Skip to main content
Log in

Theoretical investigations on the solvation process

I. A Simple model for the dimeric water associate

  • Commentationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

A model to facilitate the computation of the most stable conformer of associated M · H2O (M being a polar molecule) which depends upon the electrostatic interaction energy between the two associated molecules is proposed and tested. SCF electrostatic potentials for the M molecule and a suitable point charge distribution for H2O were employed in the model computations. Energies predicted by the model are found to be in good agreement with those resulting from an ab initio minimal STO basis SCF treatment of some conformations of the H2O dimer.

Zusammenfassung

Ein Modell zur Durchführung der Berechnung des stabilsten Konformeren eines Assoziationskomplexes M · H2O, wobei M ein polares Molekül ist, wird vorgeschlagen und untersucht. Es basiert auf der elektrostatischen Wechselwirkung zwischen beiden Partnern, und zwar wird für das Molekül M der elektrostatische Anteil seines SCF-Potentials und für H2O eine angemessene Punktladungsverteilung zugrunde gelegt. Die resultierenden Energien sind in guter Übereinstimmung mit denen, die sich bei einer ab initio Rechnung mit minimaler STO Basis ergeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernal, J. D., Fowler, R. H.: J. chem. Physics 1, 515 (1933).

    Google Scholar 

  2. Magat, M.: Ann. phys. 6, 108 (1936).

    Google Scholar 

  3. Verwey, E. J. W.: Recl. Trav. Chim. Pays Bas, Belg. 60, 887 (1941).

    Google Scholar 

  4. Rowlinson, J. S.: Trans. Faraday Soc. 47, 120 (1951).

    Google Scholar 

  5. Bjerrum, N., Danske, K.: Vidensk. Selsk. Skr. 27, 1 (1951).

    Google Scholar 

  6. Pople, J. A.: Proc. Roy. Soc. (London) A 205, 163 (1951).

    Google Scholar 

  7. Campbell, E. S.: J. chem. Physics 20, 1411 (1952).

    Google Scholar 

  8. Cohen, N. V., Cotti, M., Iribarne, J. W., Weissmann, W.: Trans. Faraday Soc. 58, 490 (1962).

    Google Scholar 

  9. Coulson, C. A.: Hydrogen bonding, ed. by D. Madži, p. 339. London: Pergamon Press 1959.

    Google Scholar 

  10. Aung, S., Pitzer, R. M., Chang, S. I.: J. chem. Physics 49, 2071 (1968).

    Google Scholar 

  11. Morokuma, K., Pedersen, L.: J. chem. Physics 48, 3275 (1968).

    Google Scholar 

  12. Kollman, P. A., Allen, L. C.: J. chem. Physics 51, 3286 (1969).

    Google Scholar 

  13. Diercksen, G. H. F.: Chem Physics Letters 4, 373 (1969).

    Google Scholar 

  14. Del Bene, J., Pople, J. A.: Chem. Physics Letters 4, 426 (1969); J. chem. Physics 52, 4868 (1970).

    Google Scholar 

  15. Hankins, D., Moskowitz, J. W. Stillinger, F. H.: Chem. Physics Letters 4, 527 (1970).

    Google Scholar 

  16. Morokuma, K., Winick, J. R.: J. chem. Physics 52, 1301 (1970).

    Google Scholar 

  17. Bonaccorsi, R., Scrocco, E., Tomasi, J.: J. chem. Physics 52, 5070 (1970).

    Google Scholar 

  18. Schneider, W. G.: J. chem. Physics 23, 26 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed with the financial support of the Consiglio Nazionale delle Ricerche, through its Laboratorio di Chimica Quantistica ed Energetica Molecolare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonaccorsi, R., Petrongolo, C., Scrocco, E. et al. Theoretical investigations on the solvation process. Theoret. Chim. Acta 20, 331–342 (1971). https://doi.org/10.1007/BF00527188

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00527188

Keywords

Navigation