Skip to main content

Pediatric Cardiac MRI

  • Chapter
Pediatric Chest Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The segmental approach to the diagnosis of congenital heart disease (Van Praagh 1984) includes the following analysis:

  1. 1.

    What is the anatomic type of the three major cardiac segments: the viscero-atrial situs, the ventricles, and the great arteries? Consider the example of a patient with complete transposition (d-TGA) with VSD and pulmonary stenosis. The cardiac segments are: situs solitus of the atria and viscera, d-looping of the ventricles (morphologic right ventricle lies to the right of the morphologic left ventricle), and d-malposition of the great arteries (aortic valve annulus lies to the right of the pulmonary annulus).

  2. 2.

    How is each segment connected to the adjacent segment? In the example of d-TGA described above, there is atrioventricular concordance and ventriculoarterial discordance.

  3. 3.

    What are the associated malformations? In the example described above, the patient also has a conoventricular VSD and pulmonary valve stenosis associated with d-TGA.

  4. 4.

    How do the segmental combinations and connections, along with the associated malformations, function? The patient with the morphology described above will have cyanosis and reduced pulmonary blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Araoz PA, Reddy GP, Thomson PD, Higgins CB (2002) Images in cardiovascular medicine. Magnetic resonance angiography of criss-cross heart. Circulation 105:537

    Article  PubMed  Google Scholar 

  • Axel L, Dougherty L (1989) Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172:349–350

    CAS  PubMed  Google Scholar 

  • Bailes DR, Gilerdale DJ, Bydder GM et al. (1985) Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artifacts in MR imaging. Comput Assist Tomogr 9:835–838

    CAS  Google Scholar 

  • Beerbaum P, Korperich H, Gieseke J et al. (2003) Rapid leftto-right shunt quantification in children by phase-contrast magnetic resonance imaging combined with sensitivity encoding. Circulation 108:1355–1361

    Article  PubMed  Google Scholar 

  • Beerbaum P, Koerperich H, Sarikouch S et al. (2006) Timeresolved “Cine” 3D contrast-enhanced MR angiography using Centra-Keyhole-SENSE in congenital heart diseases with pulmonary artery pathology [Abstract]. J Cardiovasc MR 8(1):26

    Google Scholar 

  • Bogren HG, Klipstein RH, Firmin DN et al. (1989) Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. Am Heart J 117:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Bomma C, Rutberg J, Tandri H et al. (2004) Misdiagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Cardiovasc Electrophysiol. 15(3):300–306

    Article  PubMed  Google Scholar 

  • Brenner LD, Caputo GR, Mostbeck G et al. (1992) Quantification of antegrade and retrograde blood flow in the human aorta by magnetic resonance imaging. J Am Coll Cardiol 20:1246–1250

    Article  CAS  PubMed  Google Scholar 

  • Caputo GR, Kondo C, Masui T et al. (1991) Right and left lung perfusion: in vitro and in vivo validation with obliqueanle, velocity-encoded cine MR imaging. Radiology 180:693–698

    CAS  PubMed  Google Scholar 

  • Carr JC, Simonetti O, Bundy J et al. (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    CAS  PubMed  Google Scholar 

  • Casolo G, Rega L, Gensini GF (2004) Detection of right atrial and pulmonary artery thrombosis after the Fontan procedure by magnetic resonance imaging. Heart 90(7):825

    Article  CAS  PubMed  Google Scholar 

  • Castillo E, Osman NF, Reson BD et al. (2005) Quantitative assessment of regional myocardial function with MR-tagging in a multi-center study: interobserver and intraosbserver agreement of fast strain analysis with Harmonic Phase (HARP) MRI. J Cardiovasc Magn Reson 7:783–791

    Article  PubMed  Google Scholar 

  • Chia JM, Fischer SE, Wickline SA et al. (2000) Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging 12:678–688

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Park T, Yang DH et al. (2003) Arrhythmogenic right ventricular cardiomyopathy and sudden cardiac death in young Koreans. Circ J 67:925–928

    Article  PubMed  Google Scholar 

  • Choi YH, Park JH, Choe YH et al. (1994) MR imaging of Ebstein’s anomaly of the tricuspid valve. Am J Roentgenol 163:539–543

    CAS  Google Scholar 

  • Chung KJ, Simpson IA, Glass RF et al. (1988) Cine magnetic resonance imaging after surgical repair in patients with transposition of the great arteries. Circulation 77:104–109

    CAS  PubMed  Google Scholar 

  • Chung T, Muthupilliai R (2004) Application of SENSE in clinical pediatric body MR imaging. Top Magn Reson Imaging 15:187–196

    Article  PubMed  Google Scholar 

  • Chung T, Krishnamurthy R (2005) Contrast-enhanced MR angiography in infants and children. Magn Reson Imaging Clin N Am 13:161–170

    Article  PubMed  Google Scholar 

  • Didier D, Higgins CB (1986) Identification and localization of ventricular septal defect by gated magnetic resonance imaging. Am J Cardiol 57:1363–1368

    Article  CAS  PubMed  Google Scholar 

  • Evans AJ, Iwai F, Grist TA et al. (1993) Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation. Invest Radiol 28:109–115

    Article  CAS  PubMed  Google Scholar 

  • Festa P, Ait-Ali L, Cerillo AG et al. (2006) Magnetic resonance imaging is the diagnostic tool of choice in the preoperative evaluation of patients with partial anomalous pulmonary venous return. Int J Cardiovasc Imaging 22:685–693

    Article  PubMed  Google Scholar 

  • Firmin DN, Nayler GL, Klipstein RH et al. (1987) In vivo validation of MR velocity imaging. J Comput Assis Tomogr 11:751–756

    Article  CAS  Google Scholar 

  • Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42:361–370

    Article  CAS  PubMed  Google Scholar 

  • Flamm SD, Muthupillai R (2004) Coronary artery magnetic resonance angiography. JMRI 19:686–709

    Article  PubMed  Google Scholar 

  • Fletcher BD, Jacobstein MD, Nelson AD et al. (1984) Gated magnetic resonance imaging fo congenital cardiac malformation. Radiology 150:137–140

    CAS  PubMed  Google Scholar 

  • Fogel MA, Weinberg PM, Chin AJ et al. (1996) Late ventricular geometry and performance changes of functional single ventricle throughout staged Fontan reconstruction assessed by magnetic resonance imaging. J Am Coll Cardiol 28:212–221

    Article  CAS  PubMed  Google Scholar 

  • Fogel MA, Weinberg PM, Gupta KB et al. (1998) Mechanics of the single left ventricle: a study in ventricular-ventricular interaction II. Circulation 98:330–338

    CAS  PubMed  Google Scholar 

  • Fogel MA (2000) Assessment of cardiac function by magnetic resonance imaging. Pediatr Cardiol 21:59–69

    Article  CAS  PubMed  Google Scholar 

  • Frayne R, Steinman DA, Ethier CR et al. (1995) Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 5:428–431

    Article  CAS  PubMed  Google Scholar 

  • Goo HW, Yang DH, Park IS et al. (2007) Time-resolved three dimensional contrast enhanced magnetic resonance angiography in patients with Fontan operation or bidirectional cavopulmonary connection: Initial experience. J Magn Reson Imaging 25:727–736

    Article  PubMed  Google Scholar 

  • Greil GF, Geva T, Maier SE et al. (2002a) Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. JMRI 15:47–54

    Article  PubMed  Google Scholar 

  • Greil GF, Stuber M, Botnar RM et al. (2002b) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105:908–911

    Article  PubMed  Google Scholar 

  • Grist TM, Thornton FJ (2005) Magnetic resonance angiography in children: technique, indications, and imaging findings. Pediatr Radiol 35:26–39

    Article  PubMed  Google Scholar 

  • Grotenhuis HB, Westenberg JJ, Doornbos J et al. (2006) Aortic root dysfunctioning and its effect on left ventricular function in Ross procedure patients assessed with magnetic resonance imaging. Am Heart J 152:975.e1–8

    PubMed  Google Scholar 

  • Grothues F, Moon JC, Bellenger NG et al. (2004) Interstudy reproducibility of right ventricular volumes, function and mass with cardiovascular magnetic resonance. Am Heart J 147:218–223

    Article  PubMed  Google Scholar 

  • Helbing WA, Bosch HG, Maliepaard C et al. (1995) Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol 76:589–594

    Article  CAS  PubMed  Google Scholar 

  • Helbing WA, Niezen RA, Cessie SL et al. (1996) Right ventricular diastolic function in children with pulmonary regurgitation after repair of tetraology of Fallot: volumetric evaluation by magnetic resonance velocity mapping. J Am Coll Cardiol 28:1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Helbing WA, de Roos A (2000) Clinical applications of cardiac magnetic resonance imaging after repair of tetralogy of Fallot. Pediatr Cardiol 21:70–79

    Article  CAS  PubMed  Google Scholar 

  • Henk CB, Higgins CB, Saeed M (2005) Endovascular interventional MRI. J Magn Reson Imaging 22(4):451–460

    Article  PubMed  Google Scholar 

  • Herfkens RJ, Higgins CB, Hricak H et al. (1983) Nuclear magnetic resonance imaging of the cardiovascular sustem: normal and pathologic findings. Radiology 147:749–759

    CAS  PubMed  Google Scholar 

  • Hernandez RJ, Aisen AM, Foo TKF et al. (1993) Thoracic cardiovascular anomalies in children: evaluation with a fast gradient-recalled-echo sequence with cardiac-triggered segmented acquisition. Radiology 188:755–780

    Google Scholar 

  • Hoffmann U, Globits S, Schima W et al. (2003) Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol. 92(7):890–895

    Article  PubMed  Google Scholar 

  • Hundley WG, Li HF, Lange RA et al. (1995) Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques Circulation 91:2955–2960

    CAS  Google Scholar 

  • Jahnke C, Paetsch I, Gebker R et al. (2006) Accelerated 4D dobutamine stress MR imaging with k-t BLAST: Feasibility and diagnostic performance. Radiology 241:718–728

    Article  PubMed  Google Scholar 

  • Kellenberger CJ, Macgowan CK, Roman KS et al. (2005) Hemodynamic evaluation for the peripheral pulmonary circulation by cine phase-contrast magnetic resonance imaging. JMRI 22:780–787

    Article  PubMed  Google Scholar 

  • Kersting-Sommerhoff BA, Diethelm L, Stanger P et al. (1990a) Evaluation of complex congenital ventricular anomalies with magnetic resonance imaging. Am Heart J 120:133–142

    Article  CAS  PubMed  Google Scholar 

  • Kersting-Sommerhoff B, Seelos KC, Hardy C et al. (1990b) Evaluation of surgical procedures for cyanotic congenital heart disease by using MR imaging. AJR Am J Roentgenol 155:259–266

    CAS  PubMed  Google Scholar 

  • Kiaffas MG, Powell AJ, Geva T (2002) Magnetic resonance imaging evaluation of cardiac tumor characteristics in infants and children. Am J Cardiol 89(10):1229–1233

    Article  PubMed  Google Scholar 

  • Kim RJ, Wu E, Rafael A et al. (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Danias PG, Stuber M et al. (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1445–1453

    Article  Google Scholar 

  • Kondo C, Caputo GR, Semelka R et al. (1991a) Right and left ventricular stroke volume measurements with velocityencoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol 157:9–16

    CAS  PubMed  Google Scholar 

  • Kondo C, Hardy C, Higgins SS et al. (1991b) Nuclear magnetic resonance imaging of the palliative operation for hypoplastic left heart syndrome. J Am Coll Cardiol 18:817–823

    Article  CAS  PubMed  Google Scholar 

  • Korcyk D, Edwards CC, Armstrong G et al. (2004) Contrastenhanced cardiac magnetic resonance in a patient with familial isolated ventricular non-compaction. J Cardiovasc Magn Reson 6(2):569–576

    Article  CAS  PubMed  Google Scholar 

  • Korperich H, Gieseke J, Barth P et al. (2004) Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping. Circulation 109:1987–1993

    Article  PubMed  Google Scholar 

  • Krishnamurthy R, Muthupillai R, Vick GW et al. (2004) Feasibility of a free breathing SSFP sequence for dynamic cardiac imaging in pediatric patients [Abstract]. Pediatr Radiol 34;Supplement 1:S75

    Google Scholar 

  • Lee KH, Yoon CS, Chow KO et al. (2001) Use of imaging for assessing anatomical relationships of tracheobronchial anomalies associated with left pulmonary artery sling. Pediatr Radiol 31:269–278

    Article  CAS  PubMed  Google Scholar 

  • Link KM, Herrera MA, D’souza VJ et al. (1988) MR imaging of Ebstein anomaly: results in four cases. AJR Am J Roentgenol 150:363–367

    CAS  PubMed  Google Scholar 

  • Markl M, Pelc NJ (2004) On flow effects in balanced steadystate free precession imaging: Pictorial description, parameter dependence and clinical implications. J Magn Reson Imaging 20:697–705

    Article  PubMed  Google Scholar 

  • Mayo JR, Roberson D, Sommerhoff B et al. (1990) MR imaging of double outlet right ventricle. J Comput Assist Tomogr 14:336–339

    Article  CAS  PubMed  Google Scholar 

  • Menteer J, Weinberg PM, Fogel MA (2005) Quantifying regional right ventricular fundtion in tertralogy of Fallot. J Cardiovasc Magn Reson 7:753–761

    Article  PubMed  Google Scholar 

  • Mirowitz SA, Gutierrez FR, Canter CE et al. (1989) Tetralogy of Fallot: MR findings. Radiology 171:207–212

    CAS  PubMed  Google Scholar 

  • Muthupillai R, Vick GW, Flamm SD et al. (2003) Time-resolved contrast-enhanced magnetic resonance angiography in pediatric patients using sensitivity encoding. J Magn Reson Imaging 17:559–564

    Article  PubMed  Google Scholar 

  • Nagel E, Lehmkuhl HB, Bocksch W et al. (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770

    CAS  PubMed  Google Scholar 

  • Nazarian S, Roguin A, Zviman MM et al. (2006) Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 tesla. Circulation 114:1277–1284

    Article  PubMed  Google Scholar 

  • Nield LE, Qi XL, Valsangiocomo ER et al. (2005) In vivo MRI measurement of blood oxygen saturation in children with congenital heart disease. Pediatr Radiol 35:179–185

    Article  PubMed  Google Scholar 

  • Niezen RA, Helbing WA, van der Wall EE et al. (1996) Biventricular systolic function and mass studied with MR imaging in children with pulmonary regurgitation after repair for tetralogy of Fallot. Radiology 201:135–140

    CAS  PubMed  Google Scholar 

  • Oosterhof T, Mulder BJM, Hubert WV et al. (2006) Cardiovascular magnetic resonance in the follow-up of patients with corrected tetralogy of Fallot: a review. Am Heart J 151:265–272

    Article  PubMed  Google Scholar 

  • Oppelt A, Graumann R. Barfuss H (1986) Fisp — a new fast MRI sequence. Electromedica 54:15–18

    Google Scholar 

  • Oshinski JN, Parks WJ, Markou CP et al. (1996) Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J Am Coll Cardiol 28:1818–1826

    Article  CAS  PubMed  Google Scholar 

  • Petersen SE, Selvanayagam JB, Wiesmann F et al. (2005) Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46(1):101–105

    Article  PubMed  Google Scholar 

  • Piaw CS, Kiam OT, Rapaee A et al. (2006) Use of non-invasive phase contrast magnetic resonance imaging for estimation of atrial septal defect size and morphology: a comparison with transesophageal echo. Cardiovasc Intervent Radiol 29(2):230–234

    Article  PubMed  Google Scholar 

  • Powell AJ, Geva T (2000) Blood flow measurement by magnetic resonacne imaging in congenital heart disease. Pediatr Cardiol 21:47–58

    Article  CAS  PubMed  Google Scholar 

  • Powell AJ, Maier SE, Chung T et al. (2000) Phase-velocity cine magnetic resonance imaging measurement of pulsatile bloodflow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol 21:104–110

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Garg R, Marcus EN et al. (2006) Faster flow quantification using sensitivity encoding for velocity-encoded cine magnetic resonance imaging: in vitro and in vivo validation. JMRI 24:676–682

    Article  PubMed  Google Scholar 

  • Prakash A, Powell AJ, Krishnamurthy R et al. (2004) Magnetic resonance imaging evaluation of myocardial perfusion and viability in congential and acquired pediatric heart disease. Am J Cardiol 93:657–661

    Article  PubMed  Google Scholar 

  • Prince MR, Yucel E, Kaufman J et al. (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–881

    Article  CAS  PubMed  Google Scholar 

  • Pruessmann KP, Weiger M, Schiedegger MB et al. (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  • Razavi R, Hill DL, Keevil SF et al. (2003) Cardiac catheterization guided by MRI in children and adults with congenital heart disease. Lancet 362:1877–1882

    Article  PubMed  Google Scholar 

  • Rebergen SA, Chin J, Ottenkamp J et al. (1993a) Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation 88:2257–2266

    CAS  PubMed  Google Scholar 

  • Rebergen SA, Ottenkamp J, Doornbos J et al. (1993b) Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 21:123–131

    Article  CAS  PubMed  Google Scholar 

  • Rebergen SA, Helbing WA, van der Wall EE et al. (1995) MR velocity mapping of tricuspid flow in healthy children and in patients who have undergone Mustard or Senning repair. Radiology 194:505–512

    CAS  PubMed  Google Scholar 

  • Rickers C, Wilke NM, Jerosch-Herold M et al. (2005) Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation 112(6):855–861

    Article  PubMed  Google Scholar 

  • Roman KS, Kellenberger CJ, Farooq S et al. (2005) Comparative imaging of differential pulmonary blood flow in patients with congenital heart disease: magnetic resonance imaging versus lung perfusion scinitigraphy. Pediatr Radiol 25:295–301

    Article  Google Scholar 

  • Sakuma H, Yasutaka I, Suzawa N et al. (2005) Assessment of coronary arteries with total study time of less then 30 minutes by using whole-heart coronary MR angiography. Radiology 237:316–321

    Article  PubMed  Google Scholar 

  • Schlesinger AE, Krishnamurthy R, Sena LM et al. (2005) Incomplete double aortic arch with atresia of the distal left arch: distinctive imaging appearance. AJR Am J Roentgenol 184:1634–1639

    PubMed  Google Scholar 

  • Schwitter J (2006) Myocardial perfusion. JMRI 24:953–963

    Article  PubMed  Google Scholar 

  • Sechtem U, Pflugfelder P, Cassidy MC et al. (1987) Ventricular septal defect: visualization of shunt flow and determination of shunt size by cine MR imaging. AJR Am J Roentgenol 149:689–692

    CAS  PubMed  Google Scholar 

  • Sieverding L, Jung WI, Klose U et al. (1992) Noninvasive blood flow measurement and quantification of shunt volume by cine magnetic resonacne in congenital heart disease. Preliminary results. Pediatr Radiol 22:48–54

    Article  CAS  PubMed  Google Scholar 

  • Simonetti OP, Finn JP, White RD et al. (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:45–57

    Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): ultra-fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  • Sorensen TS, Korperich H, Greil GF et al. (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease. Circulation 110:163–169

    Article  PubMed  Google Scholar 

  • Sorensen TS, Beerbaum P, Korperich H et al. (2005) Threedimensional, isotropic MRI: a unified approach to quantification and visualization in congenital heart diease. Int J Cardiovasc Imag 21:283–292

    Article  Google Scholar 

  • Spuentrup E, Fausten B, Kinzel S et al. (2005) Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation 112(3):396–399

    Article  PubMed  Google Scholar 

  • Sridharan S, Derrick G, Deanfield J et al. (2006) Assessment of differential branch pulmonary blood flow: a comparative study of phase contrast magnetic resonance imaging and radionuclide lung perfusion imaging. Heart 92:963–968

    Article  CAS  PubMed  Google Scholar 

  • Steffens JC, Bourne MW, Sakuma H et al. (1994) Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation 90:937–943

    CAS  PubMed  Google Scholar 

  • Stuber M, Botnar RM, Kissinger KV et al. (2001) Free-breathing black-blood coronary MR angiography: initial results. Radiology 219:278–283

    CAS  PubMed  Google Scholar 

  • Su JT, Chung T, Muthupillai R et al. (2005) Usefulness of realtime navigator magnetic resonane imaging for evaluating coronary artery origins in pediatric patients. Am J Cardiol 95:679–682

    Article  PubMed  Google Scholar 

  • Su JT, Chung T, Kovalchin JP (2004) Magnetic resonance imaging of coronary and systemic aneurysms in Kawasaki disease. Cardiol Young 14:198–199

    Article  PubMed  Google Scholar 

  • Su JT, Krishnamurthy R, Chung T et al. (2007) Anomalous right coronary artery from the pulmonary artery: noninvasive diagnosis and serial evaluation. J Cardiovasc Magn Reson 9:57–61

    Article  PubMed  Google Scholar 

  • Tandri H, Saranathan M, Rodriguez ER et al. (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45(1):98–103

    Article  PubMed  Google Scholar 

  • Taylor AM, Dymarkowski S, de Meerleer K et al. (2005a) Validation and application of single breath-hold cine cardiac MR for ventricular function assessment in children with congenital heart disease at rest and during adenosine stress. J Cardiovasc Magn Reson 7:743–751

    Article  PubMed  Google Scholar 

  • Taylor AM, Dymarkowski S, Hamaekers P et al. (2005b) MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 234:542–547

    Article  PubMed  Google Scholar 

  • Teraoka K (2005) Delayed contrast enhancement of MRI in hypertrophic cardiomyopathy. Magn Reson Imaging 23(5):701

    Article  PubMed  Google Scholar 

  • van der Loo B, Jenni R (2003) Isolated noncompaction of the myocardium. Circulation 107(7):e50

    Article  PubMed  Google Scholar 

  • Van Praagh R (1984) The segmental approach clarified. Cardiovasc Intervent Radiol 7(6):320–325

    Article  PubMed  Google Scholar 

  • Valsangiocomo ER, Barrea C, MacGowan CK et al. (2003) Phase-contrast MR assessment of pulmonary venous blood flow in children with surgically repaired pulmonary veins. Pediatr Radiol 33:607–613

    Article  Google Scholar 

  • Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228

    Article  PubMed  Google Scholar 

  • Westwood MA, Firmin DN, Gildo M et al. (2005a) Intercenter reproducibility of magnetic resonance T2⋆ measurements of myocardial iron in thalassaemia. Int J Cardiovasc Imaging 21(5):531–538

    Article  PubMed  Google Scholar 

  • Westwood MA, Wonke B, Maceira AM et al. (2005b) Left ventricular diastolic function compared with T2⋆ cardiovascular magnetic resonance for early detection of myocardial iron overload in thalassemia major. J Magn Reson Imaging 22(2):229–233

    Article  PubMed  Google Scholar 

  • Wood JC, Enriquez C, Ghugre N et al. (2005) Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann NY Acad Sci 1054:386–395

    Article  CAS  PubMed  Google Scholar 

  • Wood JC (2006) Anatomical assessment of congenital heart disease. J Cardiovasc Magn Reson 8:595–606

    Article  PubMed  Google Scholar 

  • Yoo SJ, Kim YM, Choe YH (1999) Magnetic resonance imaging of complex congenital heart disease. Int J Card Imaging 15:151–160

    Article  CAS  PubMed  Google Scholar 

  • Zerhouni EA, Parish DM, Rogers WJ et al. (1988) Human heart: tagging with MR imaging — a method of noninvasive assessment of myocardial motion. Radiology 169:59

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krishnamurthy, R., Chung, T. (2008). Pediatric Cardiac MRI. In: Lucaya, J., Strife, J.L. (eds) Pediatric Chest Imaging. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32676-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32676-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32675-5

  • Online ISBN: 978-3-540-32676-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics