Skip to main content

Comparative Assessment and Merit Appraisal of Thermally Assisted Machining Techniques for Improving Machinability of Titanium Alloys

  • Chapter
  • First Online:
Introduction to Mechanical Engineering

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Titanium-based alloys are highly recognised for the outstanding strength, lightweight, stable properties and exceptional resistance to corrosion which make them greatly suitable material for industry applications involving harsh environmental conditions such as elevated temperature. However, in product manufacture, machining of these alloys tends to produce poor surface quality with accelerated tool wear and low material removal rate, resulting from large cutting forces, excessive workpiece temperatures and chemical reactivity owing to high yield stress and low thermal conductivity. In overcoming these manufacturing challenges, industry practice supported by current research identifies the significantly useful potential for thermally assisted machining (TAM) techniques for improving machinability of titanium-based alloys whereby localised workpiece heating is applied to temporarily reduce metal hardness at the cutting point for lessening cutting forces. Reviewing current literature, this paper appraises various manufacturing issues related to the machining of these alloys and the potential improvement to machinability characteristics of these alloys from the application of TAM techniques. A detailed evaluation is presented on the alloy machinability influenced by workpiece heating prior to or during machining process using external heat source. This investigation recognises that the laser-assisted machining (LAM) reduces cutting forces by 30–60% and tool wear by 90%. It observes that the plasma-assisted machining (PAM) reduces cutting force by 20–40%, increases material removal rate by 200% and enhances the tool life by 150 times. Additionally, the induction-assisted machining (IAM) is noted to reduce cutting force by 36–54% while increasing the tool life and material removal rate by 206 and 214%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ezugwu, E., & Wang, Z. (1997). Titanium alloys and their machinability—A review. Journal of Materials Processing Technology, 68(3), 262–274.

    Article  Google Scholar 

  2. Gorynin, I. (1999). Titanium alloys for marine application. Materials Science and Engineering A, 263(2), 112–116.

    Article  Google Scholar 

  3. Yang, X., & Richard Liu, C. (1999). Machining titanium and its alloys. Machining Science and Technology, 3(1), 107–139.

    Article  Google Scholar 

  4. Shokrani, A., Dhokia, V., & Newman, S. T. (2012). Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57, 83–101.

    Article  Google Scholar 

  5. Gurrappa, I. (2003). Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Materials Characterization, 51(2), 131–139.

    Article  Google Scholar 

  6. Boyer, R. (1996). An overview on the use of titanium in the aerospace industry. Materials Science and Engineering A, 213(1), 103–114.

    Article  Google Scholar 

  7. Zhou, Y., Zeng, W., & Yu, H. (2005). An investigation of a new near-beta forging process for titanium alloys and its application in aviation components. Materials Science and Engineering A, 393(1), 204–212.

    Article  Google Scholar 

  8. Pérez, J., Llorente, J., & Sanchez, J. (2000). Advanced cutting conditions for the milling of aeronautical alloys. Journal of Materials Processing Technology, 100(1), 1–11.

    Google Scholar 

  9. Ezugwu, E. (2005). Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45(12), 1353–1367.

    Article  Google Scholar 

  10. Rack, H. J., & Qazi, J. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering C, 26(8), 1269–1277.

    Article  Google Scholar 

  11. Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 243(1), 231–236.

    Article  Google Scholar 

  12. Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30–42.

    Article  Google Scholar 

  13. Liu, X., Chu, P. K., & Ding, C. (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47(3), 49–121.

    Article  Google Scholar 

  14. Murr, L., et al. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 20–32.

    Article  Google Scholar 

  15. Thomas, M., Turner, S., & Jackson, M. (2010). Microstructural damage during high-speed milling of titanium alloys. Scripta Materialia, 62(5), 250–253.

    Article  Google Scholar 

  16. Mantle A., & Aspinwall, D. K. (1998). Tool life and surface roughness when high speed machining a gamma titanium aluminide, progress of cutting and grinding, in Fourth International Conference on Progress of Cutting and Grinding, U. A. Turpan (Ed.) (pp. 89–94). China: International Academic Publishers.

