Skip to main content

Interplay of Experiment and Theory in Determining Molecular Geometries B. Theoretical Methods

  • Chapter
Atomic Hypothesis and the Concept of Molecular Structure

Abstract

The previous chapter (Chap. 6) was primarily concerned with experimental methods which can provide the highest presently possible absolute accuracy in the determination of molecular geometry parameters. In favorable cases, this may involve uncertainties of only a very few tenths of a picometer or tenths of a degree. As a parallel presentation, this chapter concerns theoretical methods that can hope to approach comparable absolute accuracy. The importance of accuracy at this level was stressed in Chap. 6. Structural information is used in chemistry as a probe of the small shifts of electron density that distinguish one molecule from closely related ones, and also to suggest interpretations for molecular individuality in properties and reactivity. Substituent effects and interactions between component parts of a molecule typically cause geometry alterations on the order of no more than a few picometers or degrees, so very high accuray is required if structural data, experimental or theoretical, are to provide the maximum chemically useful information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pulay P (1969) Mol. Phys. 17: 197

    Article  CAS  Google Scholar 

  2. Szabo A, Ostlund NS (1982) Modern quantum chemistry, Macmillan, New York

    Google Scholar 

  3. Schaefer HF III (1977) Methods of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol. 3)

    Book  Google Scholar 

  4. Schaefer HF III (1977) Applications of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol 4)

    Book  Google Scholar 

  5. Lawley KP (ed) (1987) Ab initio methods in quantum chemistry, Part I, John Schaefer, New York (Advances in chemical physics, vol LXVII)

    Google Scholar 

  6. Lawley KP (ed) (1987) Ab initio methods in quantum chemistry, Part II, John Wiley, New York (Advances in chemical physics, vol LXIX)

    Google Scholar 

  7. Slater JC (1930) Phys. Rev. 36: 57

    Article  CAS  Google Scholar 

  8. Pople JA (1977) in Applications of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol 4), p 1

    Book  Google Scholar 

  9. Dunning TH Jr, Hay PJ (1977) in Methods of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol. 3), p 1

    Google Scholar 

  10. Wilson S (1987) in Ab initio methods in quantum chemistry, Part I, John Schaefer, New York (Advances in chemical physics, vol LXVII), p 439

    Google Scholar 

  11. Hehre WJ, Stewart RF, Pople JA (1969) J. Chem. Phys. 51: 2657

    Article  Google Scholar 

  12. Shavitt I (1977) in, Methods of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol. 3) p 189

    Google Scholar 

  13. Brillouin L (1934) Les Champs “Self-Consistent” de Hartree et de Fock (Actualités Sci. Ind. No. 159), Hermann and Cie., Paris

    Google Scholar 

  14. Wahl AC, Das G (1977) in Methods of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol. 3), p 51

    Google Scholar 

  15. Cizek J (1966) J. Chem. Phys. 45: 4256

    Article  CAS  Google Scholar 

  16. Meyer W (1971) Int. J. Quantum Chem. Symp. 5: 341

    Article  Google Scholar 

  17. Kutzelnigg W (1977) in Methods of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol. 3), p 129

    Google Scholar 

  18. Møller C, Plesset MS (1934) Phys. Rev. 46: 618

    Article  Google Scholar 

  19. Bartlett RJ (1981) Annu. Rev. Phys. Chem. 32: 359

    Article  CAS  Google Scholar 

  20. Pulay P, Lee JG, Boggs JE (1983) J. Chem. Phys. 79: 3382

    Article  Google Scholar 

  21. Saebø S, Pulay P (1985) Chem. Phys. Lett. 113: 13

    Article  Google Scholar 

  22. See, for example, Boys SF (1962) In: Löwdin PO (ed) Quantum theory of atoms, molecules and the solid state, Academic, New York, p 253

    Google Scholar 

  23. Pulay P, Saebø S, Boggs JE (to be published)

    Google Scholar 

  24. Balasubramanian K, Pitzer KS (1987) in Lawley KP (ed) Ab initio methods in quantum chemistry, Part I, John Schaefer, New York (Advances in chemical physics, vol LXVII), p 288

    Google Scholar 

  25. Hellmann J (1937) Einführung in die Quantenchemie, Deuticke, Leipzig

    Google Scholar 

  26. Feynman RP (1939) Phys. Rev. 56: 340

    Article  CAS  Google Scholar 

  27. Pulay P (1977) in Applications of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol 4), p 153

    Book  Google Scholar 

  28. Pulay P (1987) in Lawley KP (ed) Ab initio methods in quantum chemistry, Part II, John Wiley, New York (Advances in chemical physics, vol LXIX), p 241

    Google Scholar 

  29. Pople JA, Raghavachari K, Schlegel HB, Binkley JS (1979) Int. J. Quantum Chem. Symp. 10: 1

    Article  Google Scholar 

  30. Handy NC, Amos RD, Gaw JF, Rice JE, Simandiras ED (1985) Chem. Phys. Lett. 120: 151

    Article  CAS  Google Scholar 

  31. Pulay P, Saebø S (1986) Theor. Chim. Acta 69: 357

    Article  CAS  Google Scholar 

  32. Rice JE, Amos RD (1985) Chem. Phys. Lett. 122: 585

    Article  CAS  Google Scholar 

  33. Mills IM (1974) Theoretical Chemistry, Specialist Periodical Report (The Chemical Society, London) 1: 110

    Google Scholar 

  34. Langhoff SR, Davidson ER (1974) Int. J. Quantum Chem. 8: 61

    Article  CAS  Google Scholar 

  35. Strey G, Mills IM (1973) Mol. Phys. 26: 129

    Article  CAS  Google Scholar 

  36. Sellers HL, Almlöf JE (in press)

    Google Scholar 

  37. Handy NC, Gaw JF, Simandiras ED (1988) J. Chem. Soc, Faraday Trans. II, 83: 1577

    Article  Google Scholar 

  38. Schleyer P von R, Pople JA (1986) Chem. Phys. Lett. 129: 475

    Article  CAS  Google Scholar 

  39. Xie Y, Boggs JE (in press)

    Google Scholar 

  40. Pulay P, Fogarasi G, Pang F, Boggs J (1979) J. Am. Chem. Soc. 101: 2550

    Article  CAS  Google Scholar 

  41. Boggs JE, Cordell FR (1981) J. Mol. Struct, Theochem 76: 329

    Article  Google Scholar 

  42. Boggs JE, Fan K (1988) Acta Chem. Scand. A42: 595

    Article  CAS  Google Scholar 

  43. Almond V, Charles SW, Macdonald JN, Owen NL (1983) J. Mol. Struct. 100: 223, and earlier papers cited therein

    Article  Google Scholar 

  44. Plant C, Macdonald JN, Boggs JE (1985) J. Mol. Struct. 128: 353

    Article  CAS  Google Scholar 

  45. Almond V, Permanand RR, Macdonald JN (1985). J. Mol. Struct. 128: 337

    Article  CAS  Google Scholar 

  46. Pfafferott G, Oberhammer H, Boggs JE, Caminad W (1985). J. Am. Chem. Soc. 107: 2305

    Article  CAS  Google Scholar 

  47. Pfafferott G, Oberhammer H, Boggs JE (1985) J. Am. Chem. Soc. 107: 2309

    Article  CAS  Google Scholar 

  48. Marsden CJ, Barteil LS, Diodati FP (1977) J. Mol. Struct. 39: 253

    Article  CAS  Google Scholar 

  49. Gase W, Boggs JE (1984) J. Mol. Struct. 116: 207

    Article  CAS  Google Scholar 

  50. Siam K, Klimkowski VJ, Van Alsenoy C, Ewbank JD, Schäfer L (1987) J. Mol. Struct. 37: 261

    CAS  Google Scholar 

  51. McKean DC, Boggs JE, Schäfer L (1984) J. Mol. Struct. 116: 313

    Article  CAS  Google Scholar 

  52. McKean DC, Duncan JL, Batt L (1973) Spectrochim. Acta Part A29: 1037

    Google Scholar 

  53. Dobbs KD, Boggs JE, Cowley AH (1988)

    Google Scholar 

  54. Bernardi F, Robb MA (1987) in Lawley KP (ed) Ab initio methods in quantum chemistry, Part I, John Schaefer, New York (Advances in chemical physics, vol LXVII), p 155

    Google Scholar 

  55. Adeny PD, Bouma WJ, Radom L, Rodwell WR (1980) J. Am. Chem. Soc. 102: 4069 and several other papers from the same group

    Article  Google Scholar 

  56. Rondan NG, Houk KN (1984) Tetrahedron Lett. 25: 2519

    Article  CAS  Google Scholar 

  57. Bernardi F, Robb MA, Schlegel HB, Tonachini G (1984) J. Am. Chem. Soc. 106: 1198

    Article  CAS  Google Scholar 

  58. Xie Y, Boggs J (1989) J. Chem. Phys. 90: 4320

    Article  CAS  Google Scholar 

  59. Radom L (1977) in Applications of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol 4), p 333

    Book  Google Scholar 

  60. Frisch MJ, Pople JA, Binkley JS (1984) J. Chem. Phys. 80: 3265

    Article  CAS  Google Scholar 

  61. Schaad LJ (1974). In: Joesten MD, Schaad LJ (eds) Hydrogen bonding, Marcel Dekker, New York

    Google Scholar 

  62. Kollman PA (1977) Applications of electronic structure theory, Plenum, New York (Modern theoretical chemistry, vol 4), p. 109

    Book  Google Scholar 

  63. Margenau H, Kestner NR (1969) The theory of intermolecular forces, Pergamon, Oxford

    Google Scholar 

  64. Meyer W, Frommhold (1986) Phys. Rev. A 33: 3807

    Article  CAS  Google Scholar 

  65. Davidson ER, McMurchie LE (1982) In: Lim EC (ed) Excited states, Academic, New York, p 1

    Google Scholar 

  66. Bruna PJ, Peyerimhoff SD (1987) in Lawley KP (ed) Ab initio methods in quantum chemistry, Part I, John Schaefer, New York (Advances in chemical physics, vol LXVII), p 1

    Google Scholar 

  67. Koutecky J, Fantucci P (1986) Chem. Rev. 86: 539

    Article  CAS  Google Scholar 

  68. Luthi HP, Almlöf J (1987) Chem. Phys. Lett. 135: 357

    Article  CAS  Google Scholar 

  69. Almlöf J (1987) ACS Symp. Ser. 353 (Supercomputing Res. Chem. Chem. Eng.): 35

    Google Scholar 

  70. Cordell FR, Boggs JE (1988) J. Mol. Struct., Theochem 164: 175

    Article  Google Scholar 

  71. Saebø S, Klewe B, Samdal S (1983) Chem. Phys. Lett. 97: 499

    Article  Google Scholar 

  72. McCormick MA, Boggs JE (to be published)

    Google Scholar 

  73. Dauber P, Hagler AT (1980) Ace. Chem. Res. 13: 105

    Article  CAS  Google Scholar 

  74. Pullman A, Zakrewska C, Perahia D (1979) Int. J. Quantum Chem. 16: 393

    Google Scholar 

  75. Smit PH, Derissen JL, van Duijneveldt FB (1977) J. Chem. Phys. 67: 274

    Article  CAS  Google Scholar 

  76. Berkovitch-Yellin Z, Leiserowitz L (1980) J. Am. Chem. Soc. 102: 7677

    Article  CAS  Google Scholar 

  77. Bonaccorsi R, Petrongolo C, Scrocco E, Tornasi J (1971). Theoret. Chim. Acta 20: 331

    Article  CAS  Google Scholar 

  78. Caillet J, Claverie P, Pullman B (1978) Theoret. Chim. Acta 47: 17

    Article  CAS  Google Scholar 

  79. Berthod H, Pullman A, Hinton JF, Harpool D (1980) Theoret. Chim. Acta 57: 63

    Article  CAS  Google Scholar 

  80. Program MICROMOL available from S. M. Colwell, Department of Theoretical Chemistry, University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

    Google Scholar 

  81. Saebø S, Almlöf J (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boggs, J.E. (1990). Interplay of Experiment and Theory in Determining Molecular Geometries B. Theoretical Methods. In: Maksić, Z.B. (eds) Atomic Hypothesis and the Concept of Molecular Structure. Theoretical Models of Chemical Bonding Part 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61279-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61279-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64775-8

  • Online ISBN: 978-3-642-61279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics