Skip to main content

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 4))

Abstract

Early quantum mechanical computations on the electronic structure of molecules were generally concerned with the determination of a wave function for a single assumed nuclear geometry (usually an experimentally determined equilibrium structure). As techniques have improved, however, it has increasingly become possible to make explorations of potential surfaces (total energies for heavy nuclei in the Born-Oppenheimer approximation) and hence to use theory directly to locate the minima in such surfaces and the corresponding equilibrium structural parameters. Such explorations can either be carried out partially, that is assuming some parameters and varying others (as in the study of “rigid” internal rotation with fixed bond lengths and angles) or, more desirably, by complete minimization of the energy with respect to all variables. Given the quantum mechanical procedure, the latter leads to a priori predictions of structure making no appeal to experimental data other than using the values of fundamental constants. Theoretical structures of this sort have been used for two main purposes. The first is to assess how well experimentally known structures are reproduced at a given level of theory and hence evaluate the limitations of the theory in a systematic manner. Second, the theory has been increasingly used to investigate structures of molecules for which experimental data are insufficient. Many such predictions have been made and there is an increasing number of examples of subsequent experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Pople, Molecular orbital methods in organic chemistry, Acc. Chem. Res. 3, 217–223 (1970).

    Article  CAS  Google Scholar 

  2. J. C. Slater, Atomic shielding constants, Phys. Rev. 36, 57–64 (1930).

    Article  CAS  Google Scholar 

  3. C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69–89 (1951).

    Article  CAS  Google Scholar 

  4. J. A. Pople and R. K. Nesbet, Self-consistent orbitals for radicals, J. Chem. Phys. 22, 571–574 (1959).

    Google Scholar 

  5. C. C. J. Roothaan, Self-consistent field theory for open shells of electronic systems, Rev. Mod. Phys. 32, 179–185 (1960).

    Article  Google Scholar 

  6. G. A. Segal, Alternative technique for the calculation of single determinant open-shell SCF functions which are eigenfunctions of S 2, J. Chem. Phys. 52, 3530–3533 (1970).

    Article  CAS  Google Scholar 

  7. W. J. Hunt, T. H. Dunning, and W. A. Goddard III, The orthogonality constrained basis set. Expansion method for treating of diagonal lagrange multipliers in calculations of electronic wave functions, Chem. Phys. Lett. 3, 606–610 (1969).

    Article  CAS  Google Scholar 

  8. J. S. Binkley, J. A. Pople, and P. A. Dobosh, The calculation of spin-restricted single determinant wavefunctions, Mol. Phys. 28, 1423–1429 (1974).

    Article  CAS  Google Scholar 

  9. D. A. Pierre, Optimization Theory with Applications, Wiley, New York (1969).

    Google Scholar 

  10. I. Shavitt and M. Karplus, Multicenter integrals in molecular quantum mechanics, J. Chem. Phys. 36, 550–551 (1962).

    Article  CAS  Google Scholar 

  11. J. M. Foster and S. F. Boys, A quantum variational calculation for HCHO, Rev. Mod. Phys. 32, 203–304 (1960).

    Google Scholar 

  12. C. M. Reeves and R. Fletcher, Use of Gaussian functions in the calculation of wavefunctions for small molecules. III. The orbital basis and its effect on valence, J. Chem. Phys. 42, 4073–4081 (1965).

    Article  CAS  Google Scholar 

  13. K. Oohata, H. Takota, and S. Huzinaga, Gaussian expansion of atomic orbitals, J. Phys. Soc. Japan 21, 2306–2313 (1966).

    Article  CAS  Google Scholar 

  14. W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular orbital methods. I. Use of Gaussian expansions of Slater type orbitals, J. Chem. Phys. 51, 2657–2664 (1969).

    Article  CAS  Google Scholar 

  15. M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, Self-consistent molecular orbital theory, V. Ab initio calculations of equilibrium geometries and quadratic force constants, J. Chem. Phys. 52, 4064–4072 (1970).

