Skip to main content

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 4))

Abstract

Anions present a tempting target for theoretical study because their examination by experimental means is not straightforward. The experimental difficulties arise because isolated anions are extremely fragile. Electron affinities are normally less than a few electron volts and, hence, the extra electron is only loosely bound. It is therefore difficult to study many anionic species by conventional procedures. However, recently developed techniques such as matrix isolation(1) (for structural information) and ion cyclotron resonance(2) (for energetic information) provide promising new sources of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. E. Milligan and M. E. Jacox, in: Molecular Spectroscopy: Modern Research (K. N. Rao and C. W. Mathews, eds.), pp. 259–286, Academic Press, New York (1972).

    Google Scholar 

  2. J. L. Beauchamp, Ion cyclotron resonance spectroscopy, Ann. Rev. Phys. Chem. 22, 527–561 (1971).

    Article  CAS  Google Scholar 

  3. E. Clementi and A. D. McLean, Atomic negative ions, Phys. Rev. 133, A419–A423 (1964).

    Article  Google Scholar 

  4. E. Clementi, A. D. McLean, D. L. Raimondi, and M. Yoshimine, Atomic negative ions. Second period, Phys. Rev. 133, A1274–A1279 (1964).

    Article  Google Scholar 

  5. P. E. Cade, Hartree-Fock wavefunctions, potential curves, and molecular properties for OH” (1+) and SH- (1+), J. Chem. Phys. 47, 2390–2406 (1967);

    Article  CAS  Google Scholar 

  6. P. E. Cade, The electron affinities of the diatomic hydrides CH, NH, SiH and PH, Proc. Phys. Soc., London 91, 842–854 (1967).

    Article  CAS  Google Scholar 

  7. F. Driessler, R. Ahlrichs, V. Staemmler, and W. Kutzelnigg, Ab initio calculations on small hydrides including electron correlation. XI. Equilibrium geometries and other properties of CH3, CH+ 3, and CH- 3, and inversion barrier of CH- 3, Theor. Chim. Acta 30, 315–326 (1973).

    Article  CAS  Google Scholar 

  8. (a) J. Simons and W. D. Smith, Theory of electron affinities of small molecules, J. Chem. Phys. 58, 4899–4907 (1973);

    Article  CAS  Google Scholar 

  9. (b) J. Kenney and J. Simons, Theoretical studies of molecular ions: BeH-, J. Chem. Phys. 62, 592–599 (1975).

    Article  CAS  Google Scholar 

  10. L. C. Snyder, Heats of reaction from Hartree-Fock energies of closed-shell molecules, J. Chem. Phys. 46, 3602–3606 (1967).

    Article  CAS  Google Scholar 

  11. L. C. Snyder and H. Basch, Heats of reaction from self-consistent field energies of closed-shell molecules, J. Am. Chem. Soc. 91, 2189–2198 (1969).

    Article  CAS  Google Scholar 

  12. W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation, J. Am. Chem. Soc. 92, 4796–4801 (1970).

    Article  CAS  Google Scholar 

  13. W. J. Hehre, L. Radom, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. VII. A systematic study of energies, conformations, and bond interactions, J. Am. Chem. Soc. 93, 289–300 (1971).

    Article  Google Scholar 

  14. L. Radom, W. J. Hehre, and J. A. Pople, Conformations and heats of formation of organic molecules by use of a minimal Slater type basis, J. Chem. Soc. A 1971, 2299–2303.

    Google Scholar 

  15. M. Cohen and A. Dalgarno, Stationary properties of the Hartree-Fock approximation, Proc. Phys. Soc., London 77, 748–750 (1961).

    Article  CAS  Google Scholar 

  16. K. F. Freed, Geometry and barriers to internal rotation in Hartree-Fock theory, Chem. Phys. Lett. 2, 255–256 (1968).

    Article  CAS  Google Scholar 

  17. L. Radom and J. A. Pople, in: M. T.P. International Review of Science (Theoretical Chemistry) (W. Byers Brown, ed.) pp. 71–112, Butterworths, London (1972).

