Skip to main content

Electrospun Polymeric Smart Materials for Tissue Engineering Applications

  • Chapter
  • First Online:
Electrospun Biomaterials and Related Technologies

Abstract

Smart materials are increasingly being implemented in different areas and, particularly in tissue engineering applications. In tissue engineering, cells and materials interplay a central role, the scaffold strongly affecting cell behavior through specific physico-chemical interactions. In this context, smart materials show strong advantages with respect to conventional scaffolds providing additional clues to the cell and supporting the development of suitable microenvironments. Thus, smart and functional materials are being developed to mimic the response capabilities of natural living systems through suitable electromechanical or thermomechanical responses, among others. Among the different shapes and forms in which those materials can be processed for tissue engineering applications, electrospun mats stand out as one of the most promising substrates, allowing to tailor fiber size and orientation as well as degree of porosity, among others, allowing to mimic micro and nanoscale properties and structural characteristics of native extracellular matrix for tissue engineering applications.

The present chapter will provide an insight on the main smart materials interesting for biomedical applications. Further, it will focus on those smart materials that have been processed in the form of electrospun fibers and summarize the main obtained results in tissue engineering applications. Thus, it will be shown that electrospinning of smart materials represents an increasingly growing and interesting that hold great promise for finally achieved suitable and implementable tissue engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kazanci M (2003) A review of polymeric smart materials for biomedical applications. Mater Technol 18(2):87–93. https://doi.org/10.1080/10667857.2003.11753019

    Article  CAS  Google Scholar 

  2. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12(3):286–311. https://doi.org/10.1002/mabi.201100325

    Article  CAS  PubMed  Google Scholar 

  3. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601. https://doi.org/10.1098/rsif.2006.0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bierbaum S, Hintze V, Scharnweber D (2012) Functionalization of biomaterial surfaces using artificial extracellular matrices. Biomatter 2(3):132–141. https://doi.org/10.4161/biom.20921

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S (2015) Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf B Biointerfaces 136:46–55. https://doi.org/10.1016/j.colsurfb.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  6. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  7. Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7(4):1441–1451. https://doi.org/10.1016/j.actbio.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  8. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. https://doi.org/10.1155/2011/290602

  9. Ingavle GC, Leach JK (2014) Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng Part B Rev 20(4):277–293. https://doi.org/10.1089/ten.teb.2013.0276

    Article  CAS  PubMed  Google Scholar 

  10. Khajavi R, Abbasipour M, Bahador A (2016) Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci. https://doi.org/10.1002/app.42883

  11. Gönen SÖ, Erol Taygun M, Küçükbayrak S (2016) Fabrication of bioactive glass containing nanocomposite fiber mats for bone tissue engineering applications. Compos Struct 138:96–106. https://doi.org/10.1016/j.compstruct.2015.11.033

    Article  Google Scholar 

  12. Neves SC, Moreira Teixeira LS, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM, Karperien M, Mano JF (2011) Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32(4):1068–1079. https://doi.org/10.1016/j.biomaterials.2010.09.073

    Article  CAS  PubMed  Google Scholar 

  13. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211. https://doi.org/10.1089/ten.2006.12.1197

    Article  CAS  PubMed  Google Scholar 

  14. Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Mendez S (2013) Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 3(39):17938–17944. https://doi.org/10.1039/c3ra43499k

    Article  CAS  Google Scholar 

  15. Karam JP, Muscari C, Montero-Menei CN (2012) Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 33(23):5683–5695. https://doi.org/10.1016/j.biomaterials.2012.04.028

    Article  CAS  PubMed  Google Scholar 

  16. Lee Y-S, Collins G, Arinzeh TL (2011) Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater 7(11):3877–3886. https://doi.org/10.1016/j.actbio.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  17. Seidlits SK, Lee JY, Schmidt CE (2008) Nanostructured scaffolds for neural applications. Nanomedicine 3(2):183–199. https://doi.org/10.2217/17435889.3.2.183

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Y, Cao Y, Pan J, Liu Y (2010) Macro-alignment of electrospun fibers for vascular tissue engineering. J Biomed Mater Res B Appl Biomater 92(2):508–516. https://doi.org/10.1002/jbm.b.31544

    PubMed  Google Scholar 

  19. Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9(8):861–888. https://doi.org/10.1002/term.1697

    Article  CAS  PubMed  Google Scholar 

  20. Bogue R (2014) Smart materials: a review of capabilities and applications. Assem Autom 34(1):16–22. https://doi.org/10.1108/aa-10-2013-094

    Article  Google Scholar 

  21. Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20(15):2842–2858. https://doi.org/10.1002/adma.200800836

    Article  CAS  Google Scholar 

  22. Ferreira ADBL, Nóvoa PRO, Marques AT (2016) Multifunctional material systems: a state-of-the art review. Compos Struct 151:3–35. https://doi.org/10.1016/j.compstruct.2016.01.028

    Article  Google Scholar 

  23. Cardoso VF, Ribeiro C, Lanceros-Mendez S (2017) Metamorphic biomaterials. In: Rodrigues L, Mota M (eds) Bioinspired materials for medical applications. Woodhead Publishing, Philadelphia, pp 69–99

