Skip to main content

Carbon Losses from Respiration and Emission of Volatile Organic Compounds—The Overlooked Side of Tree Carbon Budgets

  • Chapter
  • First Online:
Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.

Part of the book series: Tree Physiology ((TREE,volume 7))

Abstract

The balance between photosynthetic carbon (C) assimilation and C loss via respiration (R), emission of volatile organic compounds (VOCs), and rhizodeposition determines plant net primary production and controls to a large extent ecosystem C budgets. Compared to photosynthesis, the physiology, environmental control and ecological importance of processes involving C release from trees have been less studied; it is the purpose of this review to address these questions in oak trees with special focus on R and VOC emissions. Mass-based leaf dark R scales positively with specific leaf area, nitrogen content and photosynthetic capacity, and it is normally greater in deciduous species than evergreen sclerophyllous ones. Leaf dark R increases with temperature, and is constrained by water shortages; however, the magnitude of these responses may vary at different temporal scales. Similarly, R in woody tissues increases with temperature, although in a hysteretic manner during a diel period. On a seasonal basis, besides temperature, water availability becomes the main abiotic driver of woody tissue R as drought stress down-regulates maintenance and growth metabolic processes in stems and roots. Respiration in foliar and woody tissues is expected to account for about half of photosynthesis; nevertheless, R can largely fluctuate with ontogenetic, biotic and abiotic factors independently of C uptake. Volatile organic compounds have multiple roles in plant-environment interactions and plant-plant signalling. Oak genus is one of the strongest emitter of isoprenoids, which are the most important VOCs released from plants. Most oak species release isoprene constitutively; however, several oak species distributed around the Mediterranean (mostly evergreen) do not produce isoprene, but alternatively emit monoterpenes or lack constitutive emissions of VOCs. The rate of emission of VOCs from leaves increases with leaf temperature and irradiance, being the derived C loss relative to photosynthesis about 1%, except during heat waves when this percentage may increase up to 5%. Emission of VOCs is constrained by drought-stress to a lesser extent than leaf photosynthesis, thus the relative C loss through VOCs also increases with drought severity. Overall, the hypothesis of homeostatic ratios between plant C gain and C loss, an artefact of our better understanding of photosynthesis in comparison to all these processes that encompass tree C loss, should be revisited to better understand C cycling in oaks and to better predict oak physiological performance under climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amthor J (2000) The McCree–de wit-penning de Vries-Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20

    Article  CAS  Google Scholar 

  • Asensio D, Penuelas J, Ogaya R, Llusià J (2007) Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions. Atmos Environ 41:2456–2466

    Article  CAS  Google Scholar 

  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB et al (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636

    Article  CAS  PubMed  Google Scholar 

  • Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:197–219

    Article  CAS  Google Scholar 

  • Aubrey DP, Teskey RO (2009) Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol 184:35–40

    Article  CAS  PubMed  Google Scholar 

  • Ávila E, Herrera A, Tezara W (2014) Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica 52:3–15

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL et al (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bashir O, Khan K, Hakeem K et al (2016) Soil microbe diversity and root exudates as important aspects of rhizosphere ecosystem. In: Hakeem K, Akhtar M (eds) Plant, soil and microbes. Springer International Publishing, Switzerland, pp 337–357

    Chapter  Google Scholar 

  • Behnke K, Ehlting B, Teuber M et al (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Plant J 51:485–499

    Article  CAS  PubMed  Google Scholar 

  • Behnke K, Kleist E, Uerlings R et al (2009) RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance. Tree Physiol 29:725–736

    Article  CAS  PubMed  Google Scholar 

  • Behnke K, Loivamäki M, Zimmer I et al (2010) Isoprene emission protects photosynthesis in sunfleck exposed Grey poplar. Photosynth Res 104:5–17

