Skip to main content

Physiko-Chemie und Mikrobiologie der Rhizosphäre

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Der Naturwissenschaftler und Bakteriologe Lorenz Hiltner (1862–1923) der TU München erkannte im Jahre 1904 als einer der Ersten die Bedeutung der Mikroorganismen im Wurzelbereich für die Ernährung und Gesundheit einer Pflanze (Curl u. Truelove 1986; Hartmann et al. 2008). Er war es dann auch, der den Begriff Rhizosphäre einführte (gr. rhiza = Wurzel; sphaira = Kugel). Unter der Rhizosphäre verstand er das von Mikroorganismen dicht besiedelte Bodenvolumen, welches die Wurzeln von Leguminosen umgibt. Hiltner war damals beeindruckt von der Entdeckung der bakteriologischen N2-Bindung durch Rhizobien („Bacillus radicicola“) in Wurzelknöllchen von Leguminosen, welche der Zeitgenosse Hermann Hellriegel (1831–1895; Kap. 13) im Jahre 1888 gerade mit seinen Mitarbeitern entdeckt hatte. Hiltner vertrat zeitlebens die Vorstellung, dass die Ernährung der Pflanzen (Leguminosen) entscheidend von der Zusammensetzung und den Aktivitäten der Bakterien in der Rhizosphäre beeinflusst wird. Er bezeichnete diese nützlichen Rhizobien als Bakteriorhiza. Die Entdeckung der N2-Bindung in Wurzelknöllchen stand damals im Zentrum der aufkommenden bodenmikrobiologischen Forschung, denn auch der niederländische Botaniker Martinus Willem Beijerinck (1851–1931) beschäftigte sich mit Rhizobien und konnte nachweisen, dass eine Reinkultur von B. radicicola (heute Rhizobium spp.) nicht ex planta zur N2-Bindung befähigt ist. Im Laufe der Zeit wurde die ursprüngliche, auf Leguminosen bezogene Definition der Rhizosphäre zwar auf alle anderen Pflanzen erweitert, nicht jedoch präzisiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ahmad F, Ahmad I, Aqil F, Khan MS, Hayat S (2008) Diversity and potential of non-symbiotic diazotrophic bacteria in promoting plant growth. In: Ahmad I, Pichtel J, Hayat S (Hrsg) Plant-bacteria interactions, Wiley-VCH, Weinheim, S 81–103

    Chapter  Google Scholar 

  • Amos B, Walters DT (2006) Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Sci Soc Am J 70: 1489–1503

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57: 233–2656

    Article  PubMed  CAS  Google Scholar 

  • Bareas JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56: 1761–1778

    Article  CAS  Google Scholar 

  • Bareas JM, Azcón R, Azcón-Aguilar C (2008). Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott I, Werner D, Hampp R (Hrsg) Plant surface microbiology, Springer, Berlin Heidelberg, S 351–371

    Chapter  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7: 1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Bertin C,Yang X, Weston LA(2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256: 67–83

    Article  CAS  Google Scholar 

  • Bonkowski M,Villenave C, Griffiths B (2009) Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321: 213–233

    Article  CAS  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere: The hidden half of the hidden half. In: Waisel Y, Eshel A, Kafkafi U (Hrsg) Plant roots: The hidden half, Marcel Dekker, New York Basel Hong Kong, S 641–669

    Google Scholar 

  • Brimecombe MJ, Leij de FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (Hrsg) The Rhizosphere: Biochemistry and organic substances at the soil-plant interface, Marcel Dekker, New York Basel, S 95–140

    Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch (2009) The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321: 189–212

    Article  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of Archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41: 252–263

    PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Ait-Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71: 4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Costa R, Götz M, Mirotzek N, Lottmann J, Berg G, Smalla K (2005) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microb Ecol 56: 236–249

    Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere, Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Dakora FD, Philipps DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245: 35–47

    Article  CAS  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: A quantitative approach. Plant Soil 156: 1–20

    Article  Google Scholar 

  • Dexter AR (1987) Compression of soil around roots. Plant Soil 97: 401–406

    Article  Google Scholar 

  • Diaz MR, Rodelas-Gonzaés, Pozo-Clemente C, Martinez-Toledo MV, González-López J (2008) A review on the taxonomy and possible screening traits of plant growth promoting rhizobacteria. In: Ahmad I, Pichtel J, Hayat S (Hrsg) Plant-bacteria interactions. Strategies and techniques to promote plant growth, Wiley-VCH, Weinheim, S 55–80

    Google Scholar 

  • Dubuis C, Keel C, Haas D (2007) Dialogues of root-colonizing biocontrol pseudomonads. Eur J Plant Pathol 119: 311–328

    Article  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84: 827–837

    Article  Google Scholar 

  • Faure D, Vereecke D, Leveau HJ (2009) Molecular communication in the rhizosphere. Plant Soil 321: 279–303

    Article  CAS  Google Scholar 

  • Fischer H, Eckhardt KU, Meyer A, Neumann G, Leinweber P, Fischer K (2010) Rhizodeposition of maize: Short term carbon budget and composition. J Plant Nutr Soil Sci 173: 67–79

    Article  CAS  Google Scholar 

  • Foster RC (1986) The ultrastructure of the rhizoplane and the rhizosphere. Annu Rev Phytopathol 24: 211–220

    Article  Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fertil Soils 6: 189–203

    Article  Google Scholar 

  • Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140: 241–248

    Article  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA(2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302: 19–32

    Article  CAS  Google Scholar 

  • Gomes NCM, Heuer H, Schönfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232: 167–180

    Article  CAS  Google Scholar 

  • Goodman RM, Bintrim SB, Handelsman J, Rosas JC, Simon HM, Smith KP (1998). A dirty look: Soil microflora and rhizosphere microbiology. In: Flores HE, Lynch JP, Shannon J (Hrsg) Radical biology: Advances and perspectives on the function of plant roots. American Society of Plant Physiologists, Rockville, MD, S 219–234

    Google Scholar 

  • Gräf G (1930) Über den Einfluss des Pflanzenwachstums auf die Bakterien im Wurzelbereich. Dissertation Universität Leipzig, G Fischer, Jena

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37: 395–412

    Article  CAS  Google Scholar 

  • Gregory PL (2006) Roots, rhizosphere and soil: The route to a better understanding of soil science? Eur J Soil Sci 57: 2–12

    Article  Google Scholar 

  • Gregory PJ, Hinsinger P (1999) New approaches to studying chemical and physical changes in the rhizosphere: An overview. Plant Soil 211: 1–9

    Article  CAS  Google Scholar 

  • Haider K, Mosier AR, Heinemeyer O (1987) The effect of growing plants on denitrification at high nitrate concentrations. Soil Sci Soc Soc Am J 51: 97–102

    Article  CAS  Google Scholar 

  • Hartmann A, Pukall R, Rothballer M, Ganter S, Metz S, Schloter M, Mogge B (2004) Microbial community analysis in the rhizosphere by in situ and ex situ application of molecular probing, biomarker and cultivation techniques. In: Varma A, Abbott L, Werner D, Hampff R (Hrsg) Plant surface microbiology, Springer, Berlin Heidelberg, S 449–469

    Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312: 7–14

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plantdriven selection of microbes. Plant Soil 321: 235–257

    Article  CAS  Google Scholar 

  • Hartmann A, Smalla K, Sörensen J (2007) Microbial diversity in the rhizosphere: Highly resolving molecular methodology to study plant-beneficial rhizosphere bacteria. In: Benckiser G, Schnell S (Hrsg) Biodiversity in agricultural production systems, CRC, Boca Raton London New York, S 102–116

    Google Scholar 

  • Harvey PR, Warren RA, Wakelin S (2009) Potential to improve root access to phosphorus: The role of non-symbiotic microbial inoculants in the rhizosphere. Crop Pasture Sci 60: 144–151

    CAS  Google Scholar 

  • Helal HM, Sauerbeck DR (1984) Influence of plant roots on C and P metabolism in soil. Plant Soil 76: 175–182

    Article  CAS  Google Scholar 

  • Helal HM und Sauerbeck DR (1986) Effect of plant roots on carbon metabolism of soil microbial biomass. Z Pflanzenernähr Bodenk 149: 181–188

    Article  CAS  Google Scholar 

  • Hendriks L, Claassen N, Jungk A (1981) Phosphatverarmung des wurzelnahen Bodens und Phosphataufnahme von Mais und Raps. Z Pflanzenernähr Bodenk 144: 486–499

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 237: 173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant Soil 321: 117–152

    Article  CAS  Google Scholar 

  • Hinsinger P, Gilkes RJ (1996) Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur J Soil Sci 47: 533–544

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of rootmediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 248: 43–59

    Article  CAS  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321: 153–187

    Article  CAS  Google Scholar 

  • Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microb Ecol 65: 193–201

    Article  CAS  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59: 341–61

    Article  PubMed  CAS  Google Scholar 

  • Johansen JE, Binnerup SJ (2002) Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.). Microb Ecol 43: 298–306

    Article  PubMed  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205: 25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from rhizosphere. Plant Soil 166: 247–257

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR, Kochian LV (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180: 57–66

    Article  CAS  Google Scholar 

  • Jones DL, Hinsinger P (2008) The rhizosphere: Complex by design. Plant Soil 312: 1–6

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163: 459–480

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant Soil 321: 5–33

    Article  CAS  Google Scholar 

  • Jungk AG (1991) Dynamics of nutrient movement at the soilroot interface. In: Waisel Y, Eshel A, Kafkafi U (Hrsg) Plant roots: The hidden half, Marcel Dekker, New York Basel Hong Kong, S 455–481

    Google Scholar 

  • Kaiser O, Pühler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. Microb Ecol 42: 136–149

    PubMed  CAS  Google Scholar 

  • Kandeler E, Marschner P, Tscherko D, Gahoonia TS, Nielsen NE (2002) Microbial community composition and functional diversity in the rhizosphere of maize. Plant Soil 238: 301–312

    Article  CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56: 211–236

    Article  PubMed  CAS  Google Scholar 

  • Killham K, Yeomans C (2001) Rhizosphere carbon flow measurement and implications: From isotopes to reporter genes. Plant Soil 232: 91–96

    Article  CAS  Google Scholar 

  • Kleeberger A, Castorph H, Klingmüller W (1983) The rhizosphere microflora of wheat and barley with special reference to gram-negative bacteria. Arch Microbiol 136: 306–311

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderphores produced by plant-growthpromoting rhizobacteria. Nature 286: 885–886

    Article  CAS  Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16: 315–322

    Article  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plantmicrobe-soil interactions in the rhizosphere: An evolutionary perspective. Plant Soil 321: 83–115

    Article  CAS  Google Scholar 

  • Lamont BB (2003) Structure, ecology and physiology of root clusters – a review. Plant Soil 248: 1–19

    Article  CAS  Google Scholar 

  • Lee SH, Ka JO, Cho JC (2008) Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285: 263–269

    Article  PubMed  CAS  Google Scholar 

  • Liljeroth E, Burgers SLGC, van Veen JA (1991) Changes in bacterial populations along roots of wheat (Triticum aestivum) seedlings. Biol Fertil Soils 10: 276–380

    Article  Google Scholar 

  • Li XL, George E, Marschner H (1991a) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136: 41–48

    Article  Google Scholar 

  • Li XL, Marschner H, George E (1991b) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-toroot transport in white clover. Plant Soil 136: 49–57

    Article  CAS  Google Scholar 

  • Loon van LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119: 243–254

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizosphere. Antonie van Leeuwenhoek 86: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129: 1–10

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by pseudomonads. Annu Rev Phytopathol 39: 461–490

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Karmilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63: 541–556

    Article  PubMed  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW (1994) Application of plant growthpromoting rhizobacteria in sustainable agriculture. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (Hrsg) Soil biota: Management in sustainable farming systems, CSIRO Information Services, East Melbourne, Australien, S 23–31

    Google Scholar 

  • Mahmood T, Kaiser WM, Ali R, Ashrat M, Gulnaz A, Iqbal Z (2005) Ammonium versus nitrate nutrition of plants stimulates microbial activity in the rhizosphere. Plant Soil 277: 233–243

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2. Aufl. Acad Press, London San Diego New York

    Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33: 1437–1445

    Article  CAS  Google Scholar 

  • Mengel K, Grimme H, Németh K (1969) Potentielle und effective Verfügbarkeit von Pflanzennährstoffen im Boden. Landwirtsch Forsch 23/I (Sonderheft): 79–91

    Google Scholar 

  • Mengel K, Kirby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition, 5. Aufl. Kluwer Acad Publ, Dordrecht Boston London

    Google Scholar 

  • Mengel K, Steffens D (1982) Beziehung zwischen Kationen/Anionen-Aufnahme und Protonenabscheidung aus Wurzeln von Rotklee. Z Pflanzenernähr Bodenk 145: 229–236

    Article  CAS  Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 41: 43–56

    Google Scholar 

  • Neumann G, George TS, Plassard C (2009) Strategies and methods for studying the rhizosphere: The plant science toolbox. Plant Soil 321: 431–456

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211: 121–130

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2001) The release of root exudates as affected by the plants physiological status. In: Pinton R, Varanini Z, Nannipieri P (Hrsg) The rhizosphere: Biochemistry and organic substances at the soil-plant interface, Marcel Dekker, New York Basel, S 41–93

    Google Scholar 

  • Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61: 7–26

    Article  CAS  Google Scholar 

  • O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001) Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant Soil 232: 135–145

    Article  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: Molecular plant-rhizobacteria interactions. Plant Cell Environ 26: 189–199

    Article  CAS  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (Hrsg) The rhizosphere: Biochemistry and organic substances at the soil-plant interface, Marcel Dekker, New York Basel, S 1–17

    Google Scholar 

  • Polomski J, Kuhn N (2002) Root research methods. In: Waisel Y, Eshel A, Kafkafi U (Hrsg) Plant roots the hidden half, 3. Aufl. Marcel Dekker, New York, S 295–321

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steiberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321: 341–361

    Article  CAS  Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274: 37–49

    Article  CAS  Google Scholar 

  • Rheinbaben von W, Trolldenier G (1984) Influence of plant growth on denitrification in relation to soil moisture and potassium nutrition. Z Pflanzenernähr Bodenk 146: 171–179

    Article  Google Scholar 

  • Rovira AD, Newman EI, Bowen HJ, Campbell R (1974) Quantitative assessment of the rhizoplane microflora by direct microscopy. Soil Biol Biochem 6: 211–216

    Article  Google Scholar 

  • Saleh-Lakha S, Glick BR (2007) Plant growth-promoting bacteria. In: Elsas van JD, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, CRC, Boca Raton London New York, S 503–520

    Google Scholar 

  • Sauerbeck D, Johnen B, Six R (1974) Atmung, Abbau und Ausscheidungen von Weizenwurzeln im Laufe ihrer Entwicklung. Landwirtsch Forsch 31/32: 49–58

    Google Scholar 

  • Schnepf A, Roose T (2006) Modelling the contribution of arbuscular mycorrhiza fungi to plant P uptake. New Phytol 171: 669–682

    PubMed  CAS  Google Scholar 

  • Simon HM, Dodsworth JA, Goodman RM (2000) Crenarchaeota colonise terrestrial plant roots. Environ Microbiol 2: 495–505

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere – microbial interactions: Opportunities and limitations. Trends Microbiol 12: 386–393

    Article  PubMed  CAS  Google Scholar 

  • Sliwinski MK, Goodman RM (2004) Comparison of crenarchaeal consortia inhabiting the rhizosphere of diverse terrestrial plants with those in bulk soil in native environments. Appl Environ Microbiol 70: 1821–1826

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarten S, Becker R, Neuber G et al. (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J Microbiol Meth 69: 470–479

    Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67: 4742–4751

    Article  PubMed  CAS  Google Scholar 

  • Solano B, Barriuso J, Manero FJG (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (Hrsg) Plant-bacteria interactions, Wiley-VCH, Weinheim, S 41–54

    Chapter  Google Scholar 

  • Sörensen J (1997) The rhizophere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (Hrsg) Modern soil microbiology, Marcel Dekker, New York Basel, S 21–47

    Google Scholar 

  • Sörensen J, Nicolaisen H, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology – from single-cell to whole community analysis. Plant Soil 321: 483–512

    Article  CAS  Google Scholar 

  • Sörensen J, Sessitsch A (2007) Plant-associated bacteria: Lifestyles and molecular interactions. In: van Elsas JD, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology. CRC, Boca Raton London New York, S 211–236

    Google Scholar 

  • Toal ME, Yeomans C, Killham K, Meharg AA (2000) A review of rhizosphere carbon flow modelling. Plant Soil 222: 263–281

    Article  CAS  Google Scholar 

  • Trolldenier G (1995) Die Ökophysiologie der Wurzeln und der Rhizosphäre. Biol unserer Zeit 25: 120–129

    Article  CAS  Google Scholar 

  • Trolldenier G, von Rheinbaben W (1981) Root respiration and bacterial population of roots. I. Effect of nitrogen source, potassium nutrition and aeration of roots. Z Pflanzenernähr Bodenk 144: 366–377

    Article  CAS  Google Scholar 

  • Uren NG (2001) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (Hrsg) The rhizosphere: Biochemistry and organic substances at the soil-plant interface, Marcel Dekker, New York Basel, S 19–40

    Google Scholar 

  • Uren NC, Reisenauer HM (1988) The role of root exudates in nutrient acquisition. Adv Plant Nutr. 3: 79–114

    Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects. Soil Biol Biochem 40: 30–48

    Article  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type and crop development. Appl Environ Microbiol 67: 5849–5854

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Physiko-Chemie und Mikrobiologie der Rhizosphäre. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_17

Download citation

Publish with us

Policies and ethics