    Chapter  Google Scholar 

  24. Rasmussen MK, Pedersen EW, Petersen MG, Hornbæk K (2012) Shape-changing interfaces: a review of the design space and open research questions. Conference on human factors in computing systems – proceedings. https://doi.org/10.1145/2207676.2207781

  25. Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Springer, Weinheim. https://doi.org/10.1002/9783527625376.ch1

    Google Scholar 

  26. Aïssa B, Therriault D, Haddad E, Jamroz W (2012) Self-healing materials systems: overview of major approaches and recent developed technologies. Adv Mater Sci Eng. https://doi.org/10.1155/2012/854203

  27. Chung DDL (2007) Damage detection using self-sensing concepts. Proc Inst Mech Eng G J Aerosp Eng 221(4):509–520. https://doi.org/10.1243/09544100JAERO203

    Article  Google Scholar 

  28. Kamila S (2013) Introduction, classification and applications of smart materials: an overview. Am J Appl Sci 10(8):876–880. https://doi.org/10.3844/ajassp.2013.876.880

    Article  Google Scholar 

  29. Seyfouri MM, Binions R (2017) Sol-gel approaches to thermochromic vanadium dioxide coating for smart glazing application. Sol Energy Mater Sol Cells 159:52–65. https://doi.org/10.1016/j.solmat.2016.08.035

    Article  CAS  Google Scholar 

  30. Yang YS, Zhou Y, Chiang FBY, Long Y (2016) Temperature-responsive hydroxypropylcellulose based thermochromic material and its smart window application. RSC Adv 6(66):61449–61453. https://doi.org/10.1039/c6ra12454b

    Article  CAS  Google Scholar 

  31. Musho T (2015) Predicting the figure of merit of nanostructured thermoelectric materials. J Mater Res 30(17):2628–2637. https://doi.org/10.1557/jmr.2015.256

    Article  CAS  Google Scholar 

  32. Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radio frequency power conversion. J Appl Phys. https://doi.org/10.1063/1.2918987

  33. Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8(16):10070–10087. https://doi.org/10.1021/acsami.6b01295

    Article  CAS  PubMed  Google Scholar 

  34. Choudhary N, Kaur D (2016) Shape memory alloy thin films and heterostructures for MEMS applications: a review. Sensors Actuators A Phys 242:162–181. https://doi.org/10.1016/j.sna.2016.02.026

    Article  CAS  Google Scholar 

  35. Yu XD, Chen LM, Zhang MM, Yi T (2014) Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem Soc Rev 43(15):5346–5371. https://doi.org/10.1039/c4cs00066h

    Article  CAS  PubMed  Google Scholar 

  36. Khan A, Abas Z, Kim HS, Oh IK (2016) Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater Struct. https://doi.org/10.1088/0964-1726/25/5/053002

  37. Wang Y, Runnerstrom EL, Milliron DJ (2016) Switchable materials for smart windows. In: Prausnitz JM (eds) Annual review of chemical and biomolecular engineering. Annual review of chemical and biomolecular engineering, pp 283–304

    Google Scholar 

  38. Cai GF, Wang JX, Lee PS (2016) Next-generation multifunctional electrochromic devices. Acc Chem Res 49(8):1469–1476. https://doi.org/10.1021/acs.accounts.6b00183

    Article  CAS  PubMed  Google Scholar 

  39. Zhu FB, Zhang CL, Qian J, Chen WQ (2016) Mechanics of dielectric elastomers: materials, structures, and devices. J Zhejiang Univ Sci A 17(1):1–21. https://doi.org/10.1631/jzus.A1500125

    Article  CAS  Google Scholar 

  40. Shankar R, Ghosh TK, Spontak RJ (2007) Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3(9):1116–1129. https://doi.org/10.1039/b705737g

    Article  CAS  Google Scholar 

  41. Chen YG, Yan H (2011) The performance analysis of electro-rheological damper. In: Zhu G (eds) Materials science and engineering. Advanced materials research, pp 443–448

    Google Scholar 

  42. Ganet F, Le MQ, Capsal JF, Lermusiaux P, Petit L, Millon A, Cottinet PJ (2015) Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback. Sci Rep. https://doi.org/10.1038/srep18593

  43. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  44. De Luca V, Digiamberardino P, Di Pasquale G, Graziani S, Pollicino A, Umana E, Xibilia MG (2013) Ionic electroactive polymer metal composites: fabricating, modeling, and applications of postsilicon smart devices. J Polym Sci Part B Polym Phys 51(9):699–734. https://doi.org/10.1002/polb.23255

    Article  CAS  Google Scholar 

  45. Shi ZJ, Gao X, Ullah MW, Li SX, Wang Q, Yang G (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 111:40–54. https://doi.org/10.1016/j.biomaterials.2016.09.020

    Article  CAS  PubMed  Google Scholar 

  46. Choi SB, Li WH, Yu M, Du HP, Fu J, Do PX (2016) State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Mater Struct 25(4):043001. https://doi.org/10.1088/0964-1726/25/4/043001

    Article  CAS  Google Scholar 

  47. Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7(8):3701–3710. https://doi.org/10.1039/c0sm01221a

    Article  CAS  Google Scholar 

  48. Levi DS, Kusnezov N, Carman GP (2008) Smart materials applications for pediatric cardiovascular devices. Pediatr Res 63(5):552–558. https://doi.org/10.1203/PDR.0b013e31816a9d18

    Article  PubMed  Google Scholar 

  49. Yu C, Wang CF, Chen S (2015) Facile access to versatile hydrogels via interface-directed frontal polymerization derived from the magnetocaloric effect. J Mater Chem A 3(33):17351–17358. https://doi.org/10.1039/c5ta03811a

    Article  CAS  Google Scholar 

  50. Sutrisno J, Purwanto A, Mazlan SA (2015) Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv Eng Mater 17(5):563–597. https://doi.org/10.1002/adem.201400258

    Article  CAS  Google Scholar 

  51. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49. https://doi.org/10.1016/j.mser.2015.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jesus MR, Sarika R, Shankaran DR (2016) Curcumin labeled PMMA halochromic smart flexible films. Mater Focus 5(2):177–181. https://doi.org/10.1166/mat.2016.1299

    Article  CAS  Google Scholar 

  53. Zhang JJ, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25(3):378–399. https://doi.org/10.1002/adma.201201521

    Article  CAS  PubMed  Google Scholar 

  54. Zhang JJ, Wang JX, Tian H (2014) Taking orders from light: progress in photochromic bio-materials. Mater Horiz 1(2):169–184. https://doi.org/10.1039/c3mh00031a

    Article  CAS  Google Scholar 

  55. Sanchez-Arevalo FM, Garnica-Palafox IM, Jagdale P, Hernandez-Cordero J, Rodil SE, Okonkwo AO, Hernandez FCR, Tagliaferro A (2015) Photomechanical response of composites based on PDMS and carbon soot nanoparticles under IR laser irradiation. Opt Mater Exp 5(8):1792–1805. https://doi.org/10.1364/ome.5.001792

    Article  CAS  Google Scholar 

  56. Wu Q, Wang L, Yu HJ, Wang JJ, Chen ZF (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875. https://doi.org/10.1021/cr200027j

    Article  CAS  PubMed  Google Scholar 

  57. Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64(11):967–978. https://doi.org/10.1016/j.addr.2012.01.002

    Article  PubMed  CAS  Google Scholar 

  58. Hu J, Meng H, Li G, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21(5):053001. https://doi.org/10.1088/0964-1726/21/5/053001

    Article  CAS  Google Scholar 

  59. Manz H, Breitbach EJ (2001) Application of smart materials in automotive structures. Proc SPIE Int Soc Opt Eng 4332:197–204. https://doi.org/10.1117/12.429657

    Google Scholar 

  60. Gopalakrishnan S (2014) Smart materials technology for aerospace applications. In: Vinoy KJ, Ananthasuresh GK, Pratap R, Krupanidhi SB (eds) Micro and smart devices and systems. Springer, New Delhi, pp 423–437

    Chapter  Google Scholar 

  61. Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42(17):7099–7116. https://doi.org/10.1039/c3cs60058k

    Article  PubMed  CAS  Google Scholar 

  62. Ribeiro C, Moreira S, Correia V, Sencadas V, Rocha JG, Gama FM, Ribelles JLG, Lanceros-Mendez S (2012) Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Adv 2(30):11504–11509. https://doi.org/10.1039/c2ra21841k

    Article  CAS  Google Scholar 

  63. Seil JT, Webster TJ (2010) Electrically active nanomaterials as improved neural tissue regeneration scaffolds. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(6):635–647. https://doi.org/10.1002/wnan.109

    Article  CAS  PubMed  Google Scholar 

  64. Frias C, Reis J, Silva FCE, Potes J, Simoes J, Marques AT (2010) Polymeric piezoelectric actuator substrate for osteoblast mechanical stimulation. J Biomech 43(6):1061–1066. https://doi.org/10.1016/j.jbiomech.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  65. Reis J, Frias C, Castro CCE, Botelho ML, Marques AT, Simoes JAO, Silva FCE, Potes J (2012) A new piezoelectric actuator induces bone formation in vivo: a preliminary study. J Biomed Biotechnol. https://doi.org/10.1155/2012/613403

  66. Rodrigues MT, Gomes ME, Mano JF, Reis RL (2008) β-PVDF membranes induce cellular proliferation and differentiation in static and dynamic conditions. In: Marques AT, Silva AF, Baptista APM et al (eds) Advanced materials forum. Materials science forum, pp 72–76

    Google Scholar 

  67. Parssinen J, Hammaren H, Rahikainen R, Sencadas V, Ribeiro C, Vanhatupa S, Miettinen S, Lanceros-Mendez S, Hytonen VP (2015) Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). J Biomed Mater Res A 103(3):919–928. https://doi.org/10.1002/jbm.a.35234

    Article  PubMed  CAS  Google Scholar 

  68. Ribeiro C, Parssinen J, Sencadas V, Correia V, Miettinen S, Hytonen VP, Lanceros-Mendez S (2015) Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A 103(6):2172–2175. https://doi.org/10.1002/jbm.a.35368

    Article  CAS  PubMed  Google Scholar 

  69. Ikada Y, Shikinami Y, Hara Y, Tagawa M, Fukada E (1996) Enhancement of bone formation by drawn poly(L-lactide). J Biomed Mater Res 30(4):553–558. https://doi.org/10.1002/(SICI)1097-4636(199604)30:4<553::AID-JBM14>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y-W, Wu Q, Chen J, Chen G-Q (2005) Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials 26(8):899–904. https://doi.org/10.1016/j.biomaterials.2004.03.035

    Article  CAS  PubMed  Google Scholar 

  71. Damaraju SM, Wu S, Jaffe M, Arinzeh TL (2013) Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed Mater 8(4):045007. https://doi.org/10.1088/1748-6041/8/4/045007

    Article  PubMed  CAS  Google Scholar 

  72. Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5(8):2884–2893. https://doi.org/10.1016/j.actbio.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  73. Paşcu EI, Stokes J, McGuinness GB (2013) Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C 33(8):4905–4916. https://doi.org/10.1016/j.msec.2013.08.012

    Article  CAS  Google Scholar 

  74. Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee B-K (2008) In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng A 14(12):2105–2119. https://doi.org/10.1089/ten.tea.2008.0057

    Article  CAS  Google Scholar 

  75. Marques L, Holgado LA, Simoes RD, Pereira J, Floriano JF, Mota L, Graeff CFO, Constantino CJL, Rodriguez-Perez MA, Matsumoto M, Kinoshita A (2013) Subcutaneous tissue reaction and cytotoxicity of polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene blends associated with natural polymers. J Biomed Mater Res Part B 101(7):1284–1293. https://doi.org/10.1002/jbm.b.32941

    Article  CAS  Google Scholar 

  76. Mota C, Wang S-Y, Puppi D, Gazzarri M, Migone C, Chiellini F, Chen G-Q, Chiellini E (2014) Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J Tissue Eng Regen Med 11(1):175–186. https://doi.org/10.1002/term.1897

    Article  PubMed  CAS  Google Scholar 

  77. Gimenes R, Zaghete MA, Bertolini M, Varela JA, Coelho LO, Silva NF (2004) Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. In: BarCohen Y (eds) Smart structures and materials: electroactive polymer actuators and devices proceedings of the society of photo-optical instrumentation engineers, pp 539–547

    Google Scholar 

  78. Chen Y, Mak AFT, Wang M, Li J, Wong MS (2006) PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Technol 201(3-4):575–580. https://doi.org/10.1016/j.surfcoat.2005.12.005

    Article  CAS  Google Scholar 

  79. Inui A, Kokubu T, Makino T, Nagura I, Toyokawa N, Sakata R, Kotera M, Nishino T, Fujioka H, Kurosaka M (2010) Potency of double-layered poly L-lactic acid scaffold in tissue engineering of tendon tissue. Int Orthop 34(8):1327–1332. https://doi.org/10.1007/s00264-009-0917-8

    Article  PubMed  Google Scholar 

  80. McKeon-Fischer KD, Freeman JW (2011) Characterization of electrospun poly(L-lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering. J Tissue Eng Regen Med 5(7):560–568. https://doi.org/10.1002/term.348

    Article  CAS  PubMed  Google Scholar 

  81. Jansen PL, Klinge U, Anurov M, Titkova S, Mertens PR, Jansen M (2004) Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur Surg Res 36(2):104–111. https://doi.org/10.1159/000076650

    Article  PubMed  CAS  Google Scholar 

  82. Valentini RF, Vargo TG, Gardella JA Jr, Aebischer P (1992) Electrically charged polymeric substrates enhance nerve fibre outgrowth in vitro. Biomaterials 13(3):183–190. https://doi.org/10.1016/0142-9612(92)90069-Z

    Article  CAS  PubMed  Google Scholar 

  83. Valentini RF, Vargo TG, Gardella JA, Aebischer P (1994) Patterned neuronal attachment and outgrowth on surface modified, electrically charged fluoropolymer substrates. J Biomater Sci Polym Ed 5(1–2):13–36. https://doi.org/10.1163/156856294x00626

    Article  Google Scholar 

  84. Royo-Gascon N, Wininger M, Scheinbeim JI, Firestein BL, Craelius W (2013) Piezoelectric substrates promote neurite growth in rat spinal cord neurons. Ann Biomed Eng 41(1):112–122. https://doi.org/10.1007/s10439-012-0628-y

    Article  PubMed  Google Scholar 

  85. Lee YS, Arinzeh TL (2012) The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells. Tissue Eng A 18(19–20):2063–2072. https://doi.org/10.1089/ten.TEA.2011.0540

    Article  CAS  Google Scholar 

  86. de Guzman RC, Loeb JA, VandeVord PJ (2010) Electrospinning of matrigel to deposit a basal lamina-like nanofiber surface. J Biomater Sci Polym Ed 21(8/9):1081–1101. https://doi.org/10.1163/092050609x12457428936116

    Article  PubMed  CAS  Google Scholar 

  87. Young T-H, Chang H-H, Lin D-J, Cheng L-P (2010) Surface modification of microporous PVDF membranes for neuron culture. J Membr Sci 350(1–2):32–41. https://doi.org/10.1016/j.memsci.2009.12.009

    Article  CAS  Google Scholar 

  88. Aebischer P, Valentini RF, Dario P, Domenici C, Galletti PM (1987) Piezoelectric guidance channels enhance regeneration in the mouse sciatic nerve after axotomy. Brain Res 436(1):165–168. https://doi.org/10.1016/0006-8993(87)91570-8

    Article  CAS  PubMed  Google Scholar 

  89. Delaviz H, Faghihi A, Delshad AA, Bahadori MH, Mohamadi J, Roozbehi A (2011) Repair of peripheral nerve defects using a polyvinylidene fluoride channel containing nerve growth factor and collagen gel in adult rats. Cell J 13(3):137–142

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fine EG, Valentini RF, Bellamkonda R, Aebischer P (1991) Improved nerve regeneration through piezoelectric vinylidenefluoride-trifluoroethylene copolymer guidance channels. Biomaterials 12(8):775–780. https://doi.org/10.1016/0142-9612(91)90029-A

    Article  CAS  PubMed  Google Scholar 

  91. Evans GRD, Brandt K, Niederbichler AD, Chauvin P, Hermann S, Bogle M, Otta L, Wang B, Patrick CW (2000) Clinical long-term in vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polym Ed 11(8):869–878. https://doi.org/10.1163/156856200744066

    Article  CAS  PubMed  Google Scholar 

  92. O’Shaughnessy TJ, Lin HJ, Ma W (2003) Functional synapse formation among rat cortical neurons grown on three-dimensional collagen gels. Neurosci Lett 340(3):169–172. https://doi.org/10.1016/S0304-3940(03)00083-1

    Article  PubMed  Google Scholar 

  93. Ribeiro C, Correia V, Martins P, Gama FM, Lanceros-Mendez S (2016) Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids Surf B Biointerfaces 140:430–436. https://doi.org/10.1016/j.colsurfb.2015.12.055

    Article  CAS  PubMed  Google Scholar 

  94. Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10(2):99–107. https://doi.org/10.1016/j.ajps.2014.08.010

    Article  Google Scholar 

  95. Klouda L (2015) Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm 97:338–349. https://doi.org/10.1016/j.ejpb.2015.05.017.

    Article  CAS  PubMed  Google Scholar 

  96. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479. https://doi.org/10.1007/s00586-008-0745-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  98. Cui WG, Zhou Y, Chang J (2010) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11(1):014108. https://doi.org/10.1088/1468-6996/11/1/014108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S (2008) Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 19(5):2039–2046. https://doi.org/10.1007/s10856-007-3289-x

    Article  CAS  PubMed  Google Scholar 

  100. Singh BN, Panda NN, Mund R, Pramanik K (2016) Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr Polym 151:335–347. https://doi.org/10.1016/j.carbpol.2016.05.088

    Article  CAS  PubMed  Google Scholar 

  101. Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V (2016) Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydr Polym 144:419–427. https://doi.org/10.1016/j.carbpol.2016.02.053

    Article  CAS  PubMed  Google Scholar 

  102. Zhao X, Lui YS, Choo CKC, Sow WT, Huang CL, Ng KW, Tan LP, Loo JSC (2015) Calcium phosphate coated keratin-PCL scaffolds for potential bone tissue regeneration. Mater Sci Eng C 49:746–753. https://doi.org/10.1016/j.msec.2015.01.084

    Article  CAS  Google Scholar 

  103. Sadat-Shojai M (2016) Electrospun polyhydroxybutyrate/hydroxyapatite nanohybrids: microstructure and bone cell response. J Mater Sci Technol 32(10):1013–1020. https://doi.org/10.1016/j.jmst.2016.07.007

    Article  Google Scholar 

  104. Fernandes JS, Gentile P, Martins M, Neves NM, Miller C, Crawford A, Pires RA, Hatton P, Reis RL (2016) Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomater 44:168–177. https://doi.org/10.1016/j.actbio.2016.08.042

    Article  CAS  PubMed  Google Scholar 

  105. Venugopal J, Ma LL, Yong T, Ramakrishna S (2005) In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int 29(10):861–867. https://doi.org/10.1016/j.cellbi.2005.03.026

    Article  CAS  PubMed  Google Scholar 

  106. Kosé S, Aerts Kaya F, Denkbas EB, Korkusuz P, Cetinkaya FD (2016) Evaluation of biocompatibility of random or aligned electrospun polyhydroxybutyrate scaffolds combined with human mesenchymal stem cells. Turk J Biol 40:410–419. https://doi.org/10.3906/biy-1508-18

    Article  CAS  Google Scholar 

  107. Yu Y, Meng D, Man L, Wang X (2016) The interactions between aligned poly(L-lactic acid) nanofibers and SH-SY5Y cells in vitro. J Nanosci Nanotechnol 16(6):6407–6413. https://doi.org/10.1166/jnn.2016.1088.

    Article  CAS  PubMed  Google Scholar 

  108. Sadeghi D, Karbasi S, Razavi S, Mohammadi S, Shokrgozar MA, Bonakdar S (2016) Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci 133(47). https://doi.org/10.1002/app.44171

  109. Mohiti-Asli M, Saha S, Murphy SV, Gracz H, Pourdeyhimi B, Atala A, Loboa EG (2015) Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J Biomed Mater Res B Appl Biomater 105(2):327–339. https://doi.org/10.1002/jbm.b.33520

    Article  PubMed  CAS  Google Scholar 

  110. Jha BS, Ayres CE, Bowman JR, Telemeco TA, Sell SA, Bowlin GL, Simpson DG (2011) Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. J Nanomater. https://doi.org/10.1155/2011/348268

  111. Wang J, Sun B, Tian L, He X, Gao Q, Wu T, Ramakrishna S, Zheng J, Mo X (2017) Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord. Mater Sci Eng C 70(Part 1):637–645. https://doi.org/10.1016/jmsec201609.044

    Article  CAS  Google Scholar 

  112. Borriello A, Guarino V, Schiavo L, Alvarez-Perez MA, Ambrosio L (2011) Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci Mater Med 22(4):1053–1062. https://doi.org/10.1007/s10856-011-4259-x

    Article  CAS  PubMed  Google Scholar 

  113. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715. https://doi.org/10.1016/j.biomaterials.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  114. Jha BS, Ayres CE, Bowman JR, Telemeco TA, Sell SA, Bowlin GL, Simpson DG (2011) Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. J Nanomater 2011:1–15. https://doi.org/10.1155/2011/348268

    Article  CAS  Google Scholar 

  115. Fullana MJ, Wnek GE (2012) Electrospun collagen and its applications in regenerative medicine. Drug Deliv Transl Res 2(5):313–322. https://doi.org/10.1007/s13346-012-0087-x

    Article  CAS  PubMed  Google Scholar 

  116. Fiorani A, Gualandi C, Panseri S, Montesi M, Marcacci M, Focarete ML, Bigi A (2014) Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. J Mater Sci Mater Med 25(10):2313–2321. https://doi.org/10.1007/s10856-014-5196-2

    Article  CAS  PubMed  Google Scholar 

  117. Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR, Navaneethan B, Fazil M, Liu S, Seitz V, Wintermantel E, Beuerman RW, Ramakrishna S, Verma NK, Lakshminarayanan R (2016) Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials 104:323–338. https://doi.org/10.1016/j.biomaterials.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  118. Stitzel JD, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL (2001) Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold. J Biomater Appl 16(1):22–33. https://doi.org/10.1106/u2uu-m9qh-y0bb-5gyl

    Article  CAS  PubMed  Google Scholar 

  119. He X, Cheng L, Zhang X, Xiao Q, Zhang W, Lu C (2015) Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydr Polym 115:485–493. https://doi.org/10.1016/j.carbpol.2014.08.114

    Article  CAS  PubMed  Google Scholar 

  120. Chahal S, Hussain FSJ, Kumar A, Rasad MSBA, Yusoff MM (2016) Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chem Eng Sci 144:17–29. https://doi.org/10.1016/j.ces.2015.12.030

    Article  CAS  Google Scholar 

  121. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48(2):378–391. https://doi.org/10.1080/15583720802022281.

    Article  CAS  Google Scholar 

  122. Ohkawa K (2015) Nanofibers of cellulose and its derivatives fabricated using direct electrospinning. Molecules 20(5):9139–9154. https://doi.org/10.3390/molecules20059139

    Article  CAS  PubMed  Google Scholar 

  123. Atila D, Keskin D, Tezcaner A (2016) Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Mater Sci Eng C 69:1103–1115. https://doi.org/10.1016/j.msec.2016.08.015

    Article  CAS  Google Scholar 

  124. Pant HR, Kim HJ, Bhatt LR, Joshi MK, Kim EK, Kim JI, Abdal-hay A, Hui KS, Kim CS (2013) Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications. Appl Surf Sci B 285:538–544. https://doi.org/10.1016/j.apsusc.2013.08.089

    Article  CAS  Google Scholar 

  125. Ji Y, Liang K, Shen X, Bowlin GL (2014) Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr Polym 101:68–74. https://doi.org/10.1016/j.carbpol.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  126. Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 12(3):1876–1887. https://doi.org/10.3390/ijms12031876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li Y, Wang Y, Ye J, Yuan J, Xiao Y (2016) Fabrication of poly(ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering. Mater Sci Eng C 68:177–183. https://doi.org/10.1016/j.msec.2016.05.117

    Article  CAS  Google Scholar 

  128. Fan J, Lei T-D, Li J, Zhai P-Y, Wang Y-H, Cao F-Y, Liu Y (2016) High protein content keratin/poly (ethylene oxide) nanofibers crosslinked in oxygen atmosphere and its cell culture. Mater Des 104:60–67. https://doi.org/10.1016/j.matdes.2016.05.022

    Article  CAS  Google Scholar 

  129. Yuan J, Geng J, Xing Z, Shim K-J, Han I, Kim J-C, Kang I-K, Shen J (2015) Novel wound dressing based on nanofibrous PHBV-keratin mats. J Tissue Eng Regen Med 9(9):1027–1035. https://doi.org/10.1002/term.1653

    Article  CAS  PubMed  Google Scholar 

  130. Yuan J, Xing Z-C, Park S-W, Geng J, Kang I-K, Yuan J, Shen J, Meng W, Shim K-J, Han I-S, Kim J-C (2009) Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromol Res 17(11):850–855. https://doi.org/10.1007/bf03218625

    Article  CAS  Google Scholar 

  131. Yuan J, Shen J, Kang I-K (2008) Fabrication of protein-doped PLA composite nanofibrous scaffolds for tissue engineering. Polym Int 57(10):1188–1193. https://doi.org/10.1002/pi.2463

    Article  CAS  Google Scholar 

  132. Thompson ZS, Rijal NP, Jarvis D, Edwards A, Bhattarai N (2016) Synthesis of keratin-based nanofiber for biomedical engineering. JoVE J Vis Exp. https://doi.org/10.3791/53381.

  133. Yen K-C, Chen C-Y, Huang J-Y, Kuo W-T, Lin F-H (2016) Fabrication of keratin/fibroin membranes by electrospinning for vascular tissue engineering. J Mater Chem B 4(2):237–244. https://doi.org/10.1039/c5tb01921d

    Article  CAS  Google Scholar 

  134. Li J, Li Y, Li L, Mak AFT, Ko F, Qin L (2009) Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane. Polym Degrad Stab 94(10):1800–1807. https://doi.org/10.1016/j.polymdegradstab.2009.06.004

    Article  CAS  Google Scholar 

  135. Sreerekha PR, Menon D, Nair SV, Chennazhi KP (2013) Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications. J Biomed Nanotechnol 9(5):790–800. https://doi.org/10.1166/jbn.2013.1585

    Article  CAS  PubMed  Google Scholar 

  136. Bacakova M, Musilkova J, Riedel T, Stranska D, Brynda E, Zaloudkova M, Bacakova L (2016) The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering. Int J Nanomedicine 11:771–789. https://doi.org/10.2147/ijn.s99317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sreerekha PR, Menon D, Nair SV, Chennazhi KP (2013) Fabrication of electrospun poly (Lactide-co-Glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro. Tissue Eng A 19(7-8):849–859. https://doi.org/10.1089/ten.tea.2012.0374

    Article  CAS  Google Scholar 

  138. Hitscherich P, Wu S, Gordan R, Xie L-H, Arinzeh T, Lee EJ (2016) The effect of PVDF-TrFE scaffolds on stem cell derived cardiovascular cells. Biotechnol Bioeng 113(7):1577–1585. https://doi.org/10.1002/bit.25918

    Article  CAS  PubMed  Google Scholar 

  139. Dias JC, Correia DC, Lopes AC, Ribeiro S, Ribeiro C, Sencadas V, Botelho G, Esperanca JMSS, Laza JM, Vilas JL, Leon LM, Lanceros-Mendez S (2016) Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. J Mater Sci 51(9):4442–4450. https://doi.org/10.1007/s10853-016-9756-3

    Article  CAS  Google Scholar 

  140. Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, Lu T (2016) Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci 148:139–144. https://doi.org/10.1016/j.lfs.2016.02.040

    Article  CAS  PubMed  Google Scholar 

  141. Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212. https://doi.org/10.1016/j.addr.2016.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Derakhshan MA, Pourmand G, Ai J, Ghanbari H, Dinarvand R, Naji M, Faridi-Majidi R (2016) Electrospun PLLA nanofiber scaffolds for bladder smooth muscle reconstruction. Int Urol Nephrol 48(7):1097–1104. https://doi.org/10.1007/s11255-016-1259-2

    Article  CAS  PubMed  Google Scholar 

  143. Xu W, Shen R, Yan Y, Gao J (2017) Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. J Mech Behav Biomed Mater 65:428–438. https://doi.org/10.1016/j.jmbbm.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  144. Salehi M, Farzamfar S, Bastami F, Tajerian R (2016) Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed Eng Appl Basis Commun. https://doi.org/10.4015/s1016237216500356

  145. Liu WW, Li ZQ, Zheng L, Zhang XY, Liu P, Yang T, Han B (2016) Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering. Tissue Eng Regen Med 13(5):516–526. https://doi.org/10.1007/s13770-016-9099-9

    Article  CAS  Google Scholar 

  146. Karahaliloğlu Z, Demirbilek M, Şam M, Sağlam N, Mızrak AK, Denkbaş EB (2016) Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair. Artif Cells Nanomed Biotechnol 44(1):74–82. https://doi.org/10.3109/21691401.2014.913053

    Article  PubMed  CAS  Google Scholar 

  147. Nagiah N, Madhavi L, Anitha R, Anandan C, Srinivasan NT, Sivagnanam UT (2013) Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration. Mater Sci Eng C 33(7):4444–4452. https://doi.org/10.1016/j.msec.2013.06.042

    Article  CAS  Google Scholar 

  148. Asran AS, Razghandi K, Aggarwal N, Michler GH, Groth T (2010) Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules 11(12):3413–3421. https://doi.org/10.1021/bm100912v

    Article  CAS  PubMed  Google Scholar 

  149. Meng W, Kim S-Y, Yuan J, Kim JC, Kwon OH, Kawazoe N, Chen G, Ito Y, Kang I-K (2007) Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Ed 18(1):81–94. https://doi.org/10.1163/156856207779146114

    Article  PubMed  Google Scholar 

  150. Khorasani MT, Mirmohammadi SA, Irani S (2011) Polyhydroxybutyrate (PHB) scaffolds as a model for nerve tissue engineering application: fabrication and in vitro assay. Int J Polym Mater Polym Biomater 60(8):562–575. https://doi.org/10.1080/00914037.2010.531809.

    Article  CAS  Google Scholar 

  151. Genchi GG, Ciofani G, Polini A, Liakos I, Iandolo D, Athanassiou A, Pisignano D, Mattoli V, Menciassi A (2015) PC12 neuron-like cell response to electrospun poly( 3-hydroxybutyrate) substrates. J Tissue Eng Regen Med 9(2):151–161. https://doi.org/10.1002/term.1623

    Article  CAS  PubMed  Google Scholar 

  152. Ramier J, Bouderlique T, Stoilova O, Manolova N, Rashkov I, Langlois V, Renard E, Albanese P, Grande D (2014) Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Mater Sci Eng C 38:161–169. https://doi.org/10.1016/j.msec.2014.01.046

    Article  CAS  Google Scholar 

  153. Guan D, Chen Z, Huang C, Lin Y (2008) Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds. Appl Surf Sci 255(2):324–327. https://doi.org/10.1016/j.apsusc.2008.06.093

    Article  CAS  Google Scholar 

  154. Sadat-Shojai M, Khorasani M-T, Jamshidi A (2016) A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem Eng J 289:38–47. https://doi.org/10.1016/j.cej.2015.12.079

    Article  CAS  Google Scholar 

  155. Ding Y, Li W, Müller T, Schubert DW, Boccaccini AR, Yao Q, Roether JA (2016) Electrospun polyhydroxybutyrate/poly(ε-caprolactone)/58S sol–gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering. ACS Appl Mater Interfaces 8(27):17098–17108. https://doi.org/10.1021/acsami.6b03997

    Article  CAS  PubMed  Google Scholar 

  156. Daranarong D, Chan RTH, Wanandy NS, Molloy R, Punyodom W, Foster LJR (2014) Electrospun polyhydroxybutyrate and poly(L-lactide-co-ɛ-caprolactone) composites as nanofibrous scaffolds. Biomed Res Int. https://doi.org/10.1155/2014/741408

  157. Ding Y, Roether JA, Boccaccini AR, Schubert DW (2014) Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. Eur Polym J 55:222–234. https://doi.org/10.1016/j.eurpolymj.2014.03.020

    Article  CAS  Google Scholar 

  158. Zonari A, Novikoff S, Electo NRP, Breyner NM, Gomes DA, Martins A, Neves NM, Reis RL, Goes AM (2012) Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS One 7(4):e35422. https://doi.org/10.1371/journal.pone.0035422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xie J, MacEwan MR, Willerth SM, Li X, Moran DW, Sakiyama-Elbert SE, Xia Y (2009) Conductive core–sheath nanofibers and their potential application in neural tissue engineering. Adv Funct Mater 19(14):2312–2318. https://doi.org/10.1002/adfm.200801904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhou J, Cheng L, Sun X, Wang X, Jin S, Li J, Wu Q (2016) Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation. Front Mater Sci 10(3):260–269. https://doi.org/10.1007/s11706-016-0348-6

    Article  Google Scholar 

  161. Jeong SI, Jun ID, Choi MJ, Nho YC, Lee YM, Shin H (2008) Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-ε-caprolactone) for the control of cell adhesion. Macromol Biosci 8(7):627–637. https://doi.org/10.1002/mabi.200800005

    Article  CAS  PubMed  Google Scholar 

  162. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2009) Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng A 15(11):3605–3619. https://doi.org/10.1089/ten.tea.2008.0689

    Article  CAS  Google Scholar 

  163. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5(4):17–35. https://doi.org/10.1002/term.383.

    Article  CAS  Google Scholar 

  164. Aznar-Cervantes S, Roca MI, Martinez JG, Meseguer-Olmo L, Cenis JL, Moraleda JM, Otero TF (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43. https://doi.org/10.1016/j.bioelechem.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  165. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhou J-F, Wang Y-G, Cheng L, Wu Z, Sun X-D, Peng J (2016) Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regen Res 11(10):1644–1652. https://doi.org/10.4103/1673-5374.193245

    Article  PubMed  PubMed Central  Google Scholar 

  167. SH K, Lee SH, Park CB (2012) Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Biomaterials 33(26):6098–6104. https://doi.org/10.1016/j.biomaterials.2012.05.018

    Article  CAS  Google Scholar 

  168. Chen M-C, Sun Y-C, Chen Y-H (2013) Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater 9(3):5562–5572. https://doi.org/10.1016/j.actbio.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  169. Castagna R, Tunesi M, Saglio B, Della Pina C, Sironi A, Albani D, Bertarelli C, Falletta E (2016) Ultrathin electrospun PANI nanofibers for neuronal tissue engineering. J Appl Polym Sci 133(35). https://doi.org/10.1002/app.43885

  170. Hosseinzadeh S, Mahmoudifard M, Mohamadyar-Toupkanlou F, Dodel M, Hajarizadeh A, Adabi M, Soleimani M (2016) The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells. Bioprocess Biosyst Eng 39(7):1163–1172. https://doi.org/10.1007/s00449-016-1592-y

    Article  CAS  PubMed  Google Scholar 

  171. Gonçalves R, Martins P, Moya X, Ghidini M, Sencadas V, Botelho G, Mathur ND, Lanceros-Mendez S (2015) Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. Nanoscale 7(17):8058–8061. https://doi.org/10.1039/c5nr00453e

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and grants SFRH/BD/111478/2015 (S.R.), SFRH/BPD/121526/2016 (D.C.) and SFRH/BPD/90870/2012 (C.R.). The authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry Department under the ELKARTEK program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribeiro, S., Correia, D.M., Ribeiro, C., Lanceros-Méndez, S. (2017). Electrospun Polymeric Smart Materials for Tissue Engineering Applications. In: Almodovar, J. (eds) Electrospun Biomaterials and Related Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-70049-6_9

Download citation

Publish with us

Policies and ethics