Skip to main content
Log in

The influence of laser assistance on the machinability of the titanium alloy Ti555-3

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The Ti533-3 alloy is a new titanium alloy which is starting to see increased use in the aeronautical domain to improve the durability of components and to optimize the weight/resistance ratio. This alloy is characterized by greater resistance compared to the more commonly used titanium alloys such as Ti6Al4V. However, a disadvantage of the Ti533-3 alloy is that it is very difficult to machine. In this work, the use of laser-assisted machining has been tested to improve chip formation by a thermal softening phenomenon and to improve the machining productivity of the alloy. A parametric investigation of laser assistance on the machinability of the Ti555-3 titanium alloy shows that: (1) the cutting forces can be greatly decreased if the surface temperature is high; (2) the thermal gradient induced by laser heating modifies the surface integrity in terms of strain hardening and residual stresses in the workpiece; and (3) the chip formation mechanisms are also changed, by increasing the sawteeth frequency when using laser assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrazola P, Garay A, Iriarte L, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209(5):2223–2230. doi:10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  2. López De Lacalle LN, Pérez-Bilbatua J, Sánchez JA, Llorente JI, Gutiérrez A, Albóniga J (2000) Using high pressure coolant in the drilling and turning of low machinability alloys. Int J Adv Manuf Technol 16(2):85–91

    Article  Google Scholar 

  3. Hong SY, Markus I, Jeong W (2001) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4 V. Int J Mach Tools Manuf 41(15):2245–2260. doi:10.1016/S0890-6955(01)00041-4

    Article  Google Scholar 

  4. Baili M, Wagner V, Dessein G, Sallaberry J, Lallement D (2011) An experimental investigation of hot machining with induction to improve Ti-5553 machinability. Appl Mech Mater 62:67–76. doi:10.4028/www.scientific.net/AMM.62.67

    Article  Google Scholar 

  5. Sun S, Brandt M, Dargusch MS (2010) The effect of a laser beam on chip formation during machining of Ti6Al4V alloy. Metall Mat Trans A Phys Metall Mat Sci 41(6):1573–1581

    Article  Google Scholar 

  6. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274. doi:10.1016/S0924-0136(96)00030-1

    Article  Google Scholar 

  7. Sun S, Brandt M, Dargusch MS (2010) Thermally enhanced machining of hard-to-machine materials—a review. Int J Mach Tools Manuf 50(8):663–680

    Article  Google Scholar 

  8. Ezugwu EO, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134(2):233–253. doi:10.1016/S0924-0136(02)01042-7

    Article  Google Scholar 

  9. Wagner V, Baili M, Dessein G, Lallement D (2011) Experimental study of coated carbide tools behaviour: application for Ti-5-5-5-3 turning. Int J Mach Mach Mater 9(3–4):233–248

    Google Scholar 

  10. Braham-Bouchnak T (2010) Etude du comportement en sollicitations extrêmes et de l'usinabilité d'un nouvel alliage de titane aéronautique: le Ti555-3. PhD Thesis, Arts et Métiers-ParisTech. http://pastel.archives-ouvertes.fr/pastel-00560093

  11. Germain G, Dal Santo P, Lebrun JL (2011) Comprehension of chip formation in laser assisted machining. Int J Mach Tools Manuf 51(3):230–238. doi:10.1016/j.ijmachtools.2010.11.006

    Article  Google Scholar 

  12. Leshock CE, Kim J, Shin YC (2001) Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int J Mach Tools Manuf 41(6):877–897. doi:10.1016/S0890-6955(00)00106-1

    Article  Google Scholar 

  13. López De Lacalle LN, Sánchez JA, Lamikiz A, Celaya A (2004) Plasma assisted milling of heat-resistant superalloys. J Manuf Sci Eng Trans ASME 126(2):274–285

    Article  Google Scholar 

  14. Germain G, Morel F, Lebrun J, Morel A (2007) Machinability and surface integrity for a bearing steel and a titanium alloy in laser assisted machining (optimisation on LAM on two materials). Lasers Eng 17(5–6):329–344

    Google Scholar 

  15. François M, Sprauel JM, Déhan CF, James MR, Convert F, Lu J, Lebrun JL, Ji N, Hendrics RW (1996) X-ray diffraction method. Handbook of measurement of residual stresses, pp 71–131

  16. AFNOR Norm NF E66-520 (2008) Working zones of cutting tools—couple tool-material, part 1 to 8

  17. Arrazola PJ, Villar A, Ugarte D, Marya S (2007) Serrated chip prediction in finite element modeling of the chip formation process. Mach Sci Technol 11(3):367–390. doi:10.1080/10910340701539882

    Google Scholar 

  18. Germain G (2006) Contribution à l'optimisation du procédé d'usinage assisté laser. Ph D Thesis, ENSAM. http://pastel.archives-ouvertes.fr/pastel-00002127

  19. Lesourd B (1996) Etude et modélisation des mécanismes de formation de bandes de cisaillement intense en coupe des métaux. Application au tournage assisté laser de l’alliage de Titane TA6V. PhD Thesis, ED 82–174, Ecole Centrale de Nantes

  20. Rajagopal S, Plankenhorn DJ, Hill VL (1982) Machining aerospace alloys with the aid of a 15 kW laser. J Appl Metalwork 2(3):170–174

    Article  Google Scholar 

  21. Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti–6Al–4 V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182. doi:10.1016/j.ijmachtools.2009.10.013

    Article  Google Scholar 

  22. Ramesh A, Melkote SN, Allard LF, Riester L, Watkins TR (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng, A 390(1–2):88–97

    Article  Google Scholar 

  23. Habak M, Lebrun J-L, Morel A (2007) A study of the influence of the metallurgical state on shear band and white layer generation in 100Cr6 steel: application to machining. AIP Conference Proceedings 907:691–696

    Article  Google Scholar 

  24. Dogra M, Sharma VS, Sachdeva A, Suri NM, Dhiman S (2012) Surface integrity a key issue in hard turning—a review. Int J Mach Mach Mater 12(1–2):88–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Germain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braham-Bouchnak, T., Germain, G., Morel, A. et al. The influence of laser assistance on the machinability of the titanium alloy Ti555-3. Int J Adv Manuf Technol 68, 2471–2481 (2013). https://doi.org/10.1007/s00170-013-4855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4855-7

Keywords

Navigation