    Article  CAS  Google Scholar 

  16. W. J. Hehre, R. Ditchfield, and J. A. Pople, Self-consistent molecular orbital methods. VIII. Molecular studies with least energy minimal atomic orbitals, J. Chem. Phys. 53, 932–935 (1970).

    Article  CAS  Google Scholar 

  17. R. M. Pitzer and D. P. Merrifield, Minimal basis wavefunctions for water, J. Chem. Phys. 52, 4782–4287 (1970).

    Article  CAS  Google Scholar 

  18. R. M. Stevens, Geometry optimization in the computation of barriers to internal rotation, J. Chem. Phys. 52, 1397–1402 (1970).

    Article  CAS  Google Scholar 

  19. W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, Self-consistent molecular orbital methods. IV. Use of Gaussian expansion of Slater-type orbitals. Extension to second row molecules, J. Chem. Phys. 52, 2769–2773 (1970).

    Article  CAS  Google Scholar 

  20. L. C. Snyder and H. Basch, Molecular Wave Functions and Properties, Wiley, New York (1972).

    Google Scholar 

  21. R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-consistent molecular orbital theory. IX. An extended Gaussian type basis for molecular orbital studies of organic molecules, J. Chem. Phys. 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  22. A. Rauk, L. C. Allen, and E. Clementi, Electronic structure and inversion barrier of ammonia, J. Chem. Phys. 52, 4133–4144 (1970).

    Article  CAS  Google Scholar 

  23. P. C. Hariharan and J. A. Pople, Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory, Mol. Phys. 27, 209–214 (1974).

    Article  CAS  Google Scholar 

  24. G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, New York (1950).

    Google Scholar 

  25. G. Herzberg, Electronic Spectra of Polyatomic Molecules, Van Nostrand, New York (1965).

    Google Scholar 

  26. W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. X. A systematic study of geometries and energies of AH n molecules and cations, J. Am. Chem. Soc. 93, 6377–6387 (1971).

    Article  CAS  Google Scholar 

  27. P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules. VI. A. Hartree-Fock wavefunctions and energy quantities for the ground states of the first-row hydrides, AH J. Chem. Phys. 47, 614–648 (1967).

    Article  CAS  Google Scholar 

  28. R. K. Nesbet, Approximate Hartree-Fock calculations for the hydrogen fluoride molecules, J. Chem. Phys. 36, 1518–1533 (1962).

    Article  CAS  Google Scholar 

  29. T. H. Dunning, R. M. Pitzer, and S. Aung, Near Hartree-Fock calculations on the ground state of the water molecule: energies, ionization potentials, geometry, force constants and one-electron properties, J. Chem. Phys. 57, 5044–5051 (1972).

    Article  CAS  Google Scholar 

  30. W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. VI. Geometries and energies of small hydrocarbons, J. Am. Chem. Soc. 93, 808–815 (1971).

    Article  Google Scholar 

  31. W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, Molecular orbital structure for small organic molecules and cations, Prog. Phys. Org. Chem. 11, 175–261 (1974).

    Article  CAS  Google Scholar 

  32. J. D. Dill, P. v. R. Schleyer, and J. A. Pople, Geometries and energies of small boron compounds, J. Am. Chem. Soc. 97, 3402–3409 (1975).

    Article  CAS  Google Scholar 

  33. A. Veillard, Relaxation during internal rotation ethane and hydrogen peroxide, Theor. Chim. Acta 18, 21–33 (1970).

    Article  CAS  Google Scholar 

  34. L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. VIII. Geometries, energies and polarities of C3 hydrocarbons, J. Am. Chem. Soc. 93, 5339–5342 (1971).

    Article  CAS  Google Scholar 

  35. W. J. Hehre and J. A. Pople, Geometries, energies and polarities of C4 hydrocarbons, J. Am. Chem. Soc. 97, 6941–6955 (1975).

    Article  CAS  Google Scholar 

  36. A. Krantz, C. Y. Lin, and M. D. Newton, Cyclobutadiene. II. On the geometry of the matrix isolated species, J. Am. Chem. Soc. 95, 2744–2746 (1973).

    Article  CAS  Google Scholar 

  37. M. D. Newton, private communication.

    Google Scholar 

  38. L. Radom and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. IV. Internal rotation in hydrocarbons using a minimal Slater type basis, J. Am. Chem. Soc. 92, 4786–4795 (1970).

    Article  CAS  Google Scholar 

  39. W. J. Hehre and L. Salem, Conformation of vinylic methyl groups, Chem. Commun. 754–757 (1973).

    Google Scholar 

  40. L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, Molecular orbital theory of electronic structure of organic compounds. XVII. Internal rotation in 1,2-disubstituted ethanes, J. Am. Chem. Soc. 95, 693–698 (1974).

    Article  Google Scholar 

  41. L. Radom, W. J. Hehre, and J. A. Pople, Molecular orbital theory of electronic structure of organic compounds. VII. A systematic study of energies, conformations and bond interactions, J. Am. Chem. Soc., 93, 289–300 (1971).

    Article  Google Scholar 

  42. L. Radom, W. J. Hehre, and J. A. Pople, Molecular orbital theory of the electronic structure of organic compounds. XII. Fourier component analysis of internal rotation potential functions in saturated molecules, J. Am. Chem. Soc. 94, 2371–2381 (1972).

    Article  CAS  Google Scholar 

  43. R. Seeger, unpublished.

    Google Scholar 

  44. D. Vitus and A. A. Bothner-By, private communication.

    Google Scholar 

  45. W. A. Lathan, L. Radom, P. C. Hariharan, W. J. Hehre, and J. A. Pople, Structures and stabilities of three-membered rings from ab initio molecular orbital theory, Top. Current Chem. 40, 1–45 (1973).

    CAS  Google Scholar 

  46. J. S. Wright and L. Salem, Ring puckering and methylene rocking in cyclobutane, Chem. Commun. 1370–1371 (1969).

    Google Scholar 

  47. P. C. Hariharan, R. Ditchfield, and L. C. Snyder, private communication.

    Google Scholar 

  48. J. L. Nelson and A. A. Frost, A floating spherical Gaussian orbital model of molecular structure. X. C3 and C4 saturated hydrocarbons and cyclobutanes, J. Am. Chem. Soc. 94, 3727–3731 (1972).

    Article  CAS  Google Scholar 

  49. J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer, The thermodynamics and molecular structure of cyclopentane, J. Am. Chem. Soc. 69, 2483–2488 (1947).

    Article  CAS  Google Scholar 

  50. D. Cremer and J. A. Pople, Pseudorotation in saturated five-membered ring compounds, J. Am. Chem. Soc. 97, 1358–1367 (1975).

    Article  CAS  Google Scholar 

  51. D. Cremer and J. A. Pople, unpublished.

    Google Scholar 

  52. W. Kutzelnigg, Molecular calculations involving electron correlation, in: Selected Topics in Molecular Physics (E. Clementi, ed.), p. 91, Verlag Chemie, Berlin (1972).

    Google Scholar 

  53. W. Meyer, Ionization energies of water from PNO-Cl calculations, Int. J. Quantum Chem. S5, 341–348 (1971).

    Google Scholar 

  54. C. Edmiston and M. Krauss, Pseudonatural orbitals as a basis for the superposition of configurations. I. H+ 2, J. Chem. Phys. 45, 1833–1839 (1966).

    Article  CAS  Google Scholar 

  55. W. Meyer, PNY-CI and CEPA studies of electron correlation effects. II. Potential curves and dipole moment functions of the OH radical, Theor. Chim. Acta 18, 21–33 (1970).

    Article  Google Scholar 

  56. R. Ahlrichs, H. Lischka, V. Staemmler, and W. Kutzelnigg, PNO-CI (pair natural orbital configuration interaction) and CEPA (coupled electron pair approximation with pair natural orbitals). Calculation of molecular systems. I. Outline of the method for closed-shell states, J. Chem. Phys. 62, 1225–1234 (1975).

    Article  CAS  Google Scholar 

  57. W. Kolos and L. Wolniewicz, Improved theoretical ground state energy of the hydrogen molecule, J. Chem. Phys. 49, 404–410 (1968).