    Google Scholar 

  18. H. F. Schaefer, in: Critical Evaluation of Chemical and Physical Structural Information (D. R. Lide, ed.) pp. 591–602, National Academy of Science, Washington (1974).

    Google Scholar 

  19. J. W. Moskowitz and M. C. Harrison, Gaussian wavefunctions for the 10-electron systems. III. OH-, H2O, H3O+, J. Chem. Phys. 43, 3550–3555 (1965).

    Article  CAS  Google Scholar 

  20. C. D. Ritchie and H. F. King, Gaussian basis SCF calculations for OH-, H2O, NH3, and CH4, J. Chem. Phys. 47, 564–570 (1967).

    Article  CAS  Google Scholar 

  21. A. C. Hopkinson, N. K. Holbrook, K. Yates, and I. G. Csizmadia, Theoretical study on the proton affinity of small molecules using Gaussian basis sets in the LCAO-MO-SCF framework, J. Chem. Phys. 49, 3596–3601 (1968).

    Article  CAS  Google Scholar 

  22. A. A. Frost, A floating spherical Gaussian orbital model of molecular structure. III. First-row atom hydrides, J. Phys. Chem. 72, 1289–1293 (1968).

    Article  CAS  Google Scholar 

  23. W. J. Hehre and J. A. Pople, The methyl inductive effect on acid-base strengths, Tetrahedron Lett. 1970, 2959–2962.

    Google Scholar 

  24. P. H. Owens, R. A. Wolf, and A. Streitwieser, Ab initio calculations of the acidities of some alcohols and hydrocarbons, Tetrahedron Lett. 1970, 3385–3388.

    Google Scholar 

  25. M. D. Newton and S. Ehrenson, Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and the hydroxide ion, J. Am. Chem. Soc. 93, 4971–4990 (1971).

    Article  CAS  Google Scholar 

  26. W. P. Kraemer and G. H. F. Dierckson, SCF MO LCGO studies on hydrogen bonding: the system (HOHOH)”, Theor. Chim. Acta 23, 398–403 (1972).

    Article  CAS  Google Scholar 

  27. H. Lischka, Ab initio calculations on small hydrides including electron correlation. IX. Equilibrium geometries and harmonic force constants of HF, OH-, H2F+ and H2O and proton affinities of F-, OH-, HF and H2O, Theor. Chim. Acta 31, 39–48 (1973).

    Article  CAS  Google Scholar 

  28. L. Radom, Structures of simple anions from ab initio molecular orbital calculations, Aust. J. Chem., 29, 1635–1640 (1976).

    Article  CAS  Google Scholar 

  29. W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51, 2657–2664 (1969).

    Article  CAS  Google Scholar 

  30. R. A. Hegstrom, W. E. Palke, and W. N. Lipscomb, Optimized minimum basis set for BH- 4, J. Chem. Phys. 46, 920–922 (1967).

    Article  CAS  Google Scholar 

  31. P. H. Owens and A. Streitwieser, Ab initio quantum organic chemistry. I. STO-NG calculations of methane and methyl anion, Tetrahedron 27, 4471–4493 (1971).

    Article  CAS  Google Scholar 

  32. R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys. 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  33. (a)W. Kutzelnigg, Solution of the two-electron problem in quantum mechanics by direct determination of the natural orbitals. I. Theory, Theor. Chim. Acta 1, 327–342 (1963);

    Article  CAS  Google Scholar 

  34. (b) M. Jungen and R. Ahlrichs, Ab initio calculations on small hydrides including electron correlation. III. A study of the valence shell intrapair and interpair correlation energy of some first row hydrides, Theor. Chim. Acta 17, 339–347 (1970).

    Article  CAS  Google Scholar 

  35. P. C. Hariharan and J. A. Pople, Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory, Mol. Phys. 27, 209–214 (1974).

    Article  CAS  Google Scholar 

  36. E. L. Albasiny and J. R. A. Cooper, The calculation of electronic properties of BH- 4, CH4 and NH+ 4 using one-centre self-consistent field wave functions, Proc. Phys. Soc., London 82, 289–303 (1963).

    Article  CAS  Google Scholar 

  37. D. M. Bishop, A one-centre treatment of the ammonium and borohydride ions, Theor. Chim. Acta 1, 410–417 (1963).

    Article  CAS  Google Scholar 

  38. M. Krauss, Calculation of the geometrical structure of some AH n molecules, J. Res. Natl. Bur. Stand., Sect. A 68, 635–644 (1964).

    Google Scholar 

  39. P. Pulay, Ab initio calculation of force constants and equilibrium geometries. III. Second-row hydrides, Mol. Phys. 21, 329–339 (1971).

    Article  CAS  Google Scholar 

  40. J. R. Easterfield and J. W. Linnett, Applications of a simple molecular wavefunction. Part 4. The force fields of BH- 4, CH4 and NH+ 4, J. Chem. Soc., Faraday Trans. 2 1974, 317–326.

    Google Scholar 

  41. P. A. Kollman and L. C. Allen, A theory of the strong hydrogen bond. Ab initio calculations on HF- 2 and H5O+ 2, J. Am. Chem. Soc. 92, 6101–6107 (1970).

    Article  CAS  Google Scholar 

  42. P. N. Noble and R. N. Kortzeborn, LCAO-MO-SCF studies of HF- 2 and the related unstable systems HF0 2 and HeF2, J. Chem. Phys. 52, 5375–5387 (1970).

    Article  CAS  Google Scholar 

  43. J. Almlöf, Hydrogen bond studies. 71. Ab initio calculation of the vibrational structure and equilibrium geometry in HF- 2 and DF- 2, Chem. Phys. Lett. 17, 49–52 (1972).

    Article  Google Scholar 

  44. T. W. Archibald and J. R. Sabin, Theoretical investigation of the electronic structure and properties of N- 3, N3 and N+ 3, J. Chem. Phys. 55, 1821–1829 (1971).

    Article  CAS  Google Scholar 

  45. P. K. Pearson, H. F. Schaefer, J. H. Richardson, L. M. Stephenson, and J. I. Brauman, Three isomers of the NO- 2 ion, J. Am. Chem. Soc. 96, 6778–6779 (1974).

    Article  CAS  Google Scholar 

  46. M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, Selfconsistent molecular orbital methods. V. Ab initio calculation of equilibrium geometries and quadratic force constants, J. Chem. Phys. 52, 4064–4072 (1970).

    Article  CAS  Google Scholar 

  47. W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. X. A systematic study of geometries and energies of AH n molecules and cations, J. Am. Chem. Soc. 93, 6377–6387 (1971).

    Article  CAS  Google Scholar 

  48. L. Radom, Ab initio molecular orbital calculations on acetyl cations. Relative hyperconjuga-tive abilities of C-X bonds, Aust. J. Chem. 27, 231–239 (1974).

    Article  CAS  Google Scholar 

  49. L. Radom, P. C. Hariharan, J. A. Pople, and P.V.R. Schleyer, Molecular orbital theory of the electronic structure of organic compounds. XXII. Structures and stabilities of C3H+ 3 and C3H+ cations, J. Am. Chem. Soc. 98, 10–14 (1976).

    Article  CAS  Google Scholar 

  50. P. G. Lykos, R. B. Hermann, J. D. S. Ritter, and R. Moccia, Ab initio calculations on simple 7r-electron systems, Bull. Am. Phys. Soc. 9, 145 (1964).

    Google Scholar 

  51. R. N. Rutledge and A. F. Saturno, One-center expansion wavefunctions for CH- 3, CH4 and CH+ 5 , J. Chem. Phys. 43, 597–602 (1965).

    Article  CAS  Google Scholar 

  52. B. D. Joshi, Study of CH- 3 and OH+ 3 by one-center expansion self-consistent-field method, J. Chem. Phys. 47, 2793–2798 (1967).

    Article  CAS  Google Scholar 

  53. W. J. Hehre, R. F. Stewart, and J. A. Pople, Atomic electron populations by molecular orbital theory, Symp. Faraday Soc. 2, 15–22 (1968).

    Article  Google Scholar 

  54. P. Millie and G. Berthier, All-electron calculations of open-shell polyatomic molecules. I. SCF wave function in Gaussians for methyl and vinyl radicals, Int. J. Quantum Chem., Symp. 2, 67–73 (1968).

    Article  Google Scholar 

  55. C. D. Ritchie and H. F. King, Theoretical studies of proton-transfer reactions. III. The reactions of hydride ion with ammonia and methane, J. Am. Chem. Soc. 90, 838–843 (1968).

    Article  CAS  Google Scholar 

  56. R. E. Kari and I. G. Csizmadia, Near-molecular Hartree-Fock wavefunction for CH- 3, J. Chem. Phys. 46, 4585–4590 (1967).

    Article  CAS  Google Scholar 

  57. R. E. Kari and I. G. Csizmadia, Potential-energy surfaces of CH+ 3 and CH- 3, J. Chem. Phys. 50, 1443–1448 (1969).

    Article  CAS  Google Scholar 

  58. R. E. Kari and I. G. Csizmadia, Configuration interaction wavefunctions and computed inversion barriers for NH3 and CH- 3, J. Chem. Phys. 56, 4337–4344 (1972).

    Article  CAS  Google Scholar 

  59. J. J. C. Mulder and J. S. Wright, The electronic structure and stability of CH+ 5 and CH- 5, Chem. Phys. Lett. 5, 445–449 (1970).

    Article  CAS  Google Scholar 

  60. A. Streitwieser and P. H. Owens, SCF calculations of acidities of distorted methanes, Tetrahedron Lett., 1973, 5221–5224.

    Google Scholar 

  61. A. J. Duke, A Hartree-Fock study of the methyl anion and its inversion potential surface: use of an augmented basis set for this species, Chem. Phys. Lett. 21, 275–282 (1973).

    Article  CAS  Google Scholar 

  62. A. Rauk, L. C. Allen, and E. Clementi, Electronic structure and inversion barrier of ammonia, J. Chem. Phys. 52, 4133–4144 (1970).

    Article  CAS  Google Scholar 

  63. R. M. Stevens, Accurate SCF calculation for ammonia and its inversion motion, J. Chem. Phys. 55, 1725–1729 (1971).

    Article  CAS  Google Scholar 

  64. P. Dejardin, E. Kochanski, A. Veillard, B. Roos, and P. Siegbahn, MC-SCF and CI calculations for the ammonia molecule, J. Chem. Phys. 59, 5546–5553 (1973).

    Article  CAS  Google Scholar 

  65. R. M. Stevens, CI calculations for the inversion barrier of ammonia, J. Chem. Phys. 61, 2086–2090 (1974).

    Article  CAS  Google Scholar 

  66. H. Lischka and V. Dyczmons, The molecular structure of H3O+ by the ab initio SCF method and with inclusion of correlation energy, Chem. Phys. Lett. 23, 167–172 (1973).

    Article  CAS  Google Scholar 

  67. D. T. Clark, Non-empirical LCAO-MO-SCF calculations with Gaussian type functions on the aromaticity and anti-aromaticity of cyclopropenyl cation and anion, Chem. Commun. 1969, 637–638.

    Google Scholar 

  68. D. T. Clark and D. R. Armstrong, Pseudo-aromaticity and -anti-aromaticity in cyclopropyl cation and anion, Chem. Commun. 1969, 850–851.

    Google Scholar 

  69. J. M. Lehn, B. Munsch, and P. Millie, Theoretical conformational analysis. IV. An ab initio SCF-LCAO-MO study of methylenimine and of vinyl anion, Theor. Chim. Acta 16, 351–372 (1970).

    Article  CAS  Google Scholar 

  70. R. Hoffmann, L. Radom, J. A. Pople, P.V.R. Schleyer, W. J. Hehre, and L. Salem, Strong conformational consequences of hyperconjugation, J. Am. Chem. Soc. 94, 6221–6223 (1972).

    Article  CAS  Google Scholar 

  71. S. Wolfe, L. M. Tel, J. H. Liang, and I. G. Csizmadia, Stereochemical consequences of adjacent electron pairs. A theoretical study of rotation-inversion in ethylene dicarbanion, J. Am. Chem. Soc. 94, 1361–1364 (1972).

    Article  CAS  Google Scholar 

  72. S. Wolfe, L. M. Tel, and I. G. Csizmadia, The gauche effect. A theoretical study of the topomerization (degenerate racemization) and tautomerization of methoxide ion tautomer, Can. J. Chem. 51, 2423–2432 (1973).

    Article  CAS  Google Scholar 

  73. R. Bonaccorsi, C. Petrongolo, E. Scrocco, and J. Tomasi, SCF wavefunction for the ground state of CN- and the change of the correlation energy in some simple protonation processes, Chem. Phys. Lett. 3, 473–475 (1969).

    Article  CAS  Google Scholar 

  74. L. Radom, Effects of alkyl groups on acidities and basicities in the gas phase. An ab initio molecular orbital study, Aust. J. Chem. 28, 1–6 (1975).

    Article  CAS  Google Scholar 

  75. A. C. Hopkinson and I. G. Csizmadia, The proton affinities of the acetylene molecule, and of the acetylide and diacetylide ions, Chem. Commun. 1971, 1291–1292.

    Google Scholar 

  76. L. M. Tel, S. Wolfe, and I. G. Csizmadia, Near-molecular Hartree-Fock wavefunctions for CH3O-, CH3OH, and CH3OH+ 2, J. Chem. Phys. 59, 4047–4060 (1973).

    Article  CAS  Google Scholar 

  77. L. Radom, Ab initio molecular orbital calculations on anions. Determination of gas phase acidities, J. Chem. Soc., Chem. Commun. 1974, 403–404.

    Google Scholar 

  78. A. Streitwieser, P. H. Owens, R. A. Wolf, and J. E. Williams, Ab initio SCF calculations of the acidity of distorted ethanes and ethylenes, J. Am. Chem. Soc. 96, 5448–5451 (1974).

    Article  CAS  Google Scholar 

  79. G. H. F. Diercksen and W. P. Kraemer, SCF MO LCGO studies on hydrogen bonding. The system (FHOH)-, Chem. Phys. Lett. 5, 570–572 (1970).

    Article  CAS  Google Scholar 

  80. W. P. Kraemer and G. H. F. Diercksen, SCF LCAO MO studies on the hydration of ions. The system F-·2H2O, Theor. Chim. Acta 27, 265–272 (1972).

    Article  CAS  Google Scholar 

  81. H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. III. Energy surface of a water molecule in the field of a fluorine or chlorine atom, J. Chem. Phys. 58, 5627–5638 (1973).

    Article  CAS  Google Scholar 

  82. H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. V. Heat of formation for the Li+, Na+, K+, F- and Cl- ion complexes with a single water molecule, J. Chem. Phys. 59, 5842–5848 (1973).

    Article  CAS  Google Scholar 

  83. H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. VIII. Small clusters of water molecules surrounding Li+, Na+, K+, F-, and Cl- ions, J. Chem. Phys. 61, 799–815 (1974).

    Article  CAS  Google Scholar 

  84. D. T. Clark and D. R. Armstrong, Non-empirical LCAO-MO-SCF calculations with Gaussian type functions on the electrocyclic transformation of cyclopropyl to allyl. II. Anion transformation, Theor. Chim. Acta 14, 370–382 (1969).

    Article  CAS  Google Scholar 

  85. R. B. Woodward and R. Hoffmann, The conservation of orbital symmetry, Angew Chem., Int. Ed. Engl. 8, 781–853 (1969).

    Article  CAS  Google Scholar 

  86. D. T. Clark and D. R. Armstrong, Non-empirical LCAO-MO-SCF calculations with Gaussian type functions on the electrocyclic transformation of cyclopropyl to allyl. I. Cation transformation, Theor. Chim. Acta 13, 365–380 (1969).

    Article  CAS  Google Scholar 

  87. L. Radom, P. C. Hariharan, J. A. Pople, and P. V. R. Schleyer, Molecular orbital theory of the electronic structure of organic compounds. XIX. Geometries and energies of C3H+ 5 cations. Energy relationships among allyl, vinyl and cyclopropyl cations, J. Am. Chem. Soc. 95, 6531–6544 (1973).

    Article  CAS  Google Scholar 

  88. C. D. Ritchie and H. F. King, The absence of a barrier in the theoretical potential energy surface for the reaction of hydride with hydrogen fluoride, J. Am. Chem. Soc. 88, 1069–1070 (1966).

    Article  CAS  Google Scholar 

  89. C. D. Ritchie and H. F. King, Theoretical studies of proton-transfer reactions. I. Reactions of hydride ion with hydrogen fluoride and hydrogen molecules, J. Am. Chem. Soc. 90, 825–833 (1968).

    Article  CAS  Google Scholar 

  90. C. D. Ritchie and H. F. King, Theoretical studies of proton-transfer reactions. II. The reaction of water with hydride ion, J. Am. Chem. Soc. 90, 833–838 (1968).

    Article  CAS  Google Scholar 

  91. W. T. A. M. van der Lugt and P. Ros, Retention and inversion in bimolecular substitution reactions of methane, Chem. Phys. Lett. 4, 389–392 (1969).

    Article  Google Scholar 

  92. C. D. Ritchie and G. A. Chappell, An ab initio LCGO-MO-SCF calculation of the potential energy surface for an S N 2 reaction, J. Am. Chem. Soc. 92, 1819–1821 (1970).

    Article  CAS  Google Scholar 

  93. A. Dedieu and A. Veillard, A comparative study of some S N 2 reactions through ab initio calculations, J. Am. Chem. Soc. 94, 6730–6738 (1972).

    Article  CAS  Google Scholar 

  94. A. Dedieu, A. Veillard and B. Roos, in:Proceedings of the 6th Jerusalem Symposium on Quantum Chemistry and Biochemistry (E. D. Bergmann and B. Pullman, eds.), pp. 371–377, Israel Academy of Sciences and Humanities, Jerusalem (1974).

    Google Scholar 

  95. V. Dyczmons and W. Kutzelnigg, Ab initio calculations on small hydrides including electron correlation. XII. The ions CH+ 5 and CH- 5, Theor. Chim. Acta 33, 239–247 (1974).

    Article  CAS  Google Scholar 

  96. A. Dedieu and A. Veillard, Ab initio calculation of activation energy for an S N 2 reaction, Chem. Phys. Lett. 5, 328–330 (1970).

    Article  CAS  Google Scholar 

  97. A. J. Duke and R. F. W. Bader, A Hartree-Fock SCF calculation of the activation energies for two S N 2 reactions, Chem. Phys. Lett. 10, 631–635 (1971).

    Article  CAS  Google Scholar 

  98. R. F. W. Bader, A. J. Duke, and R. R. Messer, Interpretation of the charge and energy changes in two nucleophilic displacement reactions, J. Am. Chem. Soc. 95, 7715–7721 (1973).

    Article  CAS  Google Scholar 

  99. G. Berthier, D. J. David, and A. Veillard, Ab initio calculations on a typical S N 2 reaction. Electronic structure of methyl fluoride and of the transition state (FCH3F)-, Theor. Chim. Acta 14, 329–338 (1969).

    Article  CAS  Google Scholar 

  100. D. K. Bohme, G. I. Mackay, and J. D. Payzant, Activation energies in nucleophilic displacement reactions measured at 296°K in vacuo, J. Am. Chem. Soc. 96, 4027–4028 (1974).

    Article  CAS  Google Scholar 

  101. G. S. Hammond, A correlation of reaction rates, J. Am. Chem. Soc. 77, 334–338 (1955).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Radom, L. (1977). Molecular Anions. In: Schaefer, H.F. (eds) Applications of Electronic Structure Theory. Modern Theoretical Chemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8541-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8541-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8543-1

  • Online ISBN: 978-1-4684-8541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics