Fruit Quality and the Use of Near-Isogenic Lines for Functional Characterization in Fragaria vesca

  • Maria Urrutia
  • Amparo MonfortEmail author
Part of the Compendium of Plant Genomes book series (CPG)


Strawberries (Fragaria genus) can be found in various versions of ploidy, with the most popular being the octoploid commercial varieties. Studies of the diploid strawberry are able to shed light into the genetic control of valuable traits in plants of all ploidy levels, and their simple genetics offer many advantages from a scientific perspective. Crossing populations have been a valuable tool for genetic studies of Fragaria vesca. A near-isogenic line (NIL) collection of diploid strawberries has been developed between F. vesca Reine de Valles (RV) as the recurrent parent and Fragaria bucharica (FB) as the donor parent. Studying the varying phenotypic traits of the NIL collection can reveal information about the effects of the introgressions. The phenotyping of a whole mapping population allows identification of QTL and major genes for more than a hundred traits and metabolic compounds. Description of functional compounds of ripe berries provides an interesting global insight in strawberry fruit nutritional composition.


  1. Aaby K, Wrolstad RE, Ekeberg D et al (2007) Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage. J Agric Food Chem 55:5156–5166CrossRefPubMedGoogle Scholar
  2. Almeida JRM, D’Amico E, Preuss A et al (2007) Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria × ananassa). Arch Biochem Biophys 465:61–71CrossRefPubMedGoogle Scholar
  3. Amararathna M, Johnston M, Rupasinghe H (2016) Plant polyphenols as chemopreventive agents for lung cancer. Int J Mol Sci 17:1352CrossRefPubMedCentralGoogle Scholar
  4. Arulsekar S, Bringhurst RS (1981) Genetic model for the enzyme marker pgl in diploid California Fragaria vesca L—its variability and use in elucidating the mating system. J Hered 72:117–120CrossRefGoogle Scholar
  5. Ashrafi H, Kinkade MP, Merk HL et al (2011) Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Mol Breed 30:549–567CrossRefGoogle Scholar
  6. Barrantes W, Fernández-del-Carmen A, López-Casado G et al (2014) Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Mol Breed 34:1817–1831CrossRefGoogle Scholar
  7. Barrantes W, López-Casado G, García-Martínez S et al (2016) Exploring new alleles involved in tomato fruit quality in an introgression line library of Solanum pimpinellifolium. Front Plant Sci 7:1172CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bassil NV, Davis TM, Zhang H et al (2015) Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genom 16:155CrossRefGoogle Scholar
  9. Berger RG (ed) (2007) Flavours and fragrances: chemistry. Springer-Verlag, Berlin, Bioprocessing and SustainabilityGoogle Scholar
  10. Boskovic RI, Sargent DJ, Tobutt KR (2010) Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry. J Exp Bot 61:755–763CrossRefPubMedGoogle Scholar
  11. Braakhuis A, Campion P, Bishop K (2016) Reducing breast cancer recurrence: the role of dietary polyphenolics. Nutrients 8:547CrossRefPubMedCentralGoogle Scholar
  12. Brown T, Wareing PF (1965) The genetical control of the everbearing habit and three other characters in varieties of Fragaria vesca. Euphytica 14:97–112Google Scholar
  13. Bruhn CM, Feldman N, Garlitz C et al (1991) Consumer perceptions of quality: apricots, cantaloupes, peaches, pears, strawberries, and tomatoes. J Food Qual 14:187–195CrossRefGoogle Scholar
  14. Brückner B, Grant Wyllie S (eds) (2008) Fruit and vegetable flavour: recent advances and future prospects. Woodhead Press, OxfordGoogle Scholar
  15. Buendía B, Gil MI, Tudela JA et al (2010) HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J Agric Food Chem 58:3916–3926CrossRefPubMedGoogle Scholar
  16. Carbone F, Preuss A, De Vos RCH et al (2009) Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant, Cell Environ 32:1117–1131CrossRefGoogle Scholar
  17. Darwish O, Shahan R, Liu Z et al (2015) Re-annotation of the woodland strawberry (Fragaria vesca) genome. BMC Genom 16:29CrossRefGoogle Scholar
  18. Davis TM, Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. J Hered 88:215–221CrossRefGoogle Scholar
  19. Deng C, Davis TM (2001) Molecular identification of the yellow fruit color (c) locus in diploid strawberry: a candidate gene approach. Theor Appl Genet 103:316–322CrossRefGoogle Scholar
  20. Di Matteo A, Ruggieri V, Sacco A et al (2013) Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Sci 205–206:87–96CrossRefPubMedGoogle Scholar
  21. Díaz A, Zarouri B, Fergany M et al (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into “Piel de Sapo” melon (Cucucumis melo L.). PLoS ONE 9:e116098CrossRefGoogle Scholar
  22. Dong J, Zhang Y, Tang X et al (2013) Differences in volatile ester composition between Fragaria × ananassa and F. vesca and implications for strawberry aroma patterns. Sci Hortic 150:47–53CrossRefGoogle Scholar
  23. Dudareva N, Klempien A, Muhlemann JK et al (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32CrossRefPubMedGoogle Scholar
  24. Dudareva N, Negre F, Nagegowda DA et al (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440CrossRefGoogle Scholar
  25. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of Plant Volatiles. Plant Physiol 135:1893–1902CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eduardo I, Arús P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148CrossRefPubMedGoogle Scholar
  27. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162PubMedPubMedCentralGoogle Scholar
  28. Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179CrossRefGoogle Scholar
  29. Fernández-Silva I, Moreno E, Eduardo I et al (2009) On the genetic control of heterosis for fruit shape in melon (Cucumis melo L.). J Hered 100:229–235CrossRefPubMedGoogle Scholar
  30. Fletcher RS, Mullen JL, Yoder S et al (2013) Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits. BMC Genom 14:655CrossRefGoogle Scholar
  31. Folta KM, Klee HJ (2016) Sensory sacrifices when we mass-produce mass produce. Hortic Res 3:16032CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723CrossRefPubMedGoogle Scholar
  33. Fujita D, Trijatmiko KR, Tagle AG et al (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci USA 110:20431–20436CrossRefPubMedGoogle Scholar
  34. Giampieri F, Forbes-Hernandez TY, Gasparrini M et al (2015) Strawberry as a health promoter: an evidence based review. Food Funct 6:1386–1398CrossRefPubMedGoogle Scholar
  35. Goff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815–819CrossRefPubMedGoogle Scholar
  36. Granell A, Rambla JL (2013) Biosynthesis of volatile compounds. In: Tucker GA, Poole M, Giovannoni J, Seymour G (eds) The molecular biology and biochemistry of fruit ripening. Wiley-Blackwell, New Jersey, pp 135–161CrossRefGoogle Scholar
  37. Halbwirth H, Puhl I, Haas U et al (2006) Two-phase flavonoid formation in developing strawberry (Fragaria × ananassa) fruit. J Agric Food Chem 54:1479–1485CrossRefPubMedGoogle Scholar
  38. Hawkins C, Caruana J, Schiksnis E et al (2016) Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry. Sci Rep 6:29017CrossRefPubMedPubMedCentralGoogle Scholar
  39. Illa E, Sargent DJ, Girona EL et al (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jetti RR, Yang E, Kurnianta A et al (2007) Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J Food Sci 72:S487–S496CrossRefPubMedGoogle Scholar
  41. Jeuken MJW, Lindhout P (2004) The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet 109:394–401CrossRefPubMedGoogle Scholar
  42. Keurentjes JJB, Bentsink L, Alonso-Blanco C et al (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905CrossRefPubMedPubMedCentralGoogle Scholar
  43. Koskela EA, Mouhu K, Albani MC et al (2012) Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. Plant Physiol 159:1043–1054CrossRefPubMedPubMedCentralGoogle Scholar
  44. Koumproglou R, Wilkes TM, Townson P et al (2002) STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J 31:355–364CrossRefPubMedGoogle Scholar
  45. Latrasse A (1991) Fruits III. In: Maarse H (ed) Volatile compounds in fruits and beverages. Dekker, New York, pp 333–387Google Scholar
  46. Lee JM, Joung J-G, McQuinn R et al (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204CrossRefPubMedGoogle Scholar
  47. Melchinger AE, Piepho H-P, Utz HF et al (2007) Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177:1827–1837CrossRefPubMedPubMedCentralGoogle Scholar
  48. Merchuk-Ovnat L, Barak V, Fahima T et al (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 7:452CrossRefPubMedPubMedCentralGoogle Scholar
  49. Monforte AJ, Friedman E, Zamir D et al (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590CrossRefGoogle Scholar
  50. Monforte AJ, Tanksley SD (2000a) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479CrossRefGoogle Scholar
  51. Monforte A, Tanksley S (2000b) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813CrossRefPubMedGoogle Scholar
  52. Muñoz C, Sánchez-Sevilla JF, Botella MA et al (2011) Polyphenol composition in the ripe fruits of fragaria species and transcriptional analyses of key genes in the pathway. J Agric Food Chem 59:12598–12604CrossRefPubMedGoogle Scholar
  53. Olbricht K, Grafe C, Weiss K et al (2008) Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breed 127:87–93Google Scholar
  54. Oosumi T, Gruszewski HA, Blischak LA et al (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230CrossRefPubMedGoogle Scholar
  55. Oosumi T, Ruiz-Rojas JJ, Veilleux RE et al (2010) Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca. Physiol Plant 140:1–9CrossRefPubMedGoogle Scholar
  56. Pea G, Paulstephenraj P, Canè MA et al (2009) Recombinant near-isogenic lines: a resource for the mendelization of heterotic QTL in maize. Mol Genet Genomics 281:447–457CrossRefPubMedGoogle Scholar
  57. Perpiñá G, Esteras C, Gibon Y et al (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ring L, Yeh S-Y, Hucherig S et al (2013) Metabolic interaction between anthocyanin and lignin biosynthesis is associated with peroxidase FaPRX27 in strawberry fruit. Plant Physiol 163:43–60CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rousseau Gueutin M, Gaston A, Aïnouche A et al (2009) Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol Phylogenet Evol 51:515–530CrossRefPubMedGoogle Scholar
  61. Rousseau-Gueutin M, Lerceteau-Kohler E, Barrot L et al (2008) Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics 179:2045–2060CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rousseaux MC, Jones CM, Adams D et al (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408CrossRefPubMedGoogle Scholar
  63. Ruiz-Rojas JJ, Sargent DJ, Shulaev V et al (2010) SNP discovery and genetic mapping of T-DNA insertional mutants in Fragaria vesca L. Theor Appl Genet 121:449–463CrossRefPubMedGoogle Scholar
  64. Sargent DJ, Cipriani G, Vilanova S et al (2008) The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51:120–127CrossRefPubMedGoogle Scholar
  65. Sargent DJ, Clarke J, Simpson DW et al (2006a) An enhanced microsatellite map of diploid Fragaria. Theor Appl Genet 112:1349–1359CrossRefPubMedGoogle Scholar
  66. Sargent DJ, Davis TM, Tobutt KR et al (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor Appl Genet 109:1385–1391CrossRefPubMedGoogle Scholar
  67. Sargent DJ, Kuchta P, Girona EL et al (2011) Simple sequence repeat marker development and mapping targeted to previously unmapped regions of the strawberry genome sequence. Plant Genome J 4:165CrossRefGoogle Scholar
  68. Sargent DJ, Rys A, Nier S et al (2006b) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114:373–384CrossRefPubMedGoogle Scholar
  69. Scalzo J, Politi A, Pellegrini N et al (2005) Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21:207–213CrossRefPubMedGoogle Scholar
  70. Schauer N, Semel Y, Roessner U et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454CrossRefPubMedGoogle Scholar
  71. Schieberle P, Hofmann T (1997) Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. J Agric Food Chem 45:227–232CrossRefGoogle Scholar
  72. Schulenburg K, Feller A, Hoffmann T et al (2016) Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry. J Exp Bot 67:2299–2308CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54:712–732CrossRefPubMedGoogle Scholar
  74. Schwieterman ML, Colquhoun TA, Jaworski EA et al (2014) Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS ONE 9:e88446CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shankar E, Kanwal R, Candamo M et al (2016) Dietary phytochemicals as epigenetic modifiers in cancer: promise and challenges. Semin Cancer Biol 40–41:82–99CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116CrossRefPubMedGoogle Scholar
  77. Steinhauser M-C, Steinhauser D, Koehl K et al (2010) Enzyme activity profiles during fruit development in tomato cultivars and Solanum pennellii. Plant Physiol 153:80–98CrossRefPubMedPubMedCentralGoogle Scholar
  78. Stewart PJ (2011) Fragaria history and breeding. In: Folta KM, Kole C (eds) Genetics, genomics and breeding of berries. Science Publishers, Boca RatonGoogle Scholar
  79. Sun J, Liu X, Yang T et al (2014) Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem 146:289–298CrossRefPubMedGoogle Scholar
  80. Tennessen JA, Govindarajulu R, Ashman T-L et al (2014) Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps. Genome Biol Evol 6:3295–3313CrossRefPubMedPubMedCentralGoogle Scholar
  81. Thill J, Miosic S, Gotame TP et al (2013) Differential expression of flavonoid 3′-hydroxylase during fruit development establishes the different B-ring hydroxylation patterns of flavonoids in Fragaria × ananassa and Fragaria vesca. Plant Physiol Biochem 72:72–78CrossRefPubMedGoogle Scholar
  82. Tian F, Li DJ, Fu Q et al (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580CrossRefPubMedGoogle Scholar
  83. Ulrich D, Hoberg E, Rapp A et al (1997) Analysis of strawberry flavour–discrimination of aroma types by quantification of volatile compouds. Z Für Leb—Forsch A 205:218–223CrossRefGoogle Scholar
  84. Ulrich D, Komes D, Olbricht K et al (2007) Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genet Resour Crop Evol 54:1185–1196CrossRefGoogle Scholar
  85. Urrutia M, Bonet J, Arús P et al (2015) A near-isogenic line (NIL) collection in diploid strawberry and its use in the genetic analysis of morphologic, phenotypic and nutritional characters. Theor Appl Genet 128:1261–1275CrossRefPubMedGoogle Scholar
  86. Urrutia M, Schwab W, Hoffmann T et al (2016) Genetic dissection of the (poly)phenol profile of diploid strawberry (Fragaria vesca) fruits using a NIL collection. Genomics Breed 242:151–168Google Scholar
  87. Vegas J, Garcia-Mas J, Monforte AJ (2013) Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet 126:1531–1544CrossRefPubMedGoogle Scholar
  88. Veilleux RE, Mills KP, Baxter AJ et al (2012) Transposon tagging in diploid strawberry: transposon-tagged strawberry. Plant Biotechnol J 10:985–994CrossRefPubMedGoogle Scholar
  89. von Korff M, Wang H, Léon J et al (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp spontaneum) as donor. Theor Appl Genet 109:1736–1745CrossRefGoogle Scholar
  90. Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705CrossRefGoogle Scholar
  91. Whitaker VM, Plotto A, Hasing T et al (2013) Fruit quality measures from a historical trial of University of Florida strawberry cultivars. Int J Fruit Sci 13:246–254CrossRefGoogle Scholar
  92. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989CrossRefPubMedGoogle Scholar
  93. Zhang Y, Li W, Dou Y et al (2015) Transcript quantification by RNA-seq reveals differentially expressed genes in the red and yellow fruits of Fragaria vesca. PLoS ONE 10:e0144356CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhou Y, Zheng J, Li Y et al (2016) Natural polyphenols for prevention and treatment of cancer. Nutrients 8:515CrossRefPubMedCentralGoogle Scholar
  95. Zorrilla-Fontanesi Y, Rambla J-L, Cabeza A et al (2012) Genetic analysis of strawberry fruit aroma and identification of O-Methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiol 159:851–870CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRTA Center for Research in Agrigenomics CSIC-IRTA-UAB-UBBarcelonaSpain

Personalised recommendations