    Article  CAS  PubMed  Google Scholar 

  • Behnke K, Grote R, Brüggemann N et al (2012) Isoprene emission-free poplars—a chance to reduce the impact from poplar plantations on the atmosphere. New Phytol 194:70–82

    Article  CAS  PubMed  Google Scholar 

  • Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 107:456–462

    Article  CAS  PubMed  Google Scholar 

  • Berveiller D, Kierzkowski D, Damesin C (2007) Interspecific variability of stem photosynthesis among tree species. Tree Physiol 27:53–61

    Article  CAS  PubMed  Google Scholar 

  • Bloemen J, Agneessens L, Van Meulebroek L et al (2014) Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil. New Phytol 201:897–907

    Article  CAS  PubMed  Google Scholar 

  • Bolstad P, Mitchell K, Vose J (1999) Foliar temperature-respiration response functions for broad-leaved tree species in the southern Appalachians. Tree Physiol 19:871–878

    Article  CAS  PubMed  Google Scholar 

  • Bolstad PV, Reich P, Lee T (2003) Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol 23:969–976

    Article  Google Scholar 

  • Bourtsoukidis E, Kawaletz H, Radacki D et al (2014) Impact of flooding and drought conditions on the emission of volatile organic compounds of Quercus robur and Prunus serotina. Trees Struct Funct 28:193–204

    Article  CAS  Google Scholar 

  • Bracho-Nunez A, Welter S, Staudt M, Kesselmeier J (2011) Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. J Geophys Res 116:D16304

    Article  CAS  Google Scholar 

  • Bracho-Nunez A, Knothe NM, Welter S et al (2013) Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants. Biogeosciences 10:5855–5873

    Article  CAS  Google Scholar 

  • Bréda N, Maillard P, Montpied P et al (2013) Isotopic evidence in adult oak trees of a mixotrophic lifestyle during spring reactivation. Soil Biol Biochem 58:136–139

    Article  CAS  Google Scholar 

  • Brilli F, Gioli B, Fares S et al (2016) Rapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a “coppiced” bioenergy poplar plantation. Plant Cell Environ 39:539–555

    Article  CAS  PubMed  Google Scholar 

  • Burton A, Pregitzer KS, Ruess R et al (2002) Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia 131:559–568

    Article  CAS  PubMed  Google Scholar 

  • Burton AJ, Melillo JM, Frey SD (2008) Adjustment of forest ecosystem root respiration as temperature warms. J Integr Plant Biol 50:1467–1483

    Article  PubMed  Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot 85:45–54

    Article  CAS  Google Scholar 

  • Cappellin L, Algarra Alarcon A, Herdlinger-Blatt I et al (2017) Field observations of volatile organic compound (VOC) exchange in red oaks. Atmos Chem Phys 17: 4218-4207

    Google Scholar 

  • Coe JM, McLaughlin SB (1980) Winter season corticular photosynthesis in Cornus florida, Acer rubrum, Quercus alba, and Liriodendron tulipifera. For Sci 26:561–566

    Google Scholar 

  • Collier DE, Thibodeau BA (1995) Changes in respiration and chemical content during autumnal senescence of Populus tremuloides and Quercus rubra leaves. Tree Physiol 15:759–764

    Article  CAS  PubMed  Google Scholar 

  • Copolovici L, Vaartnou F, Estrada MP, Niinemets U (2014) Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. Tree Physiol 34:1399–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis PS, Vogel CS, Gough CM et al (2005) Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999–2003. New Phytol 167:437–456

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dannoura M, Kominami Y, Tamai K et al (2006) Development of an automatic chamber system for long-term measurements of CO2 flux from roots. Tellus 58:502–512

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164

    Article  Google Scholar 

  • Delory BM, Delaplace P, Fauconnier ML, du Jardin P (2016) Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant Soil 402:1–26

    Google Scholar 

  • Edwards NT, Hanson PJ (1996) Stem respiration in a closed-canopy upland oak forest. Tree Physiol 16:433–439