    Google Scholar 

  17. Abele, E., & Hölscher, R. (2014). New technology for high speed cutting of titanium alloys. In New Production Technologies in Aerospace Industry (pp. 75–81). Berlin: Springer.

    Google Scholar 

  18. Venugopal, K., Paul, S., & Chattopadhyay, A. (2007). Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling. Wear, 262(9), 1071–1078.

    Article  Google Scholar 

  19. Oosthuizen, G. A., et al. (2010). A review of the machinability of titanium alloys. R&D Journal of the South African Institution of Mechanical Engineering, 26, 43–52.

    Google Scholar 

  20. Veiga, C., Davim, J., & Loureiro, A. (2013). Review on machinability of titanium alloys: The process perspective. Reviews on Advanced Materials Science, 34(2), 148–164.

    Google Scholar 

  21. Bandapalli C., Sutaria B. M., & Bhatt, V. D. (2013). High speed machining of Ti-alloys—A critical review. In Proceedings of the 1 International and 16 National Conference on Machines and Mechanisms (iNaCoMM2013) (pp. 324–331). IIT Roorkee: India.

    Google Scholar 

  22. Che-Haron, C. (2001). Tool life and surface integrity in turning titanium alloy. Journal of Materials Processing Technology, 118(1), 231–237.

    Article  Google Scholar 

  23. Lauwers, B., Klocke F., & Klink, A. (2010). Advanced manufacturing through the implementation of hybrid and media assisted processes. International Chemnitz Manufacturing Colloquium, 54, 205–220.

    Google Scholar 

  24. Gupta, K., & Laubscher, R. F. (2016). Sustainable machining of titanium alloys: A critical review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405416634278.

    Google Scholar 

  25. Warap, N., Mohid, Z., & Rahim, E. A. (2013). Laser assisted machining of titanium alloys. In Materials Science Forum. Trans Tech Publ.

    Google Scholar 

  26. Madhavulu, G., & Ahmed, B. (1994). Hot machining process for improved metal removal rates in turning operations. Journal of Materials Processing Technology, 44(3), 199–206.

    Article  Google Scholar 

  27. Tosun, N., & Ozler, L. (2004). Optimisation for hot turning operations with multiple performance characteristics. The International Journal of Advanced Manufacturing Technology, 23(11–12), 777–782.

    Google Scholar 

  28. Radovanovic, M. R., & Dašić, P. V. (2006) LASER ASSISTED TURNING. In Research and Development in Mechanical Industry (pp. 312–316), RaDMI 2006, Budva, Montenegro..

    Google Scholar 

  29. Rebro P. A., et al. (2002). Comparative assessment of laser-assisted machining for various ceramics (Vol. 30, pp. 153–160). Transactions of North American Manufacturing Research Institution.

    Google Scholar 

  30. Amin, A., & Abdelgadir, M. (2003). The effect of preheating of work material on chatter during end milling of medium carbon steel performed on a vertical machining center (VMC). Journal of Manufacturing Science and Engineering, 125(4), 674–680.

    Article  Google Scholar 

  31. Amin, A. N., et al. (2008). Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2. Journal of Materials Processing Technology, 201(1), 466–470.

    Article  Google Scholar 

  32. Ginta, T. L., et al. (2009). Improved tool life in end milling Ti-6Al-4V through workpiece preheating. European Journal of Scientific Research, 27(3), 384–391.

    Google Scholar 

  33. Lajis, M. A., et al. (2009). Hot machining of hardened steels with coated carbide inserts. American Journal of Engineering and Applied Sceices, 2(2), 421–427.

    Article  Google Scholar 

  34. Kttagawa, T., & Maekawa, K. (1990). Plasma hot machining for new engineering materials. Wear, 139(2), 251–267.

    Article  Google Scholar 

  35. Leshock, C. E., Kim, J.-N., & Shin, Y. C. (2001). Plasma enhanced machining of Inconel 718: Modeling of workpiece temperature with plasma heating and experimental results. International Journal of Machine Tools and Manufacture, 41(6), 877–897.

    Article  Google Scholar 

  36. Novak, J., Shin, Y., & Incropera, F. (1997). Assessment of plasma enhanced machining for improved machinability of Inconel 718. Journal of Manufacturing Science and Engineering, 119(1), 125–129.

    Article  Google Scholar 

  37. De Lacalle, L. N. L., et al. (2004). Plasma assisted milling of heat-resistant superalloys. Journal of Manufacturing Science and Engineering, 126(2), 274–285.

    Article  Google Scholar 

  38. Popa, L. (2012). Complex study of plasma hot machining (PMP). Revista de Tehnologii Neconventionale, 16(1), 26.

    Google Scholar 

  39. Jau B. M., Copley S. M., & Bass, M. (1981). Laser assisted machining. In Proceedings of the Ninth North American Manufacturing Research Conference (pp. 12–15). Pennsylvania: University Park.

    Google Scholar 

  40. Rajagopal, S., Plankenhorn, D., & Hill, V. (1982). Machining aerospace alloys with the aid of a 15 kW laser. Journal of Applied Metalworking, 2(3), 170–184.

    Article  Google Scholar 

  41. Chryssolouris, G., Anifantis, N., & Karagiannis, S. (1997). Laser assisted machining: an overview. Journal of Manufacturing Science and Engineering, 119(4B), 766–769.

    Article  Google Scholar 

  42. Dumitrescu, P., et al. (2006). High-power diode laser assisted hard turning of AISI D2 tool steel. International Journal of Machine Tools and Manufacture, 46(15), 2009–2016.

    Article  Google Scholar 

  43. Thomas, T., & Vigneau, J. O. (1999). Laser-assisted milling process, Google Patents.

    Google Scholar 

  44. Komanduri, R., & Von Turkovich, B. (1981). New observations on the mechanism of chip formation when machining titanium alloys. Wear, 69(2), 179–188.

    Article  Google Scholar 

  45. Hartung, P. D., Kramer, B., & Von Turkovich, B. (1982). Tool wear in titanium machining. CIRP Annals-Manufacturing Technology, 31(1), 75–80.

    Article  Google Scholar 

  46. Dornfeld, D., et al. (1999). Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP Annals-Manufacturing Technology, 48(1), 73–76.

    Article  Google Scholar 

  47. Jawaid, A., Che-Haron, C., & Abdullah, A. (1999). Tool wear characteristics in turning of titanium alloy Ti-6246. Journal of Materials Processing Technology, 92, 329–334.

    Article  Google Scholar 

  48. Nabhani, F. (2001). Machining of aerospace titanium alloys. Robotics and Computer-Integrated Manufacturing, 17(1), 99–106.

    Article  Google Scholar 

  49. Wang, Z., Wong, Y., & Rahman, M. (2005). High-speed milling of titanium alloys using binderless CBN tools. International Journal of Machine Tools and Manufacture, 45(1), 105–114.

    Article  Google Scholar 

  50. Wang, Z., Rahman, M., & Wong, Y. (2005). Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear, 258(5), 752–758.

    Article  Google Scholar 

  51. Che-Haron C. H., & Jawaid. A. (2005). The effect of machining on surface integrity of titanium alloy Ti-6% Al-4%V. Journal of Materials Processing Technology, 166, 188–192.

    Article  Google Scholar 

  52. Nouari, M., & Ginting, A. (2006). Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surface & Coatings Technology, 200(18), 5663–5676.

    Article  Google Scholar 

  53. Haron, C. C., Ginting, A., & Arshad, H. (2007). Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S. Journal of Materials Processing Technology, 185(1), 77–82.

    Article  Google Scholar 

  54. Amin, A. N., Ismail, A. F., & Khairusshima, M. N. (2007). Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4V. Journal of Materials Processing Technology, 192, 147–158.

    Article  Google Scholar 

  55. Jianxin, D., Yousheng, L., & Wenlong, S. (2008). Diffusion wear in dry cutting of Ti–6Al–4V with WC/Co carbide tools. Wear, 265(11), 1776–1783.

    Article  Google Scholar 

  56. Dargusch, M. S., et al. (2008). Subsurface deformation after dry machining of grade 2 titanium. Advanced Engineering Materials, 10(1–2), 85–88.

    Article  Google Scholar 

  57. Ibrahim, G., Haron, C. C., & Ghani, J. (2009). Surface integrity of Ti-6Al-4V ELI when machined using coated carbide tools under dry cutting condition. The International Journal of Mechanical and Materials Engineering, 4(2), 191–196.

    Google Scholar 

  58. Sun, S., Brandt, M., & Dargusch, M. (2009). Characteristics of cutting forces and chip formation in machining of titanium alloys. International Journal of Machine Tools and Manufacture, 49(7), 561–568.

    Article  Google Scholar 

  59. Abdel-Aal, H., Nouari, M., & El Mansori, M. (2009). Tribo-energetic correlation of tool thermal properties to wear of WC-Co inserts in high speed dry machining of aeronautical grade titanium alloys. Wear, 266(3), 432–443.

    Article  Google Scholar 

  60. Fang, N., & Wu, Q. (2009). A comparative study of the cutting forces in high speed machining of Ti–6Al–4V and Inconel 718 with a round cutting edge tool. Journal of Materials Processing Technology, 209(9), 4385–4389.

    Article  Google Scholar 

  61. Armendia, M., et al. (2010). Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools. Journal of Materials Processing Technology, 210(2), 197–203.

    Article  Google Scholar 

  62. Özel, T., et al. (2010). Investigations on the effects of multi-layered coated inserts in machining Ti–6Al–4V alloy with experiments and finite element simulations. CIRP Annals-Manufacturing Technology, 59(1), 77–82.

    Article  MathSciNet  Google Scholar 

  63. Kali, D., & Chauhan, S. R. (2011). Machinability study of titanium (Grade-5) alloy using design of experiment technique. Engineering.

    Google Scholar 

  64. Honghua, S., et al. (2012). Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chinese Journal of Aeronautics, 25(5), 784–790.

    Article  Google Scholar 

  65. Mhamdi, M., et al. (2012). Surface integrity of titanium alloy Ti-6Al-4V in ball end milling. Physics Procedia, 25, 355–362.

    Article  Google Scholar 

  66. Ugarte, A., et al. (2012). Machining Behaviour of Ti-6Al-4V and Ti-5553 Alloys in interrupted cutting with PVD coated cemented carbide. Procedia CIRP, 1, 202–207.

    Article  Google Scholar 

  67. Nouari, M., & Makich, H. (2013). Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti–6Al–4V and Ti-555. International Journal of Refractory Metals & Hard Materials, 41, 259–269.

    Article  Google Scholar 

  68. Balaji, J., Krishnaraj, V., & Yogeswaraj, S. (2013). Investigation on high speed turning of titanium alloys. Procedia Engineering, 64, 926–935.

    Article  Google Scholar 

  69. Cotterell, M., et al. (2013). Temperature and strain measurement during chip formation in orthogonal cutting conditions applied to Ti-6Al-4V. Procedia Engineering, 63, 922–930.

    Article  Google Scholar 

  70. Shetty, P. K., et al. (2014). Machinability study on dry drilling of titanium alloy Ti-6Al-4V using L 9 orthogonal array. Procedia Materials Science, 5, 2605–2614.

    Article  Google Scholar 

  71. Li, N., et al. (2017). Experimental investigation with respect to the performance of deep submillimeter-scaled textured tools in dry turning titanium alloy Ti-6Al-4V. Applied Surface Science, 403, 187–199.

    Article  Google Scholar 

  72. Nakayama, K., Arai, M., & Kanda, T. (1988). Machining characteristics of hard materials. CIRP Annals-Manufacturing Technology, 37(1), 89–92.

    Article  Google Scholar 

  73. Darsin, M., & Basuki H. A. (2014). Development machining of titanium alloys: A review. In Applied Mechanics and Materials. Trans Tech Publ.

    Article  Google Scholar 

  74. Lütjering, G., & Williams, J. C. (2003). Titanium (Vol. 2). Berlin: Springer.

    Book  Google Scholar 

  75. Pramanik, A., et al. (2017). Fatigue life of machined components. Advances in Manufacturing, 5(1), 59–76.

    Article  Google Scholar 

  76. Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3), 250–280.

    Article  Google Scholar 

  77. Jaffery, S., & Mativenga, P. (2009). Assessment of the machinability of Ti-6Al-4V alloy using the wear map approach. The International Journal of Advanced Manufacturing Technology, 40(7), 687–696.

    Article  Google Scholar 

  78. Arrazola, P.-J., et al. (2009). Machinability of titanium alloys (Ti6Al4V and Ti555. 3). Journal of Materials Processing Technology, 209(5), 2223–2230.

    Article  Google Scholar 

  79. Isbilir, O., & Ghassemieh, E. (2013). Comparative study of tool life and hole quality in drilling of CFRP/titanium stack using coated carbide drill. Machining Science and Technology, 17(3), 380–409.

    Article  Google Scholar 

  80. Odelros, S. (2012). Tool wear in titanium machining.

    Google Scholar 

  81. Balažic, M., & Kopač, J. (2010). Machining of Titanium Alloy Ti-6Al-4V for biomedical applications. Strojniški vestnik-Journal of Mechanical Engineering, 56(3), 202–206.

    Google Scholar 

  82. Ying-lin K., et al. (2009). Use of nitrogen gas in high-speed milling of Ti-6Al-4V. Transactions of Nonferrous Metals Society of China, 19, 530–534.

    Article  Google Scholar 

  83. Machado, A., & Wallbank, J. (1990). Machining of titanium and its alloys—A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 204(1), 53–60.

    Article  Google Scholar 

  84. Zhecheva, A., et al. (2005). Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface & Coatings Technology, 200(7), 2192–2207.

    Article  Google Scholar 

  85. Kuttolamadom, M., et al. (2010). Investigation of the Machining of Titanium Components for Lightweight Vehicles. 2010, SAE Technical Paper.

    Google Scholar 

  86. Kumar, J., & Kumar, V. (2011). Evaluating the tool wear rate in ultrasonic machining of titanium using design of experiments approach. World Academy of Science, Engineering and Technology, 81, 803–808.

    Google Scholar 

  87. Donachie, M. J. (2000). Titanium: A technical guide. ASM international.

    Google Scholar 

  88. Komanduri, R., & Hou, Z.-B. (2002). On thermoplastic shear instability in the machining of a titanium alloy (Ti-6Al-4V). Metallurgical and Materials Transactions A, 33(9), 2995–3010.

    Article  Google Scholar 

  89. El-Wardany, T., Mohammed, E., & Elbestawi, M. (1996). Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials. International Journal of Machine Tools and Manufacture, 36(5), 611–634.

    Article  Google Scholar 

  90. Ezugwu, E., Bonney, J., & Yamane, Y. (2003). An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology, 134(2), 233–253.

    Article  Google Scholar 

  91. Pramanik, A. (2014). Problems and solutions in machining of titanium alloys. The International Journal of Advanced Manufacturing Technology, 70(5–8), 919–928.

    Article  Google Scholar 

  92. Dearnley, P., & Grearson, A. (1986). Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318. Materials Science and Technology, 2(1), 47–58.

    Article  Google Scholar 

  93. Bridges, P., & Magnus, B. (2001). Manufacture of Titanium Alloy Components for Aerospace and Military Applications. France: Research and Technology Organization.

    Google Scholar 

  94. Shaw, M. C. (2005). Metal cutting principles (Vol. 2). New York: Oxford University Press.

    Google Scholar 

  95. Amin, A., Hossain M. I., & Patwari, A. U. (2011). Enhancement of machinability of Inconel 718 in end milling through online induction heating of workpiece. In Advanced Materials Research. Trans Tech Publ.

    Article  Google Scholar 

  96. Pramanik, A., & Littlefair, G. (2015). Machining of titanium alloy (Ti-6Al-4V)—Theory to application. Machining Science and Technology, 19(1), 1–49.

    Article  Google Scholar 

  97. Amin, A., & Ginta T. L. (2014). Heat-assisted machining. Netherlands: Elsevier.

    Google Scholar 

  98. Trent, E. M., & Wright P. K. (2000). Metal cutting. UK: Butterworth-Heinemann.

    Google Scholar 

  99. Kumar, J., & Khamba, J. (2008). An experimental study on ultrasonic machining of pure titanium using designed experiments. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30(3), 231–238.

    Article  Google Scholar 

  100. Pramanik, A., et al. (2013). Machining and tool wear mechanisms during machining titanium alloys. In Advanced Materials Research. Trans Tech Publ.

    Article  Google Scholar 

  101. Corduan, N., et al. (2003). Wear mechanisms of new tool materials for Ti-6AI-4V high performance machining. CIRP Annals-Manufacturing Technology, 52(1), 73–76.

    Article  Google Scholar 

  102. Zanger, F., & Schulze, V. (2013). Investigations on mechanisms of tool wear in machining of Ti-6Al-4V using FEM simulation. Procedia CIRP, 8, 158–163.

    Article  Google Scholar 

  103. Ginta, T. L., et al. (2007). Tool life prediction by response surface methodology for end milling titanium alloy Ti–6Al–4V using uncoated carbide inserts. In International Conference on Mechanical Engineering.

    Google Scholar 

  104. Abd Rahim, E., Warap, N., & Mohid, Z. (2015). Thermal-assisted machining of nickel-based alloy.

    Google Scholar 

  105. Ezugwu, E. O., et al. (2007). Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture, 47(6), 884–891.

    Article  Google Scholar 

  106. Rahman, M., Wang, Z.-G., & Wong, Y.-S. (2006). A review on high-speed machining of titanium alloys. JSME International Journal Series C: Mechanical Systems Machine Elements and Manufacturing, 49(1), 11–20.

    Article  Google Scholar 

  107. Chauhan, D. K., & Chauhan, K. K. (2013). Optimization of Machining Parameters of Titanium Alloy for Tool Life. Journal of Engineering Computers & Applied Sciences, 2(6), 57–65.

    Google Scholar 

  108. Uddin, M., et al. (2017). Comparative study between wear of uncoated and TiAlN-coated carbide tools in milling of Ti6Al4V. Advances in Manufacturing, 5(1), 83–91.

    Article  MathSciNet  Google Scholar 

  109. Shivpuri, R., et al. (2002). Microstructure-mechanics interactions in modeling chip segmentation during titanium machining. CIRP Annals-Manufacturing Technology, 51(1), 71–74.

    Article  Google Scholar 

  110. Sun, J., & Guo, Y. (2009). A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. Journal of Materials Processing Technology, 209(8), 4036–4042.

    Article  Google Scholar 

  111. Kato, K. (2000). Wear in relation to friction—A review. Wear, 241(2), 151–157.

    Article  Google Scholar 

  112. Ke, Q., Xu, D., & Xiong, D. (2017). Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V. Journal of Mechanical Science and Technology, 31(1), 309–316.

    Article  Google Scholar 

  113. Rashid, R. R., et al. (2013). The response of the high strength Ti–10V–2Fe–3Al beta titanium alloy to laser assisted cutting. Precision Engineering, 37(2), 461–472.

    Article  Google Scholar 

  114. Sun, S., Brandt, M., & Dargusch, M. (2010). The effect of a laser beam on chip formation during machining of Ti6Al4V alloy. Metallurgical and Materials Transactions A, 41(6), 1573–1581.

    Article  Google Scholar 

  115. Palanisamy, S., et al. (2007). A rationale for the acoustic monitoring of surface deformation in Ti6Al4V alloys during machining. Advanced Engineering Materials, 9(11), 1000–1004.

    Article  Google Scholar 

  116. Altintas, Y., & Weck, M. (2004). Chatter stability of metal cutting and grinding. CIRP Annals-Manufacturing Technology, 53(2), 619–642.

    Article  Google Scholar 

  117. Dogra, M., et al. (2010). Tool wear, chip formation and workpiece surface issues in CBN hard turning: A review. International Journal of Precision Engineering and Manufacturing, 11(2), 341–358.

    Article  Google Scholar 

  118. Hong S. Y., Markus I., & Jeong, W.-C. (2001). New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. International Journal of Machine Tool & Manufacture, 41, 2245–2260.