    Article  CAS  Google Scholar 

  58. R. Ahlrichs, F. Driessler, H. Lischka, V. Staemmler, and W. Kutzelnigg, PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH2, BH, BH3, CH4, CH- 3, NH3 (planar and pyramidal), H2O, OH+ 3, HF and the Ne atom, J. Chem. Phys. 62, 1235–1247 (1975).

    Article  CAS  Google Scholar 

  59. M. E. Schwartz and L. J. Schaad, Ab initio studies of small molecules using 1s Gaussian basis functions. II. H+ 3, J. Chem. Phys. 47, 5325–5334 (1967).

    Article  CAS  Google Scholar 

  60. L. Salmon and R. D. Poshusta, Correlated Gaussian wavefunctions for H+ 3, J. Chem. Phys. 59, 3497–3503 (1973).

    Article  CAS  Google Scholar 

  61. H. Conroy, Molecular Schrödinger equation. X. Potential surfaces for ground and excited states of isosceles H3 ++ and H3 +, J. Chem. Phys. 51, 3979–3993 (1969).

    Article  CAS  Google Scholar 

  62. W. R. Harshbarger, Structure of the 2A 1 state of NH+ 3, J. Chem. Phys. 56, 177–181 (1972).

    Article  CAS  Google Scholar 

  63. H. Lew and L. Heiber, Spectrum of H2O+, J. Chem. Phys. 58, 1246–1247 (1973).

    Article  CAS  Google Scholar 

  64. H. Lischka and V. Dyczmons, The molecular structure of H3O+ by the ab initio SCF method and with inclusion of correlation energy, Chem. Phys. Lett. 23, 167–172 (1973).

    Article  CAS  Google Scholar 

  65. G. H. F. Diercksen, W. von Niessen, and W. P. Kraemer, SCF LCGO MO studies on the fluoronium ion FH2 + and its hydrogen bonding interaction with hydrogen fluoride FH, Theor. Chim. Acta 31, 205–214 (1973).

    Article  CAS  Google Scholar 

  66. P. C. Hariharan, W. A. Lathan, and J. A. Pople, Molecular orbital theory of simple carbonium ions, Chem. Phys. Lett. 14, 385–388 (1972).

    Article  CAS  Google Scholar 

  67. V. Dyczmons, V. Staemmler, and W. Kutzelnigg, Near Hartree-Fock energy and equilibrium geometry of CH+ 5, Chem. Phys. Lett. 5, 361–366 (1970).

    Article  CAS  Google Scholar 

  68. V. Dyczmons and W. Kutzelnigg, Ab initio calculation of small hydrides including electron correlation. XII. The ions CH+ 5 and CH- 5, Theor. Chim. Acta 33, 239–247 (1974).

    Article  CAS  Google Scholar 

  69. B. Zurawski, R. Ahlrichs, and W. Kutzelnigg, Have the ions C2H+ 3 and C2H+ 5 classical or non-classical structure, Chem. Phys. Lett. 21 309–313 (1973).

    Article  CAS  Google Scholar 

  70. J. A. Austin, D. H. Levy, C. A. Gottlieb, and H. E. Radford, Microwave spectrum of the HCO radical, J. Chem. Phys. 60, 207–215 (1974).

    Article  CAS  Google Scholar 

  71. J. S. Binkley, unpublished.

    Google Scholar 

  72. D. R. Yarkony, H. F. Schaefer III, and S. Rothenberg, Geometries of the methoxy radical (X2E and A2A1 states) and the methoxide ion, J. Am. Chem. Soc. 96 656–659 (1974).

    Article  CAS  Google Scholar 

  73. H. A. Jahn and E. Teller, Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy, Proc. Roy. Soc. London, Ser. A, 161, 220–235 (1937).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Pople, J.A. (1977). A Priori Geometry Predictions. In: Schaefer, H.F. (eds) Applications of Electronic Structure Theory. Modern Theoretical Chemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8541-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8541-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8543-1

  • Online ISBN: 978-1-4684-8541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics