Skip to main content
Log in

Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: The role of microtubules and ion accumulation

  • Published:
Planta Aims and scope Submit manuscript

Summary

The role of microtubules and ions in cell shaping was investigated in differentiating guard cells of Allium using light and electron microscopy and cytochemistry. Microtubules appear soon after cytokinesis in a discrete zone close to the plasmalemma adjacent to the common wall between guard cells. The microtubules fan out from this zone, which corresponds to the future pore site, towards the other sides of the cell. Soon new cellulose microfibrils are deposited on the wall adjacent to the microtubules and oriented parallel to them. As the wall thickens, the shape of the cell shifts from cylindrical to kidney-like. Studies with polarized light show that guard cells gradually assume a birefringence pattern during development characteristic of wall microfibrils radiating away from the pore site. Retardation increases from 10 Å when cells just begin to take shape, to 80–100 Å at maturity. Both microfibril and microtubule orientation remain constant during development. Observations on aberrant cells including those produced under the influence of drugs such as colchicine, which leads to loss of microtubules, abnormal wall thickenings and disruption of wall birefringence, further support the role of microtubules in cell shaping through their function in the localization of wall deposition and the orientation of cellulose microfibrils in the new wall layer. Potassium first appears in guard mother cells before division and rapidly accumulates afterwards during cell shaping, as judged by the cobaltinitrite reaction. Some chloride and perhaps organic acid anions also accumulate. Thus, these ions, which are known to play a role in the function of mature guard cells, also seem to be important in the early growth and shaping of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IPC:

isopropyl-N-phenylcarbamate

CB:

cytochalasin B

GMC:

guard mother cell

MTOC:

microtubule organizing center

References

  • Allaway, W.G.: Accumulation of malate in guard cells of Vicia faba during stomatal opening. Planta 110, 63–70 (1973)

    Google Scholar 

  • Apelbaum, A., Burg, S.P.: Altered cell microfibrillar orientation in ethylene-treated Pisum sativum stems. Plant Physiol. 48, 648–652 (1971)

    Google Scholar 

  • Aylor, D.E., Parlange, J.-Y., Krikorian, A.D.: Stomatal mechanics. Amer. J. Bot. 60, 163–171 (1973)

    Google Scholar 

  • Berlin, R.D., Oliver, J.M., Ukena, T.E., Yin, H.H.: Control of cell surface topography. Nature 247, 45–46 (1974)

    PubMed  Google Scholar 

  • Bhattacharyya, B., Wolff, J.: Membrane-bound tubulin in brain and thyroid tissue. J. biol. Chem. 250, 7639–7646 (1975)

    PubMed  Google Scholar 

  • Bouck, G.B., Cronshaw, J.: The fine structure of differentiating sieve tube elements. J. Cell Biol. 25, 79–96 (1965)

    Article  PubMed  Google Scholar 

  • Brinkley, B.R., Fuller, G.M., Highfield, D.P.: Cytoplasmic microtubules in normal and transformed cells in culture: Analysis by tubulin antibody immunofluorescence. Proc. Nat. Acad. Sci. USA 72, 4981–4985 (1975)

    PubMed  Google Scholar 

  • Brower, D.L., Hepler, P.K.: Microtubules and secondary wall deposition in zylem: the effects of isopropyl-N-phenylcarbamate. Protoplasma 87, 91–111 (1976)

    PubMed  Google Scholar 

  • Brown, D.L., Bouck, G.B.: Microtubule biogenesis and cell shape in Ochromonas. III. Effects of the herbicidal mitotic inhibitor isopropyl-N-phenylcarbamate on shape and flagellum regeneration. J. Cell Biol. 61, 514–536 (1974)

    Article  PubMed  Google Scholar 

  • Brown, R.M., Montezinos, D.: Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Nat. Acad. Sci. USA 73, 143–147 (1976)

    PubMed  Google Scholar 

  • Bünning, E., Biegert, F.: Die Bildung der Spaltöffnungsinitialen bei Allium cepa. Z. Bot. 41, 17–39 (1953)

    Google Scholar 

  • Chafe, S.C., Wardrop, A.B.: Microfibril orientation in plant cell walls. Planta 92, 13–24 (1970)

    Google Scholar 

  • Coss, R.A., Bloodgood, R.A., Brower, D.L., Pickett-Heaps, J.D., McIntosh, J.R.: Studies on the mechanism of action of isopropyl-N-phenylcarbamate. Exp. Cell Res. 92, 394–398 (1975)

    PubMed  Google Scholar 

  • Coss, R.A., Pickett-Heaps, J.D.: The effects of isopropyl-N-phenylcarbamate on the green alga Oedogonium cardiacum. I. Cell division. J. Cell Biol. 53, 84–98 (1974)

    Article  Google Scholar 

  • Cronshaw, J.: Tracheid differentiation in tobacco pith cultures. Planta 72, 78–90 (1967)

    Google Scholar 

  • Davis, B.D., Chen, J.C.W., Philpott, M.: The transition from filamentous to two-dimensional growth in fern gametophytes. IV. Initial events. Amer. J. Bot. 61, 722–729 (1974)

    Google Scholar 

  • Dayandan, P., Kaufman, P.B.: Stomatal movements associated with potassium fluxes. Amer. J. Bot. 62, 221–231 (1975)

    Google Scholar 

  • DeMichele, D.W., Sharpe, P.J.H.: An analysis of the mechanics of guard cell motion. J. theor. Biol. 41, 77–96 (1973)

    PubMed  Google Scholar 

  • Dhindsa, R.S., Beasley, C.A., Ting, I.P.: Osmoregulation in cotton fiber. Accumulation of potassium and malate during growth. Plant Physiol. 56, 394–398 (1975)

    Google Scholar 

  • Edwards, G.E., Gutierrez, M.: Metabolic activities in extracts of mesophyll and bundle sheath cells of Panicum miliaceum (L.) in relation to the C4 dicarboxylic acid pathway of photosynthesis. Plant Physiol. 50, 728–732 (1972)

    Google Scholar 

  • Green, P.B.: Mechanism for plant cellular morphogenesis. Science 138, 1404–1405 (1962)

    Google Scholar 

  • Green, P.B.: On mechanisms of elongation. In: Cytodifferentiation and Macromolecular Synthesis, pp. 203–234, M. Locke, ed., New York: Acad. Press 1963

    Google Scholar 

  • Green, P.B.: Morphogenesis of the cell and organ axis—biophysical models. Brookhaven Symp. quant. Biol. 25, 166–190 (1974)

    Google Scholar 

  • Green, P.B., Erickson, R.O., Richmond, P.A.: On the physical basis of cell morphogenesis. Ann. N.Y. Acad. Sci. 175, 712–731 (1970)

    Google Scholar 

  • Haschke, H.-P., Lüttge, U.: Stoichiometric correlation of malate accumulation with auxin-dependent K+−H+ exchange and growth in Avena coleoptile segments. Plant Physiol. 56, 696–698 (1975)

    Google Scholar 

  • Heath, I.B.: A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J. theor. Biol. 48, 445–449 (1974)

    PubMed  Google Scholar 

  • Hepler, P.K., Fosket, D.E.: The role of microtubules in vessel member differentiation in Coleus. Protoplasma 72, 213–236 (1971)

    Google Scholar 

  • Hepler, P.K., Jackson, W.T.: Isopropyl N-phenylcarbamate affects spindle microtubule orientation in dividing endosperm cells of Haemanthus katherinae Baker. J. Cell Sci. 5, 727–743 (1969)

    PubMed  Google Scholar 

  • Hepler, P.K., Newcomb, E.H.: Microtubules and fibrils in the cytoplasm of Coleus cells undergoing secondary wall deposition. J. Cell Biol. 20, 529–533 (1964)

    Article  PubMed  Google Scholar 

  • Hepler, P.K., Palevitz, B.A.: Microtubules and microfilaments. Ann. Rev. Plant Physiol. 25, 309–362 (1974)

    Google Scholar 

  • Kaufman, P.B., Petering, L.B., Yocum, C.S., Baic, D.: Ultrastructural studies on stomata development in internodes of Avena sativa. Amer. J. Bot. 57, 33–49 (1970)

    Google Scholar 

  • Landré, P.: Quelques aspects infrastructuraux des stomatas des cotyledons de la Moutarde (Sinapis alba L.). C.R. Acad. Sci. Paris 269, 990–992 (1969)

    Google Scholar 

  • Lawson, V.R., Weintraub, R.L.: Interactions of microtubule disorganizers, plant hormones and red light in wheat coleoptile segment growth. Plant Physiol. 55, 1062–1066 (1975)

    Google Scholar 

  • Ledbetter, M., Porter, K.R.: A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239–250 (1963)

    Article  Google Scholar 

  • Maercker, U.: Zur Kenntnis der Transpiration des Schliesszellen. Protoplasma 60, 61–78 (1965)

    Google Scholar 

  • Marchant, H.J., Pickett-Heaps, J.D.: Ultrastructure and differentiation of Hydrodictyon reticulatum. III. Formation of the vegetative daughter net. Aust. J. Biol. Sci. 25, 265–278 (1972a)

    Google Scholar 

  • Marchant, H.J., Pickett-Heaps, J.D.: Ultrastructure and differentiation of Hydrodictyon reticulatum. VI. Formation of the germ net. Aust. J. Biol. Sci. 25, 1199–1213 (1972b)

    Google Scholar 

  • Marré, E., Lado, P., Rasi-Caldogno, F., Colombo, R., DeMichelis, M.I.: Evidence for the coupling of proton extrusion to K+ uptake in pea internode segments treated in fusicoccin or auxin. Plant Sci. Lett. 3, 365–379 (1974)

    Google Scholar 

  • Miller, J.H., Stephani, M.C.: Effects of colchicine and light on cell form in fern gametophytes. Implications for a mechanism of light-induced cell elongation. Physiol. Plantarum 24, 264–271 (1971)

    Google Scholar 

  • Millington, W.F., Gawlik, S.R.: Ultrastructure and initiation of wall pattern in Pediastum Boryanum. Amer. J. Bot. 57, 552–561 (1970)

    Google Scholar 

  • Newcomb, E.H.: Plant microtubules. Ann. Rev. Plant Physiol. 20, 253–288 (1969)

    Google Scholar 

  • Newcomb, E.H., Bonnett, H.T.: Cytoplasmic microtubule and wall microfibril orientation in root hairs of radish. J. Cell Biol. 27, 575–589 (1965)

    Article  Google Scholar 

  • O'Brien, T.P.: The cytology of cell-wall formation in some eukaryotic cells. Bot. Rev. 38, 87–118 (1972)

    Google Scholar 

  • Olmsted, J.B., Borisy, G.G.: Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry 14, 2996–3005 (1975)

    PubMed  Google Scholar 

  • Palevitz, B.A.: Ions and stomatal differentiation. (Abstr.) Plant Physiol. 57, Suppl., 43 (1976a)

    Google Scholar 

  • Palevitz, B.A.: Microtubules and guard cell shape. (Abstr.) Plant Physiol. 57, Suppl. 57 (1976b)

    Google Scholar 

  • Palevitz, B.A., Hepler, P.K.: The control of the plane of division during stomatal differentiation in Allium. I. Spindle reorientation. Chromosoma 46, 297–326 (1974a)

    Google Scholar 

  • Palevitz, B.A., Hepler, P.K.: The control of the plane of division during stomatal differentiation in Allium. II. Drug studies. Chromosoma 46, 327–341 (1974b)

    Google Scholar 

  • Palevitz, B.A., Hepler, P.K.: Microtubules, potassium and cell shape. (Abstr.) J. Cell Biol. 67, 323a (1975)

  • Pallas, J.E., Wright, B.G.: Organic acid changes in the epidermis of Vicia faba and their implication in stomatal movement. Plant Physiol. 51, 588–590 (1973)

    Google Scholar 

  • Parthasarathy, M.V.: Ultrastructure of phloem in palms. Protoplasma 79, 59–91 (1974)

    Google Scholar 

  • Penny, M.G., Bowling, D.J.F.: Direct determination of pH in the stomatal complex of Commelina. Planta 122, 209–212 (1975)

    Google Scholar 

  • Piatigorsky, J., Rothschild, S.S., Wollberg, M.: Stimulation by insulin of cell elongation and microtubule assembly in embryonic chick-lens epithelia. Proc. Nat. Acad. Sci. USA 70, 1195–1198 (1973)

    PubMed  Google Scholar 

  • Pickett-Heaps, J.D.: Incorporation of radioactivity into wheat xylem walls. Planta 71, 1–14 (1966)

    Google Scholar 

  • Pickett-Heaps, J.D.: The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation, and distribution of cytoplasmic microtubules. Develop. Biol. 15, 206–236 (1967)

    Google Scholar 

  • Pollack, R., Osborn, M., Weber, K.: Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc. Nat. Acad. Sci. USA 72, 994–998 (1975)

    PubMed  Google Scholar 

  • Porter, K.R.: Cytoplasmic microtubules and their functions. In: Principles of Biomolecular Organization, Ciba Found. Symp. pp. 308–334 Wolstenholme, G.E.W., O'Connor, M., London: Churchill 1966

    Google Scholar 

  • Porter, K.R., Puck, T.T., Hsie, A.W., Kelley, D.: An electron microscope study of the effects of dibutyryl cyclic AMP on chinese hamster ovary cells. Cell 2, 145–162 (1974)

    Article  PubMed  Google Scholar 

  • Porter, K.R., Todaro, G.J., Fonte, V.: A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse Balb/3T3 cells. J. Cell Biol. 59, 633–642 (1973)

    Article  PubMed  Google Scholar 

  • Preston, R.D., Goodman, R.N.: Structural aspects of cellulose microfibril orientation. J. Roy. Microsc. Soc. 88, 513–527 (1968)

    Google Scholar 

  • Raschke, K.: Stomatal action. Ann. Rev. Plant Physiol. 26, 309–340 (1975)

    Article  Google Scholar 

  • Raschke, K., Fellows, M.P.: Stomatal movement in Zea mays: shuttle of potassium and chloride between guard cells and subsidiary cells. Planta 101, 296–316 (1971)

    Google Scholar 

  • Raschke, K., Humble, G.D.: No uptake of anions required by opening stomata of Vicia faba: guard cells release hydrogen ions. Planta 115, 47–57 (1973)

    Google Scholar 

  • Rayle, D.L., Cleland, R.: The in vitro acid-growth response: relation to in vivo growth responses and auxin action. Planta 104, 282–296 (1972)

    Google Scholar 

  • Ridge, I.: The control of cell shape and rate of cell expansion by ethylene: effects on microfibril orientation and cell wall extensibility in etiolated peas. Acta bot. neerl. 22, 144–158 (1973)

    Google Scholar 

  • Roberts, L.W.: Cytodifferentiation in Plants. London: Cambridge Univ. Press 1976

    Google Scholar 

  • Robinson, D.G., Preston, R.D.: Plasmalemma structure in relation to microfibril biosynthesis in Oocystis. Planta 104, 234–246 (1972)

    PubMed  Google Scholar 

  • Robinson, D.G., White, R.K., Preston, R.D.: Fine structure of swarmers of Cladophora and Chaetomorpha. Planta 107, 131–144 (1972)

    Google Scholar 

  • Roisen, F.J., Murphy, R.A., Broden, W.G.: Dibutyryl cyclic adenosine monophosphate stimulation of colcemid-inhibited axonal elongation. Science 177, 809–811 (1972)

    PubMed  Google Scholar 

  • Sawhney, V.K., Srivastava, L.M.: Gibberellic acid-induced elongation of lettuce hypocotyls and its inhibition by colchicine. Canad. J. Bot. 52, 259–264 (1974)

    Google Scholar 

  • Sawhney, V.K., Srivastava, L.M.: Wall fibrils and microtubules in normal and gibberellic-acid-induced growth in hypocotyl cells. Canad. J. Bot. 53, 824–835 (1975)

    Google Scholar 

  • Sargent, J.A., Atack, A.V., Osborne, D.J.: Auxin and ethylene control growth in epidermal cells of Pisum sativum: a biphasic response to auxin. Planta 115, 213–225 (1974)

    Google Scholar 

  • Schnepf, E., Röderer, G., Herth, W.: The formation of the fibrils in the lorica of Poteriochromonas stipitata: Tip growth, kinetics, site, orientation. Planta 125, 45–62 (1975)

    Google Scholar 

  • Shibaoka, H.: Gibberellin-colchicine interaction in elongation of azuki bean epicotyl sections. Plant Cell Physiol. 13, 461–469 (1972)

    Google Scholar 

  • Shibaoka, H.: Involvement of wall microtubules in gibberellin promotion and kinetin inhibition of stem elongation. Plant Cell Physiol. 15, 255–263 (1974)

    Google Scholar 

  • Shoemaker, E.M., Srivastava, L.M.: The mechanics of stomatal opening in corn (Zea mays L.) leaves. J. theor. Biol. 42, 219–225 (1973)

    PubMed  Google Scholar 

  • Singh, A.P., Srivastava, L.M.: The fine structure of pea stomata. Protoplasma 76, 61–82 (1973)

    Google Scholar 

  • Srivastava, L.M., Singh, A.P.: Stomatal structure in corn leaves. J. ultrastruct. Res. 39, 345–363 (1972)

    PubMed  Google Scholar 

  • Stebbins, G.L., Jain, S.K.: Developmental studies of cell differentiation in the epidermis of monocotyledons. I. Allium, Rhoeo, and Commelina. Develop. Biol. 2, 409–426 (1960)

    Google Scholar 

  • Stebbins, G.L., Shah, S.S.: Developmental studies of cell differentiation in the epidermis of monocotyledons. II. Cytological features of stomatal development in the graminae. Develop. Biol. 2, 477–500 (1960)

    Google Scholar 

  • Stebbins, G.L., Shah, S.S., Jamin, D., Jura, P.: Changed orientation of the mitotic spindle of stomatal guard cell divisions in Hordeum vulgare. Amer. J. Bot. 54, 71–80 (1967)

    Google Scholar 

  • Stetler, D.A., DeMaggio, A.E.: An ultrastructural study of fern gametophytes during one-to-two-dimensional development. Amer. J. Bot. 59, 1011–1017 (1972)

    Google Scholar 

  • Stockwell, C.R., Miller, J.H.: Regions of cell wall expansion in the protonema of a fern. Amer. J. Bot. 61, 375–378 (1974)

    Google Scholar 

  • Thomas, D.A.: Stomata. In: Ion Transport in Plant Cells and Tissues, pp. 377–412, ed. Baker, D.A., Hall, J.L.. New York: North Holland 1975

    Google Scholar 

  • Thomson, W.W., DeJournett, R.: Studies on the ultrastructure of the guard cells of Opuntia. Amer. J. Bot. 57, 309–316 (1970)

    Google Scholar 

  • Tilney, L.G., Cardell, R.R.: Factors controlling the reassembly of the microvillus border of the small intestine of the salamander. J. Cell Biol. 47, 408–422 (1976)

    Article  Google Scholar 

  • Willingham, M.C., Pastan, I.: Cyclic AMP and cell morphology in cultured fibroblasts. J. Cell Biol. 67, 146–159 (1975)

    Article  PubMed  Google Scholar 

  • Willmer, C.M., Dittrich, P.: Carbon dioxide fixation by epidermal and mesophyll tissues of Tulipa and Commelina. Planta 117, 123–132 (1974)

    Google Scholar 

  • Willmer, C.M., Pallas, J.E., Black, C.C.: Carbon dioxide metabolism in leaf epidermal tissue. Plant Physiol 52, 448–452 (1973)

    Google Scholar 

  • Yahara, I., Edelman, G.M.: Electron microscopic analysis of the modulation of lymphocyte receptor mobility. Exp. Cell Res. 91, 125–142 (1975)

    PubMed  Google Scholar 

  • Ziegenspeck, H.: Die Micellierung der Turgeszenzmechanismen Teil I. Bot. Arch. 39, 268–309 (1938)

    Google Scholar 

  • Ziegenspeck, H.: Vergleichende Untersuchung der Entwicklung der Spaltöffnugne von Monokotyledonen und Dikotyledonen im Lichte der Polariskopie und Dichroskopie. Protoplasma 38, 197–224 (1944)

    Google Scholar 

  • Ziegler, H., Schmueli, E., Lange, G.: Structure and function of the stomata of Zea mays. I. The development. Cytobiologie 9, 162–168 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palevitz, B.A., Hepler, P.K. Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: The role of microtubules and ion accumulation. Planta 132, 71–93 (1976). https://doi.org/10.1007/BF00390333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390333

Keywords

Navigation