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthestic CO2 assimilation in leaves of C3 species. Planta 90:78–90

    Article  Google Scholar 

  • Fatichi S, Leuzinger S, Korner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Tree Physiol vol 5. Springer, Dordrecht, pp 1–20

    Google Scholar 

  • Fischbach RJ, Staudt M, Zimmer I et al (2002) Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex. Physiol Plant 114:354–360

    Article  CAS  PubMed  Google Scholar 

  • Frost CJ, Hunter MD (2008) Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings. New Phytol 178:835–845

    Article  CAS  PubMed  Google Scholar 

  • Gaona-Colmán E, Blanco MB, Barnes I, Teruel MA (2016) Gas-phase ozonolysis of β-ocimene: temperature dependent rate coefficients and product distribution. Atmos Environ 147:46–54

    Article  CAS  Google Scholar 

  • Ghirardo A, Heller W, Fladung M et al (2012) Function of defensive volatiles in pedunculate oak (Quercus robur) is tricked by the moth Tortrix viridana. Plant, Cell Environ 35:2192–2207

    Article  CAS  Google Scholar 

  • Gifford RM (2003) Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171

    Article  Google Scholar 

  • Goulden ML, Munger W, Fan S et al (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Change Biol 2:169–182

    Article  Google Scholar 

  • Hallquist M, Wenger JC, Baltensperger U et al (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236

    Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Harvey CM, Sharkey TD (2016) Exogenous isoprene modulates gene expression in unstressed Arabidopsis thaliana plants. Plant Cell Environ 39:1251–1263

    Article  CAS  PubMed  Google Scholar 

  • Harvey CM, Li Z, Tjellström H et al (2015) Concentration of isoprene in artificial and thylakoid membranes. J Bioenerg Biomembr 47:419–429

    Article  CAS  PubMed  Google Scholar 

  • Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79:597–606

    Article  CAS  PubMed  Google Scholar 

  • Henry A, Doucette W, Norton J, Bugbee B (2007) Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J Environ Qual 36:904–912

    Article  CAS  PubMed  Google Scholar 

  • Hunt S (2003) Measurements of photosynthesis and respiration in plants. Physiol Plant 117:314–325

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Inatomi M, Mo W et al (2007) Examination of model-estimated ecosystem respiration using flux measurements from a cool-temperate deciduous broad-leaved forest in central Japan. Tellus 59:616–624

    Article  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Karl T, Harley P, Emmons L et al (2010) Efficient atmospheric cleansing of oxidized organic trace gases by vegetation. Science 330:816–819

    Article  CAS  PubMed  Google Scholar 

  • Kattge J, Díaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935

    Article  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kesselmeier J, Ciccioli P, Kuhn U et al (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochem Cycles 16:1–9

    Article  CAS  Google Scholar 

  • Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114

    Article  PubMed  CAS  Google Scholar 

  • Kosugi Y, Tanaka H, Takanashi S et al (2005) Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agric For Meteorol 132:329–343

    Article  Google Scholar 

  • Kreuzwieser J, Rennenberg H (2013) Flooding-driven emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Dordrecht, pp 237–252

    Google Scholar 

  • Lanoue A, Burlat V, Henkes GJ et al (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588

    Article  CAS  PubMed  Google Scholar 

  • Laureano RG, Lazo YO, Linares JC et al (2008) The cost of stress resistance: construction and maintenance costs of leaves and roots in two populations of Quercus ilex. Tree Physiol 28:1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Lavoir AV, Staudt M, Schnitzler JP et al (2009) Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment. Biogeosciences 6:1167–1180

    Article  CAS  Google Scholar 

  • Lee TD, Reich PB, Bolstad PV (2005) Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Funct Ecol 19:640–647

    Article  Google Scholar 

  • Lempereur M, Martin-StPaul NK, Damesin C et al (2015) Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: implications for assessing forest productivity under climate change. New Phytol 207:579–590

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Chen J, Moorhead DL (2012) Respiratory carbon losses in a managed oak forest ecosystem. For Ecol Manage 279:1–10

    Article  Google Scholar 

  • Limousin JM, Misson L, Lavoir AV et al (2010) Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity? Plant Cell Environ 33:863–875

    CAS  PubMed  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275

    Article  CAS  PubMed  Google Scholar 

  • Loivamäki M, Mumm R, Dicke M, Schnitzler J-P (2008) Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proc Natl Acad Sci 105:17430–17435

    Article  PubMed  PubMed Central  Google Scholar 

  • Long BM, Bahar NHA, Atkin OK (2015) Contributions of photosynthetic and non-photosynthetic cell types to leaf respiration in Vicia faba L. and their responses to growth temperature. Plant Cell Environ 38:2263–2276

    Article  CAS  PubMed  Google Scholar 

  • López B, Sabate S, Gracia CA (2001) Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. Plant Soil 230:125–134

    Article  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Sharkey TD (1990) A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta 182:523–531

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Bagnoli F, Fineschi S (2009) One species, many terpenes: matching chemical and biological diversity. Trends Plant Sci 14:416–420

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci. https://doi.org/10.3389/fpls.2016.0164

    Google Scholar 

  • Luan J, Liu S, Wang J et al (2011) Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China. Soil Biol Biochem 43:503–512

    Article  CAS  Google Scholar 

  • Luyssaert S, Inglima I, Jung M et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537

    Article  Google Scholar 

  • Mabberley DJ (2008) Mabberley’s plant book: a portable dictionary of plants, their classifications and uses. Cambridge University Press, UK

    Google Scholar 

  • Martinez F, Lazo YO, Fernandez-Galiano RM, Merino JA (2002) Chemical composition and construction cost for roots of Mediterranean trees, shrub species and grassland communities. Plant Cell Environ 25:601–608

    Article  CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  CAS  PubMed  Google Scholar 

  • Matsui K (2016) A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds. Curr Opin Plant Biol 32:24–30

    Article  CAS  PubMed  Google Scholar 

  • McCree KJ (1970) An equation for the rate of respiration of white clover plants grown under controlled conditions. In: Prediction and measurement of photosynthetic productivity. Proceedings of the IBP/PP technical meeting, Trebon, 14–21 Sept 1969, pp 221–229

    Google Scholar 

  • McGuire MA, Teskey RO (2002) Microelectrode technique for in situ measurement of carbon dioxide concentrations in xylem sap of trees. Tree Physiol 22:807–811

    Article  CAS  PubMed  Google Scholar 

  • Misztal PK, Hewitt CN, Wildt J et al (2015) Atmospheric benzenoid emissions from plants rival those from fossil fuels. Sci Rep 5:12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyama T, Kominami Y, Tamai K et al (2006) Components and seasonal variation of night-time total ecosystem respiration in a Japanese broad-leaved secondary forest. Tellus 58:550–559

    Article  Google Scholar 

  • Miyazawa S (1998) Slow leaf development of evergreen broad-leaved tree species in Japanese warm temperate forests. Ann Bot 82:859–869

    Article  Google Scholar 

  • Molchanov AG (2009) Effect of moisture availability on photosynthetic productivity and autotrophic respiration of an oak stand. Russ J Plant Physiol 56:769–779

    Article  CAS  Google Scholar 

  • Monson RK, Jones RT, Rosenstiel TN, Schnitzler JP (2013) Why only some plants emit isoprene. Plant Cell Environ 36:503–516

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Kaling M, Faubert P et al (2015) Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles. BMC Plant Biol 15:1

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds D, Ferhatoglu Y (2010) Functional categories of root exudate compounds and their relevance to AM fungal growth. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Berlin, pp 33–56

    Chapter  Google Scholar 

  • Negisi K (1982) Diurnal fluctuations of the stem bark respiration in relationship to the wood temperature in standing young Pinus densiflora, Chamaecyparis obtusa and Quercus myrsinaefolia trees. J Japanese For Soc 64:315–319

    Google Scholar 

  • Nguyen C (2009) Rhizodeposition of organic C by plant: mechanisms and controls. In: Lichtfouse E, Navarrete M, Debaeke P et al (eds) Sustainable agriculture. Springer, Netherlands, pp 97–123

    Chapter  Google Scholar 

  • Niinemets U (2014) Cohort-specific tuning of foliage physiology to interacting stresses in evergreens. Tree Physiol 34:1301–1304

    Article  CAS  PubMed  Google Scholar 

  • Niinemets U, Reichstein M, Staudt M et al (2002) Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol 130:1371–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niinemets Ü, Fares S, Harley P, Jardine KJ (2014) Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition. Plant Cell Environ 37:1790–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer-Young EC, Veit D, Gershenzon J, Schuman MC (2015) The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene quench ozone but fail to protect the wild tobacco Nicotiana attenuata from Ozone, UVB, and drought stresses. PLoS ONE 10:e0127296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paris CI, Llusia J, Peñuelas J (2010) Changes in monoterpene emission rates of Quercus ilex infested by aphids tended by native or invasive Lasius ant species. J Chem Ecol 36:689–698

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Goldstein AH, Timkovsky J et al (2013) Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341:643–647

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  PubMed  CAS  Google Scholar 

  • Pérez-de-Lis G, García-González I, Rozas V, Olano JM (2016) Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks. Biogeosci Discuss 35:1–19

    Article  Google Scholar 

  • Piao S, Luyssaert S, Ciais P et al (2010) Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology 91:652–661

    Article  PubMed  Google Scholar 

  • Pier PA, McDuffie C (1997) Seasonal isoprene emission rates and model comparisons using whole-tree emissions from white oak. J Geophys Res 102:23963–23971

    Article  CAS  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB et al (2012) Biomass allocation to leaves, stems and roots: meta-analysis of interspecific variation and environmental control. New Phytol 193:30–50

    Article  CAS  PubMed  Google Scholar 

  • Preece C, Peñuelas J (2016) Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409:1–17

    Article  CAS  Google Scholar 

  • Rambal S, Lempereur M, Limousin JM et al (2014) How drought severity constrains gross primary production (GPP) and its partitioning among carbon pools in a Quercus ilex coppice? Biogeosciences 11:6855–6869

    Article  Google Scholar 

  • Rasulov B, Talts E, Niinemets Ü (2016) Spectacular oscillations in plant isoprene emission under transient conditions explain the enigmatic CO2 response. Plant Physiol 172:2275–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ et al (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS et al (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  PubMed  Google Scholar 

  • Reich PB, Tjoelker MG, Pregitzer KS et al (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11:793–801

    Article  PubMed  Google Scholar 

  • Reichstein M, Tenhunen J, Roupsard O et al (2002) Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Funct Ecol 16:27–39

    Article  Google Scholar 

  • Reich et al (2016) Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531(7596): 633–636

    Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V et al (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob Change Biol 8:851–866

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, Jaeger C, Limousin JM et al (2011) Leaf CO2 efflux is attenuated by acclimation of respiration to heat and drought in a Mediterranean tree. Funct Ecol 25:983–995

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, Limousin JM, Martin-Stpaul NK et al (2012) Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration. Tree Physiol 32:464–477

    Article  PubMed  Google Scholar 

  • Rodríguez-Calcerrada J, Buatois B, Chiche E et al (2013) Leaf isoprene emission declines in Quercus pubescens seedlings experiencing drought—any implication of soluble sugars and mitochondrial respiration? Environ Exp Bot 85:36–42

    Article  CAS  Google Scholar 

  • Rodríguez-Calcerrada J, Martin-StPaul NK, Lempereur M et al (2014) Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand. Agric For Meteorol 195–196:61–72

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, López R, Salomón R et al (2015a) Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications. Plant Cell Environ 38:1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Calcerrada J, Salomón R, Gil L (2015b) Transporte y reciclaje de CO2 en el interior del árbol: factores que complican la estimación de la respiración leñosa a través de la emisión radial de CO2. Bosque 36:5–14

    Article  Google Scholar 

  • Salomón R, Valbuena-Carabaña M, Rodríguez-Calcerrada J et al (2015) Xylem and soil CO2 fluxes in a Quercus pyrenaica Willd. coppice: root respiration increases with clonal size. Ann For Sci 72:1065–1078

    Article  Google Scholar 

  • Salomón R, Valbuena-Carabaña M, Teskey R et al (2016a) Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems. J Exp Bot 67:2817–2827

    Article  PubMed  CAS  Google Scholar 

  • Salomón RL, Valbuena-Carabaña M, Gil L et al (2016b) Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak. Tree Physiol 36:1409–1421

    Google Scholar 

  • Salomón RL, Limousin JM, Ourcival JM et al (2017) Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant Cell Environ 40:1379–1391

    Google Scholar 

  • Sasaki K, Saito T, Lämsä M et al (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Saunier A, Ormeño E, Wortham H et al (2017) Chronic drought decreases anabolic and catabolic BVOC emissions of Quercus pubescens in a Mediterranean Forest. Front Plant Sci 8:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Saveyn A, Steppe K, Lemeur R (2007a) Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure? Ann Bot 99:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saveyn A, Steppe K, Lemeur R (2007b) Drought and the diurnal patterns of stem CO2 efflux and xylem CO2 concentration in young oak (Quercus robur). Tree Physiol 27:365–374

    Article  CAS  PubMed  Google Scholar 

  • Saveyn A, Steppe K, Lemeur R (2008) Report on non-temperature related variations in CO2 efflux rates from young tree stems in the dormant season. Trees 22:165–174

    Article  CAS  Google Scholar 

  • Schallhart S, Rantala P, Nemitz E et al (2016) Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak-hornbeam forest. Atmos Chem Phys 16:7171–7194

    Article  CAS  Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656

    Article  PubMed  Google Scholar 

  • Schmidt S, Raven JA, Paungfoo-Lonhienne C (2013) The mixotrophic nature of photosynthetic plants. Funct Plant Biol 40:425–438

    Article  CAS  Google Scholar 

  • Schnitzler J, Lehning A, Steinbrecher R (1997) Seasonal pattern of isoprene synthase activity in Quercus robur leaves and its significance for modeling isoprene emission rates. Bot Acta 110:240–243

    Article  CAS  Google Scholar 

  • Sindelarova K, Granier C, Bouarar I et al (2014) Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos Chem Phys 14:9317–9341

    Article  CAS  Google Scholar 

  • Slot M, Kitajima K (2015) General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177:885–900

    Article  PubMed  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Change Biol 19:45–63

    Article  Google Scholar 

  • Sperlich D, Barbeta A, Ogaya R et al (2016) Balance between carbon gain and loss under long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L. J Exp Bot 67:821–833

    Article  CAS  PubMed  Google Scholar 

  • Staudt M, Bertin N (1998) Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak Quercus ilex L. leaves. Plant Cell Environ 21:385–395

    Article  CAS  Google Scholar 

  • Staudt M, Lhoutellier L (2007) Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Tree Physiol 27:1433–1440

    Article  CAS  PubMed  Google Scholar 

  • Staudt M, Lhoutellier L (2011) Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature. Biogeosciences 8:2757–2771

    Article  CAS  Google Scholar 

  • Staudt M, Wolf A, Kesselmeier J (2000) Influence of environmental factors on the emissions of gaseous formic and acetic acids from orange (Citrus sinensis L.) foliage. Biogeochemistry 48:199–216

    Article  CAS  Google Scholar 

  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001a) The effect of elevated CO2 on terpene emission, leaf structure and related physiological parameters of young Quercus ilex. Tree Physiol 21:437–445

    Article  CAS  PubMed  Google Scholar 

  • Staudt M, Mandl N, Joffre R, Rambal S (2001b) Intraspecific variability of monoterpene composition emitted by Quercus ilex leaves. Can J For Res 31:174–180

    CAS  Google Scholar 

  • Staudt M, Rambal S, Joffre R (2002) Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J Geophys Res 107:4602

    Google Scholar 

  • Staudt M, Joffre R, Rambal S (2003) How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes. New Phytol 158:61–73

    Article  CAS  Google Scholar 

  • Staudt M, Mir C, Joffre R et al (2004) Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression. New Phytol 163:573–584

    Article  CAS  Google Scholar 

  • Staudt M, Ennajah A, Mouillot F, Joffre R (2008) Do volatile organic compound emissions of Tunisian cork oak populations originating from contrasting climatic conditions differ in their responses to summer drought? Can J For Res 38:2965–2975

    Article  CAS  Google Scholar 

  • Staudt M, Jackson B, El-aouni H et al (2010) Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol 30:1320–1334

    Article  CAS  PubMed  Google Scholar 

  • Staudt M, Morin X, Chuine I (2017a) Contrasting direct and indirect effects of warming and drought on isoprenoid emissions from Mediterranean oaks. Reg Environ Change 17:2121–2133

    Google Scholar 

  • Staudt M, Bourgeois I, Al Halabi R et al (2017b) New insights into the parametrization of temperature and light responses of mono-and sesquiterpene emissions from Aleppo pine and rosemary. Atmos Environ 152:212–221

    Google Scholar 

  • Steinbrecher R, Contran N, Gugerli F et al (2013) Inter- and intra-specific variability in isoprene production and photosynthesis of Central European oak species. Plant Biol 15:148–156

    Article  CAS  PubMed  Google Scholar 

  • Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem A (2006) A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol 26:257–273

    Article  PubMed  Google Scholar 

  • Sun et al (2017) Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiol 37(8): 1011–1020

    Google Scholar 

  • Tattini M, Velikova V, Vickers C et al (2014) Isoprene production in transgenic tobacco alters isoprenoid, non-structural carbohydrate and phenylpropanoid metabolism, and protects photosynthesis from drought stress. Plant Cell Environ 37:1950–1964

    Article  CAS  PubMed  Google Scholar 

  • Teskey RO, McGuire MA (2002) Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. Plant Cell Environ 25:1571–1577

    Article  Google Scholar 

  • Teskey RO, Saveyn A, Steppe K, McGuire MA (2008) Origin, fate and significance of CO2 in tree stems. New Phytol 177:17–32

    CAS  PubMed  Google Scholar 

  • Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes—common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72:1635–1646

    Article  CAS  PubMed  Google Scholar 

  • Thornley JHM (1970) Respiration, growth and maintenance in plants. Nature 227:304–305

    Article  CAS  PubMed  Google Scholar 

  • Thornley JHM (2011) Plant growth and respiration re-visited: maintenance respiration defined—it is an emergent property of, not a separate process within, the system—and why the respiration: photosynthesis ratio is conservative. Ann Bot 108:1365–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbull MH, Whitehead D, Tissue DT et al (2001) Responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species vary with site water availability. Tree Physiol 21:571–578

    Article  CAS  PubMed  Google Scholar 

  • Unger S, Máguas C, Pereira JS et al (2009) Partitioning carbon fluxes in a Mediterranean oak forest to disentangle changes in ecosystem sink strength during drought. Agric For Meteorol 149:949–961

    Article  Google Scholar 

  • Valbuena-Carabaña M, González-Martínez SC, Hardy OJ, Gil L (2007) Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Mol Ecol 16:1207–1219

    Article  PubMed  CAS  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    Google Scholar 

  • Van Loon JJA, De Boer JG, Dicke M (2000) Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97:219–227

    Article  Google Scholar 

  • Van Oijen M, Schapendonk A, Hoglind M (2010) On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation. Ann Bot 105:793–797

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanzo E, Merl-Pham J, Velikova V et al (2016) Modulation of protein S-nitrosylation by isoprene emission in poplar. Plant Physiol 170:1945–1961

    Google Scholar 

  • Varone L, Gratani L (2015) Leaf respiration responsiveness to induced water stress in Mediterranean species. Environ Exp Bot 109:141–150

    Article  CAS  Google Scholar 

  • Velikova V, Tsonev T, Pinelli P et al (2005) Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol 25:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Sharkey TD, Loreto F (2012) Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav 7:139–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Velikova V, Müller C, Ghirardo A et al (2015) Knocking down of isoprene emission modifies the lipid matrix of thylakoid membranes and influences the chloroplast ultrastructure in poplar. Plant Physiol 168:859-870

    Google Scholar 

  • Verdú JR, Lobo JM, Numa C et al (2007) Acorn preference by the dung beetle, Thorectes lusitanicus, under laboratory and field conditions. Anim Behav 74:1697–1704

    Article  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009a) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Possell M, Cojocariu CI et al (2009b) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    Article  CAS  PubMed  Google Scholar 

  • Vuts J, Woodcock CM, Sumner ME et al (2016) Responses of the two-spotted oak buprestid, Agrilus biguttatus (Coleoptera: Buprestidae), to host tree volatiles. Pest Manag Sci 72:845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Guan D-X, Han S-J, Wu J-L (2010) Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest. Tree Physiol 30:149–163

    Article  CAS  PubMed  Google Scholar 

  • Waring R, Landsberg J, Williams M (1998) Net primary production of forests: a constant fraction of gross primary production? Tree Physiol 18:129–134

    Article  PubMed  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100

    Article  CAS  PubMed  Google Scholar 

  • Weissteiner S, Huetteroth W, Kollmann M et al (2012) cockchafer larvae smell host root scents in soil. PLoS One. doi:10.1371/journal.pone.0045827

  • Welter S, Bracho-Nuñez A, Mir C et al (2012) The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares. Tree Physiol 32:1082–1091

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Atkin OK et al (2006) Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytol 169:309–319

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Baldocchi DD (2003) Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol 23:865–877

    Article  PubMed  Google Scholar 

  • Yang JY, Teskey RO, Wang CK (2012a) Stem CO2 efflux of ten species in temperate forests in Northeastern China. Trees 26:1225–1235

    Article  CAS  Google Scholar 

  • Yang Q, Xu M, Chi Y et al (2012b) Temporal and spatial variations of stem CO2 efflux of three species in subtropical China. J Plant Ecol 5:229–237

    Article  Google Scholar 

  • Zaragoza-Castells J, Sánchez-Gómez D, Valladares F et al (2007) Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Plant Cell Environ 30:820–833

    Article  CAS  PubMed  Google Scholar 

  • Zaragoza-Castells J, Sánchez-Gómez D, Hartley IP et al (2008) Climate-dependent variations in leaf respiration in a dry-land, low productivity Mediterranean forest: the importance of acclimation in both high-light and shaded habitats. Funct Ecol 22:172–184

    Google Scholar 

Download references

Acknowledgements

This book chapter has received funding from the FWO and the European Union´s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665501, and from the “Legado de González-Esparcia” granted to RLS. J R-C acknowledges the support of the Spanish Ministry of Economy and Competitiveness via the “Ramón y Cajal” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto L. Salomón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salomón, R.L., Rodríguez-Calcerrada, J., Staudt, M. (2017). Carbon Losses from Respiration and Emission of Volatile Organic Compounds—The Overlooked Side of Tree Carbon Budgets. In: Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.. Tree Physiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-69099-5_10

Download citation

Publish with us

Policies and ethics