin-containing neurons in rat arcuate nucleus with special reference to neurons in rat arcuate nucleus with special reference to neuronal regulation. Brain Res 263:191–199

    Article  PubMed  CAS  Google Scholar 

  • Olschowka JA, Molliver ME, Grzanna R, Rice FL, Coyle JT (1981) Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamine-β-hydroxylase immunocytochemistry. J Histochem Cytochem 29:271–280

    Article  PubMed  CAS  Google Scholar 

  • Olschowka JA, O’donohue TL, Mueller GP, Jacobowitz DM (1982) The distribution of corticotropin releasing factor-like immunoreactive neurons in rat brain. Peptides 3:995–1015

    Article  PubMed  CAS  Google Scholar 

  • Pauli WK, Gibbs FP (1983) The corticotropin releasing factor (CRF) neurosecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone-treated rats. An immunocytochemical analysis. Histochemistry 78:303–316

    Article  Google Scholar 

  • Pelletier G, Dubé D, Puviani R (1977) Somatostatin: electron microscope immunohistochemical localization in secretory neurons of rat hypothalamus. Science 196:1469–1470

    Article  PubMed  CAS  Google Scholar 

  • Piekut DT (1983) Ultrastructural characteristics of vasopressin-containing neurons in the paraventricular nucleus of the hypothalamus. Cell Tissue Res 234:125–134

    Article  PubMed  CAS  Google Scholar 

  • Roth KA, Katz RJ, Sibel M, Mefford IN, Barchas JD, Carroll BJ (1981) Central epinergic inhibition of corticosterone release in rat. Life Sci 28:2389–2394

    Article  PubMed  CAS  Google Scholar 

  • Rothman TP, Ross LL, Gershon MD (1976) Separately developing axonal uptake of 5-hydroxytryptamine and norepinephrine in the fetal ileum of the rabbit. Brain Res 115:437–456

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1981) Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214:685–687

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways from the brain stem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275–325

    Article  Google Scholar 

  • Sawyer CH, Clifton DK (1980) Aminergic innervation of the hypothalamus. Fed Proc 39:2889–2895

    PubMed  CAS  Google Scholar 

  • Sawyer CH, Radford HM (1978) Effects of intraventricular injection of norepinephrine on brain-pituitary-ovarian function in the rabbit. Brain Res 146:83–93

    Article  PubMed  CAS  Google Scholar 

  • Shioda S, Nakai Y, Ochiai H, Hashimoto A (1983) Monoamine-TRH interactions by means of simultaneous autoradiography and immunocytochemistry. In: Sano Y, Ibata Y, Zimmerman E A (eds) Structure and function of peptidergic and aminergic neurons. Japan Sci Soc Press, Tokyo/VNU Sci Press BV, Utrecht, pp 99–108

    Google Scholar 

  • Shioda S, Nakai Y, Kitazawa S, Sunayama H (1985) Immunocytochemical observations of corticotropin-releasing-factor-containing neurons in the rat hypothalamus with special reference to neuronal communication. Acta Anat (Basel) 124:58–64

    Article  CAS  Google Scholar 

  • Silverman AJ, Oldfield BJ (1984) Synaptic input to vasopressin neurons of the paraventricular nucleus (PVN). Peptides 5:139–150

    Article  PubMed  CAS  Google Scholar 

  • Silverman AJ, Witkin JW (1985) Synaptic interactions of luteinizing hormone-releasing hormone (LHRH) neurons in the guinea pig preoptic area. J Histochem Cytochem 33:69–72

    Article  PubMed  CAS  Google Scholar 

  • Silverman AJ, Hou-Yu A, Oldfield BJ (1983 a) Ultrastructural identification of noradrenergic nerve terminals and vasopressin-containing neurons of the paraventricular nucleus in the same thin section. J Histochem Cytochem 31:1151–1156

    Article  PubMed  CAS  Google Scholar 

  • Silverman AJ, Hou-Yu A, Zimmerman EA (1983 b) Ultrastructural studies of vasopressin neurons of the paraventricular nucleus of the hypothalamus using a monoclonal antibody to vasopressin: analysis of synaptic input. Neuroscience 9:141–155

    Article  PubMed  CAS  Google Scholar 

  • Sladek CD, Armstrong WE, Sladeck JR Jr (1983) Relationship between noradrenergic and osmotic control of vasopressin release. In: Sano Y, Ibata Y, Zimmerman EA (eds) Structure and function of peptidergic and aminergic neurons. Japan Sci Soc Press, Tokyo. VNU Sci Press BV, Utrecht, pp 149–162

    Google Scholar 

  • Sladek JR Jr, McNeill TH (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. IV. Verification of catecholamine-neurophysin interactions through single-section analysis. Cell Tissue Res 210:181–189

    Article  PubMed  CAS  Google Scholar 

  • Sladek JR Jr, Hoffman GE (1983) Simultaneous analysis of monoaminergic and peptidergic neurons. In: Barker JL, Mckelvy JF (eds) Current methods in cellular neurobiology, vol 1. Anatomical techniques. Wiley, New York, pp 203–217

    Google Scholar 

  • Sofroniew MV (1979) Immunoreactive β-endorphin and ACTH in the same neurons of the hypothalamic arcuate nucleus in the rat. Am J Anat 154:283–289

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Bérod A, Hartman BK, Helle KB, Vanorden DE (1981) An immunohistochemical study of the organization of catecholaminergic cells and terminal field in the paraventricular and supraoptic nuclei of the hypothalamus. J Comp Neurol 196:271–285

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36:165–186

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M (1984) Electron microscopic cytochemistry on the innervation of somatostatin-containing neurons in the periventricular region of the preoptic nucleus of the rat hypothalamus (in Japanese, abstract in English). J Showa Med Assoc 44:413–423

    Google Scholar 

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    Article  PubMed  CAS  Google Scholar 

  • Uchizono K (1967) Inhibitory synapses on the stretch receptor neuron of the crayfish. Nature 214:833–834

    Article  PubMed  CAS  Google Scholar 

  • Van Vugt DA, Meites J (1980) Influence of endogeneous opiates on anterior pituitary function. Fed Proc 39:2533–2538

    PubMed  Google Scholar 

  • Versteeg DHG, Van der Gugten J, Jong WD, Palkovits M (1976) Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res 113:563–574

    Article  PubMed  CAS  Google Scholar 

  • Watson SJ, Akil H, Richard III CW, Barchas JD (1978) Evidence for two separate opiate peptide neuronal systems. Nature 275:226–228

    Article  PubMed  CAS  Google Scholar 

  • Williams MA (1969) The assessment of electron microscopic autoradiographs. Adv Opt Electron Microscop 3:219–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakai, Y., Shioda, S., Ochiai, H., Kozasa, K. (1986). Catecholamine-Peptide Interactions in the Hypothalamus. In: Ganten, D., Pfaff, D. (eds) Morphology of Hypothalamus and Its Connections. Current Topics in Neuroendocrinology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71461-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71461-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71463-4

  • Online ISBN: 978-3-642-71461-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics