Skip to main content

Soil Microbe Diversity and Root Exudates as Important Aspects of Rhizosphere Ecosystem

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

The rhizosphere is an area of soil surrounding plant roots in which soil’s most reactions take place. The term “rhizosphere” was coined by Lorenz Hiltner, and it is 1–2 mm wide. The rhizosphere is divided into three zones: endorhizosphere, rhizoplane, and ectorhizosphere. The two dynamic properties of soil rhizosphere are root exudates and soil microbes. Root exudates are the chemical compounds that are secreted by roots and act as a source of food for soil microbes and play a pivotal role in soil microbe and plant interaction. These are low- and high-molecular-weight compounds. The root exudates are important for root-microbe and root-root communication. The other important aspect of rhizosphere is soil microbes. The soil microbes include bacteria, fungi, and actinomycetes. These organisms are important for both soil and fungi. The main aspect of this chapter is to give brief information about the underground world, and its future perspective is to understand soil microbe and plant interaction for enhancing sustainable agriculture. Studies on gene expression in the rhizosphere and the use of other molecular techniques like m-RNA, proteomics, labeled root compounds, stable isotope probes, and reporter technology will help in exploring underground undiscovered world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye A, Torbert H, Kloepper J (2009) Plant growth promoting Rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Ahmed R, Uddin MB, Khan MASA, Mukul SA (2007) Allelopathic effects of Lantana camara on germination and growth behavior of some agricultural crops in Bangladesh. J For Res 18:301–304

    Article  Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases the European situation. Euro J Plant Pathol 114:329–341

    Article  Google Scholar 

  • Anjum MA, Sajjad MR, Akhtar N, Qureshi MA, Iqbal A, Jami AR, Mahmud-ul-Hasan (2007) Response of cotton to plant growth promoting Rhizobacteria (PGPR) inoculation under different levels of nitrogen. J Agric Res 45:135–143

    Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz PT, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, De Vos WM, Brunak S, Dore J, Meta HIT, Consortium AM, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, Van de Guchte M, Guedon E, Haimet F, Huber W, Van H, Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, Mrini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth promoting Rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Bais HP, Loyola VVM, Flores HE, Vivanco JM (2001) Root specific metabolism: the biology and biochemistry of underground organs In vitro. Cell Dev Biol Plant 37:730–741

    Article  CAS  Google Scholar 

  • Bais HP, Walker TS, Stermitz FR, Hufbauer RA, Vivanco JM (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–9

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Inv 8:217–230

    Article  Google Scholar 

  • Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci 102:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benfey PN, Scheres B (2000) Root development. Curr Biol 16:813–815

    Article  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bolton H, Fredrickson JK, Elliot LF (1993) Microbial ecologyof the rhizosphere. Pages 27–63 in: F. Blaine Metting Jr. (éd.), Soil microbial ecology. Applications in agricultural and environmental management. Marcel Dekker, Inc., New York

    Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and VAM fungi. Trends Plant Sci 12:224–230

    Article  CAS  PubMed  Google Scholar 

  • Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 73–109

    Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Bron PA, Baarlen PV, Kleerebezem M (2012) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10:66–78.

    CAS  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbours: a mechanism for exotic plant invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Cassan F, Garcia SI (2008) Azospirillum sp.: cell physiology, plant response, agronomic and environmental research in Argentina. Asociacion Argentina de Microbiologia, Buenos Aires

    Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L (2012) Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. Biol Fert Soils 48:123–149

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:55731

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Chet I, Chernin L (2002) Biocontrol, microbial agents in soil. In: Bitton G (ed) Encyclopedia of environmental microbiology. Willey, New York, pp 450–465

    Google Scholar 

  • Chin A, Woeng TFC, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  Google Scholar 

  • Chinen T, Rudensky AY (2012) The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol Rev 245:45–55

    Article  CAS  PubMed  Google Scholar 

  • Clark FE (1949) Soil micro-organisms and plant roots communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. SpringerVerlag, Berlin Heidel-berg New York

    Book  Google Scholar 

  • Curtis TP, William TS, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc. Natl Acad Sci USA 99:10494–10499

    Google Scholar 

  • De Vleeschauwer D, Hofte M (2007) Using serratia plymuthica to control fungal pathogens of plants. CAB Rev 2:46

    Article  Google Scholar 

  • Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J (2010) Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1:254–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doornbos RF, VanLoon LC, Bakker AHMP (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron. Sustain. Dev. 32: 227–243.

    Article  Google Scholar 

  • Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Egamberdiyeva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    Google Scholar 

  • Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109:1159–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ent SV, Hulten MV, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CMJ, Ton J (2009) Priming of plant innate immunity by rhizobacteria and b-aminobutyric acid: differences and similarities in regulation. New Phytol 183:419–431.

    Article  PubMed  CAS  Google Scholar 

  • Estabrook EM, Yoder JI (1998) Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7

    Article  CAS  PubMed Central  Google Scholar 

  • Fagundes CT, Amaral FA, Teixeira AL, Souza DG, Teixeira MM (2012) Adapting to environmental stresses: the role of the microbiota in controlling innate immunity and behavioral responses. Immunol Rev 245:250–264

    Article  CAS  PubMed  Google Scholar 

  • Farzana Y, Saad ROS, Kamaruzaman S (2009) Growth and storage root development of Sweet potato inoculated with rhizobacteria under glasshouse conditions. Aust J Basic Appl Sci 3:1461–1466

    CAS  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) Radicle biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Foster RC (1986) The ultrastructure of the rhizoplane and rhizosphere. Annu Rev Phytopathol 24:211–234

    Article  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell to cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468.

    Article  CAS  PubMed  Google Scholar 

  • Garcia JL, Probanza A, Ramos B, Manero FJG (2001) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria. J Plant Nutri Soil Sci 164:1–7

    Article  CAS  Google Scholar 

  • Gewin V (2010) An underground revolution. Nature 466:552–553

    Article  CAS  PubMed  Google Scholar 

  • Glessner A, Smith RS, Iglewski BH, Robinson JB (1999) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol 181:1623–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2004) The living soil, fundamentals of soil science and soil biology. Science Publishers, USA

    Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen fixing rhizobia Microbiol. Mol Biol Rev 67:574–592

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haribal M, Enwick JAA (1998) Isovitexin 6-O-β-D-glucopyranoside: a feeding deterrent to Pieris napi oleracea from Alliaria petiolata. Phytochemistry 47:1237–1240

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M, Lorenz H (2008) A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133

    Article  CAS  PubMed  Google Scholar 

  • Herman DJ, Johnson KK, Jaeger CH, Schwartz E, Firestone MK (2006) Root influence on nitrogen mineralization and nitrification in Avena barbata rhizosphere soil. Soil Sci Soc Am 70:1504–1511

    Article  CAS  Google Scholar 

  • Hong KW, Koh CL, Sam CK, Yin WF, Chan KG (2012) Quorum quenching revisited-From signal decay to signalling confusion. Sensors (Basel) 12:4661–4696

    Article  Google Scholar 

  • Hutsch BW, Augustin J, Merbach W (2000) Plant rhizodeposition an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407

    Article  Google Scholar 

  • Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 108: 5354–5359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innes L, Hobbs PJ, Bardgett RD (2004) The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol Fertil Soils 40:7–13

    Article  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting Rhizobacteria associated with chickpea (Cicer arietinum L). Int J Plant Prod 1:141–152

    Google Scholar 

  • Juan Z, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicago truncatula is flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144:741–751

    Article  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Karakurt H, Aslantas R, Ozkan G, Guleryuz M (2009) Effects of indol-3-butyric acid (IBA), plant growth promoting rhizobacteria (PGPR) and carbohydrates on rooting of hardwood cutting of MM-106 Apple rootstock. Afr J Agric Res 4:60–64

    Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:66–67

    Article  CAS  Google Scholar 

  • Kloepper JW Schroth MN (1978) Plant growth promoting rhizobacteria on radish. Proceedings of the 4th Conference plant pathogenic bacteria, Angers, INRA 879–882

    Google Scholar 

  • Kocacali I, Ceylan M, Terzi I (2009) Effects of juglone on seedling growth in intact and coatless seeds of cucumber (Cucumis sativus cv. Beith alpha). Sci Res Essay 4:39–41

    Google Scholar 

  • Kowalchuk GA, Hol WHG, VanVeen JA (2006) Rhizosphere fungal communities are influenced by Senecio jacobaea pyrrolizidine alkaloid content and composition. Soil Biol Biochem 38:2852–2859

    Article  CAS  Google Scholar 

  • Lambers H, Shaver G, Raven JA, Smith SE (2008) N and P acquisition change as soils age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy molecules. MDPI J 15:8933–8952

    CAS  Google Scholar 

  • Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–60

    Article  PubMed  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Long SR (2001) Genes and signals in the Rhizobium-legume symbiosis. Plant Physiol 125:69–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting Rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM (1987) The rhizosphere. Wiley Interscience, Chichester

    Google Scholar 

  • Lynch JM (1990) The Rhizosphere. John Wiley & Sons Ltd., Chichester, Edited by Lynch JM, 458

    Google Scholar 

  • Ma JF, Ueno H, Ueno D, Rombola A, Iwashita T (2003) Characterization of phytosiderophore secretion under Fe deficiency stress in Festucarubra. Plant Soil 256:131–137

    Article  CAS  Google Scholar 

  • Manefield M, Griffiths RI, Whiteley A, Bailey M (2006) Stable isotope probing: a critique of its role in linking phylogeny and function. In: Nannipieri P, Smalla K (eds) Nucleic Acids and Proteins in Soil. Springer, New York, pp 205–255

    Chapter  Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36

    Article  Google Scholar 

  • Mendes R, Kruijt M, Bruijn I, Dekkers E, Voort M, Schneider JHM, PicenoY M, Santis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310:151–165

    Article  CAS  Google Scholar 

  • Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL, Gara FO (2004) Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Rep 5:922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong. J Nat Phytol 170:165–175

    Article  CAS  Google Scholar 

  • Muller H, Westendorf C, Leitner E, Chernin L, Riedel K, Schmidt S, Eberl L, Berg G (2009) Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol 67:468–478

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri P (2006) Role of stabilised enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil, vol 8. Springer, New York, pp 75–94

    Chapter  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Oger P, Kim KS, Sackett RL, Piper KR, Farrand SK (1998) Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of tra R, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Mol Biol 27:277–288

    CAS  Google Scholar 

  • Ogunseitan OA (2006) Soil proteomics: extraction and analysis of proteins from soil. In: Nannipieri P, Smalla K (eds) Nucleic Acids and Proteins in Soil. Springer, Heidelberg, pp 95–115

    Chapter  Google Scholar 

  • Ongena M, Thonart P (2006) Resistance induced in plants by non-pathogenic microorganisms: elicitation and defense responses. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science Books, London, pp 447–463

    Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: A signaling mechanism involved in association with higher organisms. Proc Natl Acad Sci U S A 97:8789–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pate JS, Verboom WH (2009) Contemporary biogenic formation of clay pavements by eucalypts: further support for the phytotarium concept. Ann Bot 103:673–685

    Article  PubMed  PubMed Central  Google Scholar 

  • Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships. Aust J Bot 49:529–560

    Article  CAS  Google Scholar 

  • Patterson DT (1981) Effects of allelopathic chemicals on growth and physiological response of soyabean (Glycine max). Weed Sci 29:53–58

    CAS  Google Scholar 

  • Pausch J, Zhu B, Kuzyakov Y, Cheng WX (2013) Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biolo Biochem 57:91–99

    Article  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol. Mol Biol Rev 64:180–201

    Article  CAS  Google Scholar 

  • Perry LG, Thelen GC, Ridenour WM, Weir TL, Callaway RM (2005) Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J Ecol 93:1125–1136

    Article  CAS  Google Scholar 

  • Philippe H (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geol Exp 88:210–213

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–99

    Article  CAS  PubMed  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001a) Rhizosphere. Marcel Dekker, Inc., New York

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001b) The rhizosphere as a site of biochemical interactions among soil components, plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 1–17

    Google Scholar 

  • Pinton R, Veranini Z, Nannipieri P (2007) The rhizosphere Biochemistry and organic substances at the soil-plant interface. Taylor & Francis Group, LLC., New York

    Book  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Vlami M, deSouza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  CAS  PubMed  Google Scholar 

  • Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457

    Article  PubMed  Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450

    Article  Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225

    Article  CAS  Google Scholar 

  • Rodolfo GC, Leslie NL, Ricardo JC, Brian WK, Javier AB, Adrian Rangel V, Toshinari M, Thomas KW (2015) Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J 9:115–125

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rovira AD (1991) Rhizosphere research-85 years of progress and frustration. The Rhizosphere and Plant Growth Volume 14 of the series Beltsville Symposia in Agricultural Research pp. 313

    Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525.

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Banin GB, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum sensing signals. Nature 454:595–599

    Article  CAS  PubMed  Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94:11–19

    Article  PubMed  Google Scholar 

  • Schuster M, Sexton DJ, Diggle SP, Greenberg EP (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63

    Article  CAS  PubMed  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  CAS  PubMed  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724

    Google Scholar 

  • Singh S, Ladha JK, Gupta RK, Bhushan L, Rao AN, Sivaprasad B, Singh PP (2007) Evaluation of mulching, intercropping with Sesbania and herbicide use for weed management in dry-seeded rice (Oryza sativa L.). Crop Prot 26:518–524

    Article  CAS  Google Scholar 

  • Sorensen J, Nybroe O (2006) Reporter genes in bacterial inoculants can monitor life conditions and functions in soil. Nucleic acids and proteins in soil. Soil Biol 8:375–395

    Article  Google Scholar 

  • Ştefa M, Mihasan M, Dunca S (2008) Plant growth promoting Rhizobacteria can inhibit the in vitro germination of Glycine Max L seeds. Scientific Annals of University “Alexandru Ioan Cuza” Iasi. Sect Genet Mol Biol 3:105–110

    Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  CAS  PubMed  Google Scholar 

  • Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GSAB (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanvir S, Claire C, Patricia G, Bastien SB, Nazia P, Christian M, Sebastien F (2015) Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol Biochem 80:146–155

    Article  CAS  Google Scholar 

  • Taylor LL, Leake JR, Quirk J, Hardy K, Banwarts SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    Article  CAS  PubMed  Google Scholar 

  • Thimmaraju R, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  Google Scholar 

  • VanDer HMG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • VanLoon LC (2007) Plant responses to plant growth promoting bacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vogel TM, Simonet P, Jansson JK, Hirsch PR, Tiedje JM, Elsas JD, Bailey MJ, Nalin R, Philippot L (2009) Terra Genome: a consortium for the sequencing of a soil metagenome. Nat Rev Microbiol 7:252–253

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasaki J, Rothe A, Kania A, Neumann G, Romheld V, Shinano T, Osaki M, Kandeler E (2005) Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. J Environ Qual 34:2157–2166

    Article  CAS  PubMed  Google Scholar 

  • Wei HXU, Huai L, Mac QF, Xiongd ZT (2007) Root exudates, rhizosphere Zn fractions, and Zn accumulation of ryegrass at different soil Zn levels. Pedosphere 17:389–396

    Article  Google Scholar 

  • Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  CAS  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Duke SO (2003) Weed and crop allelopathy. Plant Sci 22:367–389

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM, Lynch JM (1985) Energy losses by the plant in rhizodeposition. Plant Prod New Technol 26:59–71

    Google Scholar 

  • Williams P, Winzer K, Chan W, Camara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Phil Trans R Soc B 362:1119–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wutzler T, Reichstein M (2013) Priming and substrate quality interactions in soil organic matter models. Biogeo Sci 10:2089–2103

    Article  Google Scholar 

  • Xiaohan Y, Brian E, LA Scheffler W (2004) SOR1, a gene associated with bioherbicide production in sorghum root hairs. J Exp Bot 55:2251–2259

    Article  Google Scholar 

  • Yanhong ZHU, Shuzhen Z, Honglin H, Bei W (2009) Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils. J Environ Sci 21:920–926

    Article  CAS  Google Scholar 

  • Yasmin F, Othman R, Saad MS, Sijam K (2007) Screening for beneficial properties of Rhizobacteria isolated from sweet potato rhizosphere. J Biotechnol 6:49–52

    Article  Google Scholar 

  • Yoder JI (2001) Host-plant recognition by parasitic Scrophulariaceae. Curr. Opin. Plant Biol 4:359–365

    CAS  Google Scholar 

  • Yongqing MA (2006) Allelopathic studies of common wheat (Triticum aestivum L.) W. Biol Mol 5:93–104

    Google Scholar 

  • Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumissativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst Ecol 31:129–139

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zeng RS, Mallik RS, Setliff E (2003) Growth stimulation of ectomycorrhizal fungi by root exudates of Brassicaceae plants: role of degraded compounds of indole glucosinolates. J Chem Ecol 29:1337–1355

    Article  CAS  PubMed  Google Scholar 

  • Zeng RS, Mallik AU, Luo SM (2008) Allelopathy in Sustainable Agriculture and Forestry. Springer Science. ISBN: 978-0-387-77336-0 (Print) 978-0-387-77337-7

    Google Scholar 

  • Zhu J, Winans SC (1988) Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol Microbiol 27:289–297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Rehman Hakeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bashir, O., Khan, K., Hakeem, K.R., Mir, N.A., Rather, G.H., Mohiuddin, R. (2016). Soil Microbe Diversity and Root Exudates as Important Aspects of Rhizosphere Ecosystem. In: Hakeem, K., Akhtar, M. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-29573-2_15

Download citation

Publish with us

Policies and ethics