Skip to main content
Log in

Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In scaffold aided regeneration of muscular tissue, composite materials are currently utilized as a temporary substrate to stimulate tissue formation by controlled electrochemical signals as well as continuous mechanical stimulation until the regeneration processes are completed. Among them, composites from the blending of conductive (CPs) and biocompatible polymers are powerfully emerging as a successful strategy for the regeneration of myocardium due to their unique conductive and biological recognition properties able to assure a more efficient electroactive stimulation of cells. Here, different composite substrates made of synthesized polyaniline (sPANi) and polycaprolactone (PCL) were investigated as platforms for cardiac tissue regeneration. Preliminary, a comparative analysis of substrates conductivity performed on casted films endowed with synthesized polyaniline (sPANi) short fibres or blended with emeraldine base polyaniline (EBPANi) allows to study the attitude of charge transport, depending on the conducting filler amount, shape and spatial distribution. In particular, conducibility tests indicated that sPANi short fibres provide a more efficient transfer of electric signal due to the spatial organization of electroactive needle-like phases up to form a percolative network. On the basis of this characterization, sPANi/PCL electrospun membranes have been also optimized to mimic either the morphological and functional features of the cardiac muscle ECM. The presence of sPANi does not relevantly affect the fibre architecture as confirmed by SEM/image analysis investigation which shows a broader distribution of fibres with only a slight reduction of the average fibre diameter from 7.1 to 6.4 μm. Meanwhile, biological assays—evaluation of cell survival rate by MTT assay and immunostaining of sarcomeric α-actinin of cardiomyocites-like cells—clearly indicate that conductive signals offered by PANi needles, promote the cardiogenic differentiation of hMSC into cardiomyocite-like cells. These preliminary results concur to promise the development of electroactive biodegradable substrates able to efficiently stimulate the basic cell mechanisms, paving the way towards a new generation of synthetic patches for the support of the regeneration of damaged myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. Chem Commun. 1977;12:578–80.

    Google Scholar 

  2. Skotheim TJ, Elsenbaumer RL, Reynolds JR. Handbook of conducting polymers. 2nd ed. New York: Marcel Dekker; 1998.

    Google Scholar 

  3. Huang J, Kaner RB. A general chemical route to polyaniline nanofibers. J Am Chem Soc. 2004;126:851–5.

    Article  CAS  Google Scholar 

  4. Huang J, Kaner RB. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study angew. Chem Int Ed. 2004;43:5817–21.

    Article  CAS  Google Scholar 

  5. Chiou NR, Epstein AJ. Polyaniline nanofibers prepared by dilute polymerization. Adv Mater. 2005;17:1679–83.

    Article  CAS  Google Scholar 

  6. Jing X, Wang Y, Wu D, Qiang J. Sonochemical synthesis of polyaniline nanofibers Ultrason. Sonochemical. 2007;14:75–80.

    CAS  Google Scholar 

  7. Kamalesh S, Tan P, Wang J, Lee T, Kang ET, Wang CH. Biocompatibility of electroactive polymers in tissues. J Biomed Mater Res. 2000;52:467–78.

    Article  CAS  Google Scholar 

  8. Dispenza C, Leone M, Presti CL, Librizzi F, Spadaro G, Vetri V. Optical properties of biocompatible polyaniline nano-composites. J Non-Cryst Solids. 2006;352:3835–40.

    Article  CAS  Google Scholar 

  9. Zhang QS., Yan YH, Li SP, Feng T. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Biomed Mater. 2009. doi:10.1088/1748-6041/4/3/035008.

  10. Shi G, Rouabhia M, Wang Z, Dao LH, Zhang Z. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials. 2004;25:2477–88.

    Article  CAS  Google Scholar 

  11. Wan Y, Wen DJ. Preparation and characterization of porous conducting poly(dl-lactide) composite membranes. J Membr Sci. 2005;246:193–4.

    Article  CAS  Google Scholar 

  12. Wang CH, Dong YQ, Sengothi K, Tan KL, Kang ET. In vivo tissue response to polyaniline. Synth Met. 1999;102:1313–4.

    Article  CAS  Google Scholar 

  13. Li M, Guo Y, Wei Y, Macdiarmid AG, Lelkes PI. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials. 2006;27:2705–15.

    Article  CAS  Google Scholar 

  14. Tiitu M, Hiekkataipale P, Hartikainen J, Makela T, Ikkala O. Viscoelastic and electrical transitions in gelation of electrically conducting polyaniline. Macromolecules. 2002;35:5212–7.

    Article  CAS  Google Scholar 

  15. Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater. 2002;12:33–7.

    Article  CAS  Google Scholar 

  16. Huang LH, Zhuang XL, Hu, Lang L, Zhang PB, Wang Y, Chen XS, Wei Y, Jing XB. Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromolecules. 2008;9:850–8.

    Article  CAS  Google Scholar 

  17. Huang LH, et al. Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials. 2007;28:1741–51.

    Article  CAS  Google Scholar 

  18. Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release. 2006;110:531–41.

    Article  CAS  Google Scholar 

  19. Abidian MR, Kim DH, Martin DC. Conducting polymer nanotubes for controlled drug release. Adv Mater. 2006;18:405–9.

    Article  CAS  Google Scholar 

  20. Li Y, Neoh KG, Kang ET. Controlled release of heparin from polypyrrole–poly(vinyl alcohol) assembly by electrical stimulation. J Biomed Mater Res A. 2005;73A:171–81.

    Article  CAS  Google Scholar 

  21. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32:876–81.

    Article  CAS  Google Scholar 

  22. Hatchett D, Josowicz M, Janata J. Acid doping of polyaniline: spectroscopic and electrochemical studies. J Phys Chem B. 1999;103:10992–8.

    Article  CAS  Google Scholar 

  23. Zelikin AN, Lynn DM, Farhadi J, Martin I, Shastri V, Langer R. Erodible conducting polymers for potential biomedical applications. Angew Chem. 2002;114:149–52.

    Article  Google Scholar 

  24. Strümpler R, Glatz-Reichenbach J. Conducting polymer composites. J Electroceramics. 1999;3:329–46.

    Article  Google Scholar 

  25. Bidez PR, Li S, Macdiarmid AG, Venancio EC, Wei Y, Lelkes PI. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Edn. 2006;17:199–202.

    Article  CAS  Google Scholar 

  26. Guarino V, Causa F, Salerno A, Ambrosio L, Netti PA. Design and manufacture of microporous polymeric materials with hierarchal complex structure for biomedical application. Mater Sci Technol. 2008;24:1111–7.

    Article  CAS  Google Scholar 

  27. Guarino V, Causa F, Ambrosio L. Porosity and mechanical properties relationship in PCL based scaffolds. J Appl Biomat Biomech. 2007;5(3):149–57.

    CAS  Google Scholar 

  28. Guarino V, Ambrosio L. Temperature driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering. Proc Inst Mech Eng H: J Eng Med. 2010;224(12):1389–400.

    Article  CAS  Google Scholar 

  29. Guarino V, Lewandowska M, Bil M, Polak B, Ambrosio L. Morphology and degradation properties of pcl/hyaff11-based composite scaffolds with multiscale degradation rate. Comp Sci Tech. 2010;70:1826–37.

    Article  CAS  Google Scholar 

  30. Li WJ, Mauck RL, Tuan RS. Electrospun nanofibrous scaffolds: production, characterization and applications for tissue engineering and drug delivery. J Biomed Nanotechnol. 2005;1:259–75.

    Article  Google Scholar 

  31. Altomare L, Fare S. Cells response to topographic and chemical micropatterns. J Appl Biomater Biomech. 2008;6:132–43.

    CAS  Google Scholar 

  32. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.

    Article  CAS  Google Scholar 

  33. Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG. Electrospun polydioxanone–elastin blends: potential for bioresorbable vascular grafts. Biomed Mater. 2006;1:72–80.

    Article  CAS  Google Scholar 

  34. Wnek GE, Carr ME, Simpson DG, Bowlin GL. Electrospinning of nanofiber fibrinogen structures. Nano Lett. 2003;3:213–6.

    Article  CAS  Google Scholar 

  35. Li WJ, Cooper JA, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester) based fibrous scaffolds for tissue engineering application. Acta Biomater. 2006;2:377–85.

    Article  Google Scholar 

  36. Guarino V, Alvarez-Perez MA, Cirillo V, Ambrosio L. hMSC interaction with pcl and pcl/gelatin platforms: a comparative study on films and electrospun membranes. J Bioact Comp Pol. 2011 (in press).

  37. Alvarez-Perez MA. Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules. 2010;11:2238–46.

    Article  CAS  Google Scholar 

  38. Mattioli-Belmonte M, Giavaresi G, Biagini G, Virgili L, Giacomini M, Fini M, Giantomassi F, Natali D, Torricelli P, Giardino R. Tailoring biomaterial compatibility: In vivo tissue response versus in vitro cell behavior. Int J Artif Organs. 2003;26:1077–85.

    CAS  Google Scholar 

  39. Wang HJ, Ji LW, Li DF, Wang JY. Characterization of nanostructure and cell compatibility of polyaniline films with different dopant acids. J Phys Chem B. 2008;112:2671–7.

    Article  CAS  Google Scholar 

  40. Makino S, Fukuda K, Miyoshi S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103:697–705.

    Article  CAS  Google Scholar 

  41. Fukuda K, Yuasa S. Stem cells as a source of regenerative cardiomyocytes. Circ Res. 2006;98:1002–13.

    Article  CAS  Google Scholar 

  42. Zhang FB, Li L, Fang B, Zhu DL, Yang HT, Gao PJ. Passage restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun. 2005;336:784–92.

    Article  CAS  Google Scholar 

  43. Tomita Y, Makino S, Hakuno D, Hattan N, Kimura K, Miyoshi S, Murata M, Ieda M, Fukuda K. Application of mesenchymal stem cell-derived cardiomyocytes as bio-pacemakers: current status and problems to be solved. Med Biol Eng Comput. 2007;45(2):209–20.

    Article  Google Scholar 

Download references

Acknowledgments

The authors A. Borriello and V. Guarino equally contribute to this paper. This study was supported from the Ministero dell’Università e della Ricerca by funds of Rete Nazionale di Ricerca TISSUENET n. RBPR05RSM2. The authors thank Mr M. De Angioletti for his help with IR-ATR spectra acquisition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Borriello or V. Guarino.

Additional information

Paper selected for publication from the 2nd China-Europe Symposium on Biomaterials in Regenerative Medicine, Barcelona, November 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borriello, A., Guarino, V., Schiavo, L. et al. Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci: Mater Med 22, 1053–1062 (2011). https://doi.org/10.1007/s10856-011-4259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4259-x

Keywords

Navigation