Skip to main content
Log in

Molecular marker diversity and bacterial wilt resistance in wild Solanum commersonii accessions from Uruguay

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Solanum commersonii is a wild tuber-bearing species native to Uruguay with high potential for use in potato breeding programs. Little is known about the genetic diversity within this wild species and the relationship with the resistance to the bacterial pathogen Ralstonia solanacearum. We studied 30 S. commersonii clonal accessions, 20 of which were collected from geographically different areas across the country, while the other ten were grown from seeds from a single plant. Resistance against R. solanacearum was tested and different levels of resistance were found, ranging from delayed wilting to asymptomatic reactions. The genetic variation and the relationships among individuals in this germplasm collection were studied by different molecular markers: Random Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP) and Microsatellites or Simple Sequence Repeats (SSR). AFLP markers generated the largest number of total and polymorphic fragments per assay unit while SSR revealed the highest frequency of polymorphic bands (100%), followed by AFLP (96.2%) and RAPD (89.4%). In contrast, when comparing the number of different genetic profiles generated, the SSR markers exhibited the lowest discriminatory power. The clustering pattern obtained with the three marker systems showed a similar distribution of the S. commersonii germplasm revealing a high correlation between the three methods employed. All three dendrograms grouped most of the accessions into two main clusters, containing the same accessions regardless of the marker type. Bacterial wilt resistant accessions were present in both clusters. Accessions originated from different seeds of the same plant were grouped within one of the major clusters, and differed in the response to R. solanacearum revealing segregation of resistance. Furthermore, the distribution in two main clusters showed high correspondence with the geographical origin of the accessions, from the north and south of the country, and with the subspecies malmeanum and commersonii morphologically identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Belaj A, Satovic Z, Rallo L, Trujillo I (2002) Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet 105:638–644

    Article  PubMed  CAS  Google Scholar 

  • Buddenhagen I, Sequeira L, Kelman A (1962) Designation of races in Pseudomonas solanacearum. Phytopathology 52:726

    Google Scholar 

  • Carputo D, Alberino S, Espósito N et al (2005) A multidisciplinary approach to introgress resistance to Ralstonia solanacearum into the cultivated genepool. In: Proceedings of the EAPR potato conference, Bilbao

  • Castro CM, Pereira AS, Costa DM (2007) Wild potato genetic resources conserved in Southern Brazil: current knowledge and future perspectives. Acta Hortic 745:323–330

    Google Scholar 

  • Chen YKH, Palta JP, Bamberg JB (1999) Freezing tolerance and tuber production in selfed and backcross progenies derived from somatic hybrids between Solanum tuberosum L. and S. commersonii Dun. Theor Appl Genet 99:100–107. doi:10.1007/s001220051213

    Article  Google Scholar 

  • Dávila JA, Loarce Y, Ferrer E (1999) Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley. Theor Appl Genet 98:265–273. doi:10.1007/s001220051067

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul

    Google Scholar 

  • Fock I, Collonnier C et al (2001) Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiol Biochem 39:899–908. doi:10.1016/S0981-9428(01)01307-9

    Article  CAS  Google Scholar 

  • French ER, Anguiz R, Aley FP (1997) The usefulness of potato resistance to Ralstonia solanacearum for the integrated control of bacterial wilt. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease molecular and ecological aspects. Springer Verlag, Berlin

    Google Scholar 

  • Garcia-Mas J, Oliver M, Gómez-Paniagua H, de Vicente MC (2000) Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101:860–864. doi:10.1007/s001220051553

    Article  CAS  Google Scholar 

  • Ghislain M, Zhang D, Fajardo D, Huamán Z, Hijmans RJ (1999) Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Resour Crop Evol 46:547–555. doi:10.1023/A:1008724007888

    Article  Google Scholar 

  • Halldén C, Hansen M, Nilsson NO, Hjerdin A, Säll T (1996) Competition as a source of errors in RAPD analysis. Theor Appl Genet 93:1185–1192. doi:10.1007/BF00223449

    Article  Google Scholar 

  • Hawkes JG (1990) The potato: evolution diversity and genetic resources. Belhaven Press, London

    Google Scholar 

  • Hayward AC (1964) Characteristics of Pseudomonas solanacearum. J Appl Bacteriol 27:265–277

    Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–89. doi:10.1146/annurev.py.29.090191.000433

    Article  PubMed  CAS  Google Scholar 

  • Hayward AC (1994) The hosts of Pseudomonas solanacearum. In: Hayward AC, Hartman GL (eds) Bacterial wilt: the disease and its causative agent Pseudomonas solanacearum. CAB International, Wallingford

    Google Scholar 

  • Jansky S (2006) Overcoming hybridization barriers in potato. Plant Breed 125:1–12. doi:10.1111/j.1439-0523.2006.01178.x

    Article  Google Scholar 

  • Kim-Lee H, Moon JS, Hong YS, Kim MS, Cho HM (2005) Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Am J Potato Res 82:129–137

    Article  Google Scholar 

  • Laferriere LT, Helgeson JP, Allen C (1999) Fertile S. tuberosum + S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by R. solanacearum. Theor Appl Genet 98:1272–1278. doi:10.1007/s001220051193

    Article  Google Scholar 

  • Masuelli RW, Camadro EL, Mendiburu A (1993) 2n gametes in Solanum commersonii Dun and cytological mechanisms of triplandroid formation in triploid hybrids of S commersonii Dun × S. gourlayi Haw. Genome 35:864–869

    Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.). Euphytica 113:135–144. doi:10.1023/A:1003925620546

    Article  CAS  Google Scholar 

  • Milbourne D, Meyer RC, Bradshaw JE et al (1997) Comparison of PCR-based marker system for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136. doi:10.1023/A:1009633005390

    Article  CAS  Google Scholar 

  • Milbourne D, Meyer RC, Collins AJ et al (1998) Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol Gen Genet 259:233–245. doi:10.1007/s004380050809

    Article  PubMed  CAS  Google Scholar 

  • Nielson L, Haynes FL (1960) Resistance in Solanum tuberosum to Pseudomonas solanacearum. Am Potato J 37:260–267. doi:10.1007/BF02855800

    Article  Google Scholar 

  • Pegg K, Moffett M (1971) Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust J Exp Agric Anim Husb 11:696–698. doi:10.1071/EA9710696

    Article  Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M et al (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255. doi:10.1007/s001220051017

    Article  CAS  Google Scholar 

  • Pianzzola MJ, Zarantonelli L, González G, Franco Fraguas L, Vázquez A (2005) Genetic, phytochemical and biochemical analyses as tools for biodiversity evaluation. Biochem Syst Ecol 33:67–78. doi:10.1016/j.bse.2004.05.012

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C et al (1996) The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238. doi:10.1007/BF00564200

    Article  CAS  Google Scholar 

  • Siri MI (2005) Estudio del sistema Solanum commersonii—Ralstonia solanacearum enfocado a la búsqueda de marcadores de resistencia. MSc Thesis, Universidad de la República, Montevideo

  • Siri MI, Villanueva P, Pianzzola MJ et al (2005) In vitro antimicrobial activity of different accessions of Solanum commersonii Dun from Uruguay. Potato Res 47:127–138. doi:10.1007/BF02735979

    Article  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6469–6471. doi:10.1093/nar/17.16.6463

    Article  Google Scholar 

  • Thurston HD, Lozano JC (1968) Resistance to bacterial wilt of potatoes in Colombian clones of Solanum phureja. Am Potato J 45:51–55. doi:10.1007/BF02862862

    Article  Google Scholar 

  • Tozzini AC, Cerioani MF, Saladrigas MV, Hopp HE (1991) Extreme resistance to infection by potato virus × in genotypes of wild tuber-bearing Solanum species. Potato Res 34:317–324. doi:10.1007/BF02360505

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi:10.1093/nar/18.22.6531

    Article  PubMed  CAS  Google Scholar 

  • Zmnoch-Guzowska E, Marczewski W, Lebecka R et al (2000) QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RFLP and resistance-gene-like markers. Crop Sci 40:1156–1167

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Patrick Hinrichsen at the Laboratorio de Biotecnología, INIA La Platina, Chile, for kindly allowing Mrs. Siri to perform the AFLP and SSR techniques. This research was supported in part by the Program for the Development of Basic Sciences (PEDECIBA, MSc fellowship) and the Technologic Development Program in Uruguay (PDT 32–24). We thank Dr. Valerie Dee for linguistic revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Pianzzola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siri, M.I., Galván, G.A., Quirici, L. et al. Molecular marker diversity and bacterial wilt resistance in wild Solanum commersonii accessions from Uruguay. Euphytica 165, 371–382 (2009). https://doi.org/10.1007/s10681-008-9800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9800-8

Keywords

Navigation