Skip to main content

Breeding for Resistance to Bacterial Diseases

  • Chapter
  • First Online:
Plant Breeding for Biotic Stress Resistance

Abstract

The control of bacterial diseases in plants is difficult and usually requires the combination of several complementary management measures. In this context, genetic resistance is considered to be an effective low-cost strategy that could easily be adopted by farmers, who acquire this built-in control technology within the seeds of a resistant cultivar. To be effective, breeding for disease resistance requires deep knowledge of processes involving the interactions among the plant, the pathogen, and the environment. The development of bacterial resistant cultivars is a complex task, which comprises multidisciplinary actions involving the complexity of the plant and the diversity of the pathogen as well as an appropriate interaction with the productive chain. In this chapter, we provide an overview of the advances and perspectives of breeding plants for bacterial disease resistance in distinct pathosystems involving field and vegetable crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  PubMed  CAS  Google Scholar 

  • Borém A, Miranda GV (2009) Melhoramento de plantas. 5a. edição. Viçosa: Editora UFV. p 529

    Google Scholar 

  • Braga MF (2011) Mapeamento de QTL (Quantitative Trait Loci) associados à resistência do maracujá doce à bacteriose. ESALQ (Tese de Doutorado), Piracicaba

    Google Scholar 

  • Burdman S, Kots N, Kritzman G, Kopelowitz J (2005) Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis 89:1339–1347

    Article  CAS  Google Scholar 

  • Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 113:110–121

    Article  PubMed  CAS  Google Scholar 

  • Carputo D, Aversano R, Barone A, Di Matteo A, Iorizzo M, Sigillo L, Zoina A, Frusciante L (2009) Resistance to Ralstonia solanacearum of sexual hybrids between Solanum commersonii and S. tuberosum. Am J Potato Res 86:196–202

    Article  Google Scholar 

  • Fock I, Luisetti J, Collonnier C, Vedel F, Ducreux G, Kodja H, Sihachakr D (2005) Solanum phureja and S. stenotomum are sources of resistance to Ralstonia solanacaearum for somatic hybrids of potato. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS, St. Paul, pp 253–259

    Google Scholar 

  • Hanson PM, Licardo O, Hanudin JF, Wang JF, Chen JT (1998) Diallel analysis of bacterial wilt resistance in tomato derived from different sources. Plant Dis 82:74–78

    Article  Google Scholar 

  • Heiser CB (1988) Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37:77–81

    Article  Google Scholar 

  • INFO (2008) Resources Focus. 2008, 10 de novembro. Potatoes and Climate Change. Disponível em http://www.inforesources.ch/pdf/focus08_1_e.pdf

  • Jones JB, Stall RE, Bouzar H (1998) Diversity among Xanthomonads pathogenic on pepper and tomato. Annu Rev Phytopathol 36:41–58

    Google Scholar 

  • Jorge V, Fregene M, Vélez CM, Duque MC, Tohme J, Verdier V (2001) QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava. Theor Appl Genet 102:564–571

    Article  Google Scholar 

  • Junqueira KP (2010) Resistência genética e métodos alternativos de controle da bacteriose do maracujazeiro causada por Xanthomonas axonopodis pv. passiflorae: Brasília: UnB (Tese de Doutorado)

    Google Scholar 

  • Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510

    Article  PubMed  CAS  Google Scholar 

  • Kado CI (2010) Plant Bacteriology. APS Press, St. Paul, p 336

    Google Scholar 

  • Kronka AZ (2004) Cancro bacteriano do tomateiro: Metodologia de inoculação, reação de genótipos do hospedeiro e eficiência de químicos sobre o controle: Piracicaba: ESALQ, 2004. p 79. (Tese de Doutorado)

    Google Scholar 

  • Leppik EE (1970) Gene centers of plants as sources of disease resistance. Annu Rev Phytopathol 8:323–344.

    Article  Google Scholar 

  • Liu S, Yu K, Park SJ (2008) Development of STS markers and QTL validation for common bacterial blight resistance in common bean. Plant Breeding 127:62–68

    CAS  Google Scholar 

  • Lopes CA (2005) Murchadeira da batata. Associação Brasileira da Batata, Itapetininga, p 66

    Google Scholar 

  • Lopes CA, Quezado Duval AM, Buso JA (2004) ‘MB 03’: clone de batata resistente à murcha bacteriana. Boletim de Pesquisa e Desenvolvimento. Embrapa Hortaliças. Brasília, DF. 2004. p 14

    Google Scholar 

  • Maringoni AC, Fregonese LH, Tofoli JG, Kurozawa C (1993) Reação foliar e da vagem de feijoeiro a Xanthomonas campestris pv. phaseoli e transmissão da bactéria pelas sementes. Fitopatologia Brasileira 18:412–415

    Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Mello SCM, Lopes CA, Takatsu A, Giordano LB (1997) Resistência de genótipos de tomateiro à mancha bacteriana, em campo e em casa de vegetação. Fitopatologia Brasileira 22:496–501

    Google Scholar 

  • Michaels TE, Smith TH, Larsen J, Beattie AD, Pauls KP (2006) OAC Rex common bean. Can J Plant Sci 86:733–736

    Article  CAS  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Milling A, Babujee L, Allen C (2011) Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS ONE 6:e1583

    Article  Google Scholar 

  • Nakatani AK, Lopes R, Camargo LE (2009) Variabilidade genética de Xanthomonas axonopodis pv. passiflorae. Summa Phytopathologica 35:116–120

    Article  Google Scholar 

  • Nery-Silva FA, Fernandes JJ, Juliatti FC, Melo B (2007) Reação de germoplasma de mandioca a Xanthomonas axonopodis pv. manihots. Semina: Ciências Agrárias 28:3–10

    Google Scholar 

  • Oard S, Enright F (2006) Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep 25:561–572

    Article  PubMed  CAS  Google Scholar 

  • Oliveira JC, Silveira EB, Mariano RM, Cardoso E, Viana IO (2007) Caracterização de isolados de Acidovorax avenae subsp. citrulli. Fitopatologia Brasileira 32:480–487

    Google Scholar 

  • Park SJ, Yu K, Liu S, Rupert T (2007) Release of common bean germplasm line HR67. BIC Annu Rep 50:221–222

    Google Scholar 

  • Rick CM (1986) Germplasm resources in the wild tomato species. Acta Horticulturae 190:39–47

    Google Scholar 

  • Robertson LD, Labate JA (2007) Genetic resources of tomato (Lycopersicon esculentum Mill.) and wild relatives. In: Razdan MK, Mattoo AK (eds) Genetic Improvement of Solanaceous Crops. Tomato. Vol 2. Science Publishers, Enfield, NH, pp 25–75 (638p)

    Google Scholar 

  • Römer P, Jordan T, Lahaye T (2010) Identification and application of a DNA-based marker that is diagnostic for the pepper (Capsicum annuum) bacterial spot resistance gene Bs3. Plant Breeding 129:737–740

    Article  Google Scholar 

  • Ross RJ (1998) Review paper: global genetic resources of vegetables. Pl Var Seeds 11:39–60

    Google Scholar 

  • Russel GE (1978) Plant Breeding for Pest and Disease Resistance. Butterworths, London, p 486

    Google Scholar 

  • Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim H-C, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  PubMed  CAS  Google Scholar 

  • Schuster ML, Coyne DP, Behre T, Leyna H (1983) Sources of Phaseolus species resistance and leaf and pod differential reaction to common blight. HortScience 18:901–903

    Google Scholar 

  • Scott JW, Wang JF, Hanson PM (2005) Breeding tomatoes for resistance to bacterial wilt, a global view. Acta Horticulturae (ISHS) 695:161–172

    Google Scholar 

  • Shi C, Navabi A, Yu K (2011) Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:1–11

    Article  Google Scholar 

  • Silva A, Santos I, Balbinot AL, Matei G, Oliveira PH (2009) Reação de genótipos de feijão ao crestamento bacteriano comum, avaliado por dois métodos de inoculação. Ciência e Agrotecnologia 33:2019–2024

    Article  Google Scholar 

  • Siri MI, Galván GA, Quirici L, Silvera E, Villanueva P, Ferreira F, Franco Fraguas L, Pianzzola MJ (2009) Molecular marker diversity and bacterial wilt resistance in wild Solanum commersonii accessions from Uruguay. Euphytica 165:371–382

    Article  CAS  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci 96:14153–14158

    Article  PubMed  CAS  Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2001) Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44:1046–1056

    Google Scholar 

  • Tung PX, Rasco ET, Zaag PV, Schmiediche P (1990) Resistance to Pseudomonas solanacearum in the potato: I. Effects of sources of resistance and adaptation. Euphytica 45:203–210

    Google Scholar 

  • Vallejos CE, Jones V, Stall RE, Jones JB, Minsavage GV, Schultz DC, Rodrigues R, Olsen LE, Mazourek M (2010) Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theor Appl Genet 121:37–46

    Article  PubMed  CAS  Google Scholar 

  • VanHeusden AW, Koornneef M, Voorrips RE, Bruggenmann W, Pet G, VrielinkvanGinkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074

    Article  CAS  Google Scholar 

  • Wang H, Hutton SF, Robbins MD, Sim SC, Scott JW, Yang WC, Jones JB, Francis DM (2011) Molecular mapping of hypersensitive resistance from tomato ‘Hawaii 7981’ to Xanthomonas perforans race T3. Phytopathology 101:1217–1223

    Article  PubMed  Google Scholar 

  • Wechter WP, Levi A, Ling KS, Kousik C, Block CC (2011) Identification of resistance to Acidovorax avenae subsp. citrulli among melon (Cucumis spp.) plant introductions. HortScience 46:207–212

    Google Scholar 

  • Wydra K, Zinsou V, Jorge V, Verdier V (2004) Identification of pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and detection of specific quantitative trait loci (QTL) for resistance to cassava bacterial blight. Phytopathology 94:1084–1093

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Francis DM (2007) Genetics and breeding for resistance to bacterial diseases in tomato: prospects for marker-assisted selection. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops. Tomato, vol 2, Tomato. Science Publishers, Enfield p 638, 379–419

    Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lopes, C.A., Boiteux, L.S. (2012). Breeding for Resistance to Bacterial Diseases. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Biotic Stress Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33087-2_3

Download citation

Publish with us

Policies and ethics