Skip to main content

Folding, Wrinkling, and Buckling in Plant Cell Walls

  • Chapter
  • First Online:
Plant Biomechanics

Abstract

In this chapter, we discuss various cases of cell and tissue wrinkling or folding from the perspective of a putative mechanism of their formation—tissue folding in the contractile roots; cell or meristem surface folding in phyllotaxis generation; the formation of the stomata pore and various types of gas spaces; the development of jigsaw puzzle-shaped epidermal cells; and the wrinkling of cell wall layers after the removal of tensile stress. We also address the biological role of such shaped cells or tissues and the mechanical property or state of the cell wall or tissue that is manifested by its folding or wrinkling. Buckling and differential growth are likely ways to generate folds or wrinkles. The former is an intuitive mechanism from the mechanical perspective, while the latter derives from biology. Some cases of cell or tissue morphogenesis suggest that locally the two mechanisms may simultaneously contribute to the formation of a wavy shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abasolo WP, Yoshida M, Yamamoto H, Okuyama T (2009) Stress generation in aerial roots of Ficus elastica (Moraceae). IAWA J 30:216–224

    Article  Google Scholar 

  • Apostolakos P, Galatis B (1998) Probable involvement of cytoskeleton in stomatal-pore formation in Asplenium nidus L. Protoplasma 203:48–57

    Article  Google Scholar 

  • Apostolakos P, Galatis B (1999) Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus. II. Guard cells. New Phytol 141:209–223

    Article  Google Scholar 

  • Apostolakos P, Livanos P, Galatis B (2009) Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern Asplenium nidus L. Cytoskeleton 66:342–349

    Article  CAS  Google Scholar 

  • Armour WJ, Barton DA, Law AMK, Overall RL (2015) Differential growth in periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon pavement cells. Plant Cell 27:2484–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine SM, Cherian AV, Syamaladevi DP, Subramonian N (2015) Erianthus arundinaceus HSP70 (EaHSP70) acts as a key regulator in the formation of anisotropic interdigitation in sugarcane (Saccharum spp. hybrid) in response to drought stress. Plant Cell Physiol 56:2368–2380

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI, Jensen OE (2013) On the role of stress anisotropy in the growth of stems. J Exp Bot 64:4697–4707

    Article  CAS  PubMed  Google Scholar 

  • Beauzamy L, Louveaux M, Hamant O, Boudaoud A (2015) Mechanically, the shoot apical meristem of arabidopsis behaves like a shell inflated by a pressure of about 1 MPa. Front Plant Sci 6:1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O, Kwiatkowska D (2013) A correlative microscopy approach relates microtubule behaviour, local organ geometry and cell growth at the Arabidopsis shoot apical meristem. J Exp Bot 64:5753–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bünning E, Biegert F (1953) Die Bildung der Spaltöffnungsinitialen bei Allium cepa. Z Bot 41:17–39

    Google Scholar 

  • Campbell R (1972) Electron microscopy of the development of needles of Pinus nigra var. maritima. Ann Bot 36:711–720

    Article  Google Scholar 

  • Chen X, Yin J (2010) Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6:5667–5680

    Article  CAS  Google Scholar 

  • Coen E, Rolland-Lagan A-G, Matthews M, Bangham JA, Prusinkiewicz P (2004) The genetics of geometry. Proc Natl Acad Sci USA 101:4728–4735

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2016) Catalysts of plant cell wall loosening [version1; referees: 2 approved]. F1000Research, 5:F1000 Faculty Rev-119

    Google Scholar 

  • Cresswell A, Sackville Hamilton NR, Thomas H, Charnock RB, Cookson AR, Thomas BJ (1999) Evidence for root contraction in white clover (Trifolium repens L.). Ann Bot 84:359–369

    Article  Google Scholar 

  • Cyr RJ, Lin B-L, Jernstedt JA (1988) Root contraction in hyacinth. II. Changes in tubulin levels, microtubule number and orientation associated with differential cell expansion. Planta 174:446–452

    Article  CAS  PubMed  Google Scholar 

  • Dumais J, Serikawa K, Mandoli DF (2000) Acetabularia: a unicellular model for understanding subcellular localization and morphogenesis during development. J Plant Growth Regul 19:253–264

    Article  CAS  Google Scholar 

  • Dumais J, Harrison L (2000) Whorl morphogenesis in the dasycladalean algae: the pattern formation viewpoint. Phil Trans R Soc Lond B 355:281–305

    Article  CAS  Google Scholar 

  • Dumais J, Steele ChR (2000) New evidence for role of mechanical forces in the shoot apical meristem. J Plant Growth Regul 19:7–18

    Article  CAS  Google Scholar 

  • Elsner J, Michalski M, Kwiatkowska D (2012) Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wild-type and triple cyclinD3 mutant plants. Ann Bot 109:897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher JB (2008) Anatomy of axis contraction in seedlings from a fire prone habitat. Am J Bot 95:1337–1348

    Article  PubMed  Google Scholar 

  • Frank MJ, Smith LG (2002) A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells. Curr Biol 12:849–853

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Himmelspach R, Ward J, Whittington A, Hasenbein N, Liu Ch, Truong TT, Galway ME, Mansfield SD, Hocart ChH, Wasteneys GO (2013) The anisotropy1 D604 N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes. Plant Physiol 162:74–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galatis B (1980) Microtubules and guard-cell morphogenesis in Zea mays L. J Cell Sci 45:211–244

    PubMed  CAS  Google Scholar 

  • Galatis B, Mitrakos K (1980) The ultrastructural cytology of the differentiating guard cells of Vigna sinensis. Am J Bot 67:1243–1261

    Article  Google Scholar 

  • Galatis B, Apostolakos P (1991) Microtubule organization and morphogenesis of stomata in caffeine-affected seedlings of Zea mays. Protoplasma 165:11–26

    Article  Google Scholar 

  • Galatis B, Apostolakos P (2004) The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytol 161:613–639

    Article  Google Scholar 

  • Gambles RL, Dengler RE (1982a) The anatomy of the leaf of red pine, Pinus resinosa. I. Nonvascular tissues. Can J Bot 60:2788–2803

    Article  Google Scholar 

  • Gambles RL, Dengler RE (1982b) The anatomy of the leaf of red pine, Pinus resinosa. II. Vascular tissues. Can J Bot 60:2804–2824

    Article  Google Scholar 

  • Geitmann A, Ortega JKE (2009) Mechanics and modelling of plant cell growth. Trends Plant Sci 14:467–478

    Article  CAS  PubMed  Google Scholar 

  • Giannoutsou E, Sotiriou P, Apostolakos P, Galatis B (2013) Early local differentiation of cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays. Ann Bot 112:1067–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gough HJ, Elam CF, de Bruyne NA (1940) The stabilization of a thin sheet by a continuous supporting medium. J R Aeronaut Soc 44:12–43

    Article  Google Scholar 

  • Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86:1059–1076

    Article  CAS  Google Scholar 

  • Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77:515–527

    Article  Google Scholar 

  • Hamant O, Moulia B (2016) How do plants read their own shapes? New Phytol 212:333–337

    Article  CAS  PubMed  Google Scholar 

  • Harris WM (1971) Ultrastructural observations on the mesophyll cells of pine leaves. Can J Bot 49:1107–1109

    Article  Google Scholar 

  • Harrison LG, Snell J, Verdi R, Vogt DE, Zeiss GD, Green BR (1981) Hair morphogenesis in Acetabularia mediterranea: temperature-dependent spacing and models of morphogen waves. Protoplasma 106:211–221

    Article  Google Scholar 

  • Harrison LG, von Aderkas P (2004) Spatially quantitative control of the number of cotyledons in a clonal population of somatic embryos of hybrid larch Larix x leptoeuropaea. Ann Bot 93:423–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Hejnowicz Z (2011) Plants as mechano-osmotic transducers. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Springer, Berlin, Heidelberg, pp p241–p267

    Chapter  Google Scholar 

  • Hejnowicz Z, Barthlott W (2005) Structural and mechanical peculiarities of the petioles of giant leaves of Amorphophallus (Araceae). Am J Bot 92:391–403

    Article  PubMed  Google Scholar 

  • Hejnowicz Z, Borowska-Wykręt D (2005) Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission. Planta 220:465–473

    Article  CAS  PubMed  Google Scholar 

  • Hejnowicz Z, Sievers A (1996) Tissue stresses in organs of herbaceous plants. III. Elastic properties of the tissues of sunflower hypocotyl and origin of tissue stresses. J Exp Bot 47:519–528

    Article  CAS  Google Scholar 

  • Higaki T, Takigawa-Imamura H, Akita K, Kutsuna N, Kobayashi R, Hasezawa S, Miura T (2016) Exogenous cellulose switches cell interdigitation to cell elongation in an RIC1-dependent manner in Arabidopsis thaliana cotyledon pavement cells. Plant Cell Physiol 58:106–119

    Google Scholar 

  • Hiller GH (1872) Untersuchungen über die Epidermis der Blüthenblätter. Jahrb f wiss Bot 15:411–452

    Google Scholar 

  • Hoss S, Wernicke W (1995) Microtubules and the establishment of apparent cell wall invaginations in mesophyll cells of Pinus silvestris L. J Plant Physiol 147:474–476

    Article  CAS  Google Scholar 

  • Jarvis MC (1998) Intercellular separation forces generated by intracellular pressure. Plant Cell Environ 21:1307–1310

    Article  Google Scholar 

  • Jeffree CE, Dale JE, Fry SC (1986) The genesis of intercellular spaces in developing leaves of Phaseolus vulgaris L. Protoplasma 132:90–98

    Article  Google Scholar 

  • Jung G, Wernicke W (1990) Cell shaping and microtubules in developing mesophyll of wheat (Triticum aestivum L). Protoplasma 153:141–148

    Article  Google Scholar 

  • Kennaway R, Coen E, Green A, Bangham A (2011) Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comput Biol 7:e1002071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollöffel C, Linssen PW (1984) The formation of intercellular spaces in the cotyledons of developing and germinating pea seeds. Protoplasma 120:12–19

    Article  Google Scholar 

  • Kaufman PB, Petering LB, Yocum CS, Baic D (1970) Ultrastructural studies on stomata development in internodes of Avena sativa. Am J Bot 57:33–49

    Article  Google Scholar 

  • Kaul RB (1971) Diaphragms and aerenchyma in Scirpus validus. Am J Bot 58:808–816

    Article  Google Scholar 

  • Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Lin Soc 83:57–84

    Article  CAS  Google Scholar 

  • Kotzer AM, Wasteneys GO (2006) Mechanisms behind the puzzle: microtubule-microfilament cross-talk in pavement cell formation. Can J Bot 84:594–603

    Article  CAS  Google Scholar 

  • Liang F, Shen L-Z, Chen M, Yang Q (2008) Formation of intercellular gas space in the diaphragm during the development of aerenchyma in the leaf petiole of Sagittaria trifolia. Aqu Bot 88:185–195

    Article  Google Scholar 

  • Martynov LA (1975) A morphogenetic mechanism involving instability of initial form. J Theor Biol 52:471–480

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Sisco PH (1994) Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6:1343–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ, Paolillo DJ (1998) Preferential states of longitudinal tension in the outer tissues of Taraxacum officinale (Asteraceae) peduncles. Am J Bot 85:1068–1081

    Article  CAS  PubMed  Google Scholar 

  • Palevitz BA, Hepler PK (1976) Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: the role of microtubules and ion accumulation. Planta 132:71–93

    Article  CAS  PubMed  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1993a) Microtubule organization, mesophyll cell morphogenesis and intercellular space formation in Adiantum capillus-veneris leaflets. Protoplasma 172:97–110

    Article  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1993b) Microtubule organization and cell morphogenesis in two semi-lobed cell types of Adiantum capillus-veneris L. leaflets. New Phytol 125:509–520

    Article  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1994) Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism. New Phytol 127:771–780

    Article  Google Scholar 

  • Parker ChC, Parker ML, Smith AC, Waldron KW (2001) Pectin distribution at the surface of potato parenchyma cells in relation to cell-cell adhesion. J Agric Food Chem 49:4364–4371

    Article  CAS  PubMed  Google Scholar 

  • Prat R, André JP, Mutaftschiev S, Catesson AM (1997) Three-dimensional study of the intercellular gas space in Vigna radiate hypocotyl. Protoplasma 196:69–77

    Google Scholar 

  • Pütz N (1992) Measurement of the pulling force of a single contractile root. Can J Bot 70:1433–1439

    Article  Google Scholar 

  • Quintana A, Albrechtová J, Griesbach RJ, Freyre R (2007) Anatomical and biochemical studies of anthocyanidins in flowers of Anagallis monelli L. (Primulaceae) hybrids. Sci Hort 112:413–421

    Article  CAS  Google Scholar 

  • Raven JA (1996) Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Ann Bot 78:137–142

    Article  Google Scholar 

  • Roland JC (1978) Cell wall differentiation and stages involved with intercellular gas space opening. J Cell Sci 32:325–336

    PubMed  CAS  Google Scholar 

  • Romberger JA, Hejnowicz Z, Hill JF (1993) Plant structure: function and development. Springer, Berlin

    Book  Google Scholar 

  • Sack FD, Paolillo DJ Jr (1983a) Stomatal pore and cuticle formation in Funaria. Protoplasma 116:1–13

    Article  Google Scholar 

  • Sack FD, Paolillo DJ Jr (1983b) Structure and development of walls in Funaria stomata. Am J Bot 70:1019–1030

    Article  Google Scholar 

  • Sack FD (1987) The development and structure of stomata. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp p59–p89

    Google Scholar 

  • Sampathkumar A, Krupiński P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jönsson H, Meyerowitz EM (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3:e01967

    Google Scholar 

  • Schreiber N, Gierlinger N, Putz N, Fratzl P, Neinhuis Ch, Burgert I (2010) G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction. Plant J 61:854–861

    Article  CAS  PubMed  Google Scholar 

  • Sego JL Jr, Marsh LC, Stevens KJ, Soukup A, Votrubová O, Enstone DE (2005) A re-examination of the root cortex on wetland flowering plants with respect to aerenchyma. Ann Bot 96:565–579

    Article  Google Scholar 

  • Sharon E, Efrati E (2010) The mechanics of non-Euclidean plates. Soft Matter 6:5693–5704

    Article  CAS  Google Scholar 

  • Sifton HB (1945) Air-space tissue in plants. Bot Rev 11:108–143

    Article  Google Scholar 

  • Singh AP, Srivastava LM (1973) The fine structure of pea stomata. Protoplasma 76:61–82

    Article  Google Scholar 

  • Smith-Huerta NL, Jernstedt JA (1989) Root contraction in hyacinth III. Orientation of cortical microtubules visualized by immunofluorescence microscopy. Protoplasma 151:1–10

    Article  Google Scholar 

  • Smith-Huerta NL, Jernstedt JA (1990) Root contraction in hyacinth IV. Orientation of cellulose microfibrils in radial longitudinal and transverse cell walls. Protoplasma 154:161–171

    Article  Google Scholar 

  • Sotiriou P, Giannoutsou E, Panteris E, Apostolakos P, Galatis B (2016) Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants. Ann Bot 117:401–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava LM, Singh AP (1972) Stomatal structure in corn leaves. J Ultrastruct Res 39:345–363

    Article  CAS  PubMed  Google Scholar 

  • Staff L, Hurd P, Reale L, Seoighe C, Rockwood A, Gehring C (2012) The hidden geometries of the Arabidopsis thaliana epidermis. PLoS ONE 7:e43546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins GL, Jain SK (1960) Developmental studies of cell differentiation in the epidermis of monocotyledons. I. Allium, Rhoeo and Commelina. Dev Biol 2:409–426

    Article  Google Scholar 

  • Stebbins GL, Shan SS (1960) Development studies of cell differentiation in the epidermis of monocotyledons. II. Cytological features of stomatal development in the Graminae. Dev Biol 2:477–500

    Article  Google Scholar 

  • Sylvester AW, Smith LG (2009) Cell biology of maize leaf development. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, pp p179–p203

    Chapter  Google Scholar 

  • Szymanski DB (2014) The kinematics and mechanics of leaf expansion: new pieces to the Arabidopsis puzzle. Curr Opin Plant Biol 22:141–148

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson PB, Magellan TM, Griffith MP (2014) Root contraction in Cycas and Zamia (Cycadales) determined by gelatinous fibers. Am J Bot 101:1275–1285

    Article  PubMed  Google Scholar 

  • Tsabary G, Shani Z, Roiz L, Levy I, Riov J, Shoseyov O (2003) Abnormal ‘wrinkled’ cell walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1, 4-β-glucanase (cel1) antisense. Plant Mol Biol 51:213–224

    Article  CAS  PubMed  Google Scholar 

  • Ugural AC (1999) Stresses in plates and shells. WCD McGraw-Hill, Boston-Toronto

    Google Scholar 

  • Urbanowicz BR, Bennett AB, del Campillo E, Catalá C, Hayashi T, Henrissat B, Höfte H, McQueen-Mason SJ, Patterson SE, Shoseyov O, Teeri TT, Rose JKC (2007) Structural organization and a standardized nomenclature for plant endo-1, 4-β-glucanases (cellulases) of glycosyl hydrolase family 9. Plant Physiol 144:1693–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernicke W, Günther P, Jung G (1993) Microtubules and cell shaping in the mesophyll of Nigella damascena L. Protoplasma 173:8–12

    Article  Google Scholar 

  • Weston GD, Cass DD (1973) Observations on the development of the paraveinal mesophyll of soybean leaves. Bot Gaz 134:332–335

    Article  Google Scholar 

  • Wiebe HH, Al-Saadi HA (1976) The role of invaginations in armed mesophyll cells of pine needles. New Phytol 77:773–775

    Article  Google Scholar 

  • Yin J, Cao Z, Li C, Sheinman I, Chen X (2008) Stress-driven buckling patterns in spheroidal core/shell structures. P Natl Acad Sci USA 105:19132–19135

    Article  Google Scholar 

  • Zamski E, Ucko O, Koller D (1983) The mechanism of root contraction in Gymnarrhena micranatha, a desert plant. New Phytol 95:29–35

    Article  Google Scholar 

  • Zhang C, Halsey LE, Szymanski DB (2011) The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biol 11:27

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in D.K. research team is supported by the National Science Centre, Poland, research grant MAESTRO no. 2011/02/A/NZ3/00079. We thank Dr. Agata Burian for the discussions and valuable comments on this manuscript and Dr. Magdalena Raczyńska-Szajgin for the micrographs of the A. grandiflora petal epidermis. The drawings presented in the figures were prepared using Adobe Design Premium CS4 (Adobe Systems Inc. USA) and CorelDRAW X6 (Corel Corp.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Kwiatkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borowska-Wykręt, D., Kwiatkowska, D. (2018). Folding, Wrinkling, and Buckling in Plant Cell Walls. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-79099-2_10

Download citation

Publish with us

Policies and ethics