    Article  Google Scholar 

  119. Amin, A. (1986). Influence of the instability of chip formation and preheating of work on tool life in machining high temperature resistant steel and titanium alloys. Mechanical Engineering Research Bulletin, 9, 52–62.

    Google Scholar 

  120. Namb, M., & Paulo, D. (2011). Influence of coolant in machinability of titanium alloy (Ti-6Al-4V). Journal of Surface Engineered Materials and Advanced Technology, 1(01), 9.

    Article  Google Scholar 

  121. Lei, S., & Pfefferkorn, F. (2007). A review on thermally assisted machining. In ASME 2007 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers.

    Google Scholar 

  122. Shams, O., Pramanik, A., & Chandratilleke, T. (2017). Thermal-Assisted Machining of Titanium Alloys. In Advanced Manufacturing Technologies (pp. 49–76). Berlin: Springer.

    Google Scholar 

  123. Maity, K., & Swain, P. (2008). An experimental investigation of hot-machining to predict tool life. Journal of Materials Processing Technology, 198(1), 344–349.

    Article  Google Scholar 

  124. Klocke, F., & König, W. (2007). Fertigungsverfahren 3: Abtragen, Generieren und Lasermaterialbearbeitung (Vol. 3). Berlin: Springer.

    Google Scholar 

  125. Bermingham, M., Palanisamy, S., & Dargusch, M. (2012). Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 62, 76–87.

    Article  Google Scholar 

  126. Luo, J., Ding, H., & Shih, A. J. (2005). Induction-heated tool machining of elastomers—Part 1: Finite difference thermal modeling and experimental validation. Machining science and technology, 9(4), 547–565.

    Article  Google Scholar 

  127. Luo, J., Ding, H., & Shih, A. J. (2005). Induction-heated tool machining of elastomers—Part 2: Chip morphology, cutting forces, and machined surfaces. Machining science and technology, 9(4), 567–588.

    Article  Google Scholar 

  128. Brecher, C., Rosen, C.-J., & Emonts, M. (2010). Laser-assisted milling of advanced materials. Physics Procedia, 5, 259–272.

    Article  Google Scholar 

  129. Kitagawa, T., Maekawa, K., & Kubo, A. (1988). Plasma hot machining for high hardness metals. Bulletin of the Japan Society of Precision Engineering, 22(2), 145–151.

    Google Scholar 

  130. Sun, S., Brandt, M., & Dargusch, M. (2010). Thermally enhanced machining of hard-to-machine materials—A review. International Journal of Machine Tools and Manufacture, 50(8), 663–680.

    Article  Google Scholar 

  131. Dogra M., & Sharma, S. V. (2013). Techniques to improve the effectiveness in machining of hard to machine materials: A review. International Journal of Research in Mechanical Engineering & Technology, 3(2), 122–126.

    Google Scholar 

  132. Anderson, M., Patwa, R., & Shin, Y. C. (2006). Laser-assisted machining of Inconel 718 with an economic analysis. International Journal of Machine Tools and Manufacture, 46(14), 1879–1891.

    Article  Google Scholar 

  133. Tian, Y., et al. (2008). Laser-assisted milling of silicon nitride ceramics and Inconel 718. Journal of Manufacturing Science and Engineering, 130(3), 031013.

    Article  Google Scholar 

  134. Weck, M., Zeppelin, W., & Hermanns, C. (1994). Laser—A tool for turning centres. In Proceedings of the LANE, Laser Assisted Net Shape Engineering.

    Google Scholar 

  135. Tian, Y., & Shin, Y. C. (2007). Laser-assisted burnishing of metals. International Journal of Machine Tools and Manufacture, 47(1), 14–22.

    Article  MathSciNet  Google Scholar 

  136. Shi, B., & Attia, H. (2013). Integrated process of laser-assisted machining and laser surface heat treatment. Journal of Manufacturing Science and Engineering, 135(6), 061021.

    Article  Google Scholar 

  137. Amin, A. (1983). Investigation of the mechanism of chatter formation during metal cutting process. Mechanical Engineering Research Bulletin, 6(1), 11–18.

    MathSciNet  Google Scholar 

  138. Dandekar, C. R., Shin, Y. C., & Barnes, J. (2010). Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. International Journal of Machine Tools and Manufacture, 50(2), 174–182.

    Article  Google Scholar 

  139. Sun, S., et al. (2011). Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(9), 1512–1527.

    Article  Google Scholar 

  140. Ayed, Y., et al. (2014). Experimental and numerical study of laser-assisted machining of Ti6Al4V titanium alloy. Finite Elements in Analysis and Design, 92, 72–79.

    Article  Google Scholar 

  141. Wu, Z., et al. (2009). Evaluation and optimization method of high speed cutting parameters based on cutting process simulation. Intelligent Robotics and Applications, pp. 317–325.

    Chapter  Google Scholar 

  142. Rashid, R. R., et al. (2012). An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. International Journal of Machine Tools and Manufacture, 63, 58–69.

    Article  Google Scholar 

  143. Ginta, T. L., & Amin, A. N. (2010). Machinability improvement in end milling titanium alloy TI-6AL-4V. (vol. 3, pp. 25–33).

    Google Scholar 

  144. Rashid, R. R., et al. (2014). A study on laser assisted machining of Ti10V2Fe3Al alloy with varying laser power. The International Journal of Advanced Manufacturing Technology, 74(1–4), 219–224.

    Article  Google Scholar 

  145. Lauwers, B. (2011). Surface integrity in hybrid machining processes. Procedia Engineering, 19, 241–251.

    Article  Google Scholar 

  146. Ginta, T. L., & Amin, A. N. (2013). Surface integrity in end milling titanium alloy Ti-6Al-4V under heat assisted machining. Asian Journal of Scientific Research, 6(3), 609.

    Article  Google Scholar 

  147. Germain, G., et al. (2006). Effect of laser assistance machining on residual stress and fatigue strength for a bearing steel (100Cr6) and a titanium alloy (Ti 6Al 4V). In Materials Science Forum. Trans Tech Publ.

    Google Scholar 

  148. Joshi, S., Tewari, A., & Joshi, S. (2013). Influence of preheating on chip segmentation and microstructure in orthogonal machining of Ti6Al4V. Journal of Manufacturing Science and Engineering, 135(6), 061017.

    Article  Google Scholar 

  149. Braham-Bouchnak, T., et al. (2013). The influence of laser assistance on the machinability of the titanium alloy Ti555-3. The International Journal of Advanced Manufacturing Technology, 68(9–12), 2471–2481.

    Article  Google Scholar 

  150. Ginta, T. L., Amin, A. N., & Lajis, M. (2012). Suppressed vibrations during thermal-assisted machining of titanium alloy Ti-6Al-4V using PCD inserts. Journal of Applied Sciences, 12(23), 2418.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pramanik .

Editor information

Editors and Affiliations

Glossary

Machinability

The term machinability refers to how easily materials can be removed to reshape the workpiece during machining, permitting the removal of the material with a satisfactory finish at low cost. A material is said to have good machinability if tool life is long, machining forces are low, and the surface roughness is low. The high chemical reactivity of the material with many tool materials and the low elastic modulus contribute to its difficult machinability.

Thermally assisted machining (TAM)

Thermally assisted machining is a high speed machining method for materials with low machinability, such as titanium- and nickel-based alloys. In TAM, the surface of the workpiece just ahead of the machining point is preheating locally by a suitable heating source. This reduces the strength of the material and cutting force in the milling and turning process substantially which increase the machinability of the difficult-to-machine materials.

Built-up edge (BUE)

A built-up edge (BUE) is an addition of workpiece material against the rake face that grasps to the tool tip, separating it from the chip. It is not tool wear though it decreases the efficiency of the cutting edge. BUE changes the geometry of the cutting tool which induces dimensional inaccuracy and poor surface finish on the part.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shams, O.A., Pramanik, A., Chandratilleke, T.T., Nadim, N. (2018). Comparative Assessment and Merit Appraisal of Thermally Assisted Machining Techniques for Improving Machinability of Titanium Alloys. In: Davim, J. (eds) Introduction to Mechanical Engineering. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-78488-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78488-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78487-8

  • Online ISBN: 978-3-319-78488-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics