Skip to main content

Discovery and Role of Molecular Markers Involved in Gene Mapping, Molecular Breeding, and Genetic Diversity

  • Chapter
  • First Online:
Plant Bioinformatics

Abstract

Genetic markers have transformed the understanding of genetic studies which facilitate the implementation of gene mapping and molecular breeding in plants. The advancement of molecular markers from few decades has paved the way for highly stable and resistant crop varieties. Uses of highly polymorphic molecular markers such as single-nucleotide polymorphisms (SNPs) and simple sequence repeat (SSR) together with high-throughput technologies are preferred choice in quantitative trait loci (QTL) gene discovery and plant breeding. Next-generation sequencing is an important tool for discovery and validation of genetic markers. QTL and genome-wide association mapping providesĀ a detailed view of molecular markers and linked genes which inherit together in each generation. This chapter delivers an in-depth knowledge of molecular genetic markers, from their history to its application in the field of gene mapping, molecular breeding, and genetic diversity. Furthermore, comparisons of molecular markers are also discussed robustly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant cell reports 27:617ā€“31

    Google ScholarĀ 

  • Allegre M, Argout X, Boccara M, Fouet O, Roguet Y, BĆ©rard A, ThĆ©venin JM, Chauveau A, Rivallan R, Clement D, Courtois B (2012) Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L. DNA Res 19:23ā€“35

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Allentoft ME, Schuster S, Holdaway R, Hale M, McLay E, Oskam CL, Gilbert MT, Spencer P, Willerslev E, Bunce M (2009) Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. BioTechniques 46:195ā€“200

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513ā€“516

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M (2011) The genome of Theobroma cacao. Nat Genet 43:101ā€“108

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ashkani S, Yusop MR, Shabanimofrad M, Azadi A, Ghasemzadeh A, Azizi P, Latif MA (2015) Allele mining strategies: principles and utilisation for blast resistance genes in rice (Oryza sativa L.) Curr Issues Mol Biol 17:57ā€“74

    PubMedĀ  Google ScholarĀ 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Baldwin S, Pither-Joyce M, Wright K, Chen L, McCallum J (2012) Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L.) populations. Mol Breed 30:1401ā€“1411

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A (2013) NCBI GEO: archive for functional genomics data setsā€”update. Nucleic Acids Res 41:D991ā€“D995

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Batley J, Edwards D (2016) The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Curr Opin Plant Biol 30:78ā€“81

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Batley J, Barker G, Oā€™Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84ā€“91

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Baxevanis AD, Ouellette BF (2004) Bioinformatics: a practical guide to the analysis of genes and proteins. Wiley, New York

    Google ScholarĀ 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649ā€“1664

    ArticleĀ  Google ScholarĀ 

  • Bhattramakki D, Dolan M, Hanafey M, Wineland R, Vaske D, Register Iii JC, Tingey SV, Rafalski A (2002) Insertion-deletion polymorphisms in 3ā€² regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539ā€“547

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249ā€“256

    ArticleĀ  Google ScholarĀ 

  • Ching AD, Caldwell KS, Jung M, Dolan M, Smith O, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:1

    ArticleĀ  Google ScholarĀ 

  • Choi IY, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685ā€“696

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, CistuĆ© L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8:1229ā€“1231

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Condit R, Hubbell SP (1991) Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34:66ā€“71

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Conkle MT (1981) Isozyme variation and linkage in six conifer species. Pacific Southwest Forest and Range Experiment Station. Berkeley, California

    Google ScholarĀ 

  • Dean A (2006) On a chromosome far, far away: LCRs and gene expression. Trends Genet 22:38ā€“45

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dieringer D, Schlƶtterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242ā€“2251

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D (2009) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res 37:D951ā€“D953

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2ā€“9

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399ā€“407

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • FAO (2004) Scientific facts on genetically modified crops. GreenFacts, https://www.greenfacts.org/en/gmo/

  • Fischer SG, Lerman LS (1979) Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16:191ā€“200

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ganal MW, Altmann T, Rƶder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211ā€“217

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gao J, Zhang S, Qi L, Zhang Y, Wang C, Song W, Han S (2006) Application of ISSR markers to fingerprinting of elite cultivars (varieties/clones) from different sections of the genus Populus L. Silvae Genet 55:1ā€“6

    ArticleĀ  Google ScholarĀ 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53ā€“63

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069ā€“1076

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Goldrick MM (2001) RNase cleavage-based methods for mutation/SNP detection, past and present. Hum Mutat 18:190ā€“204

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gompert Z, Forister ML, Fordyce JA, Nice CC, Williamson RJ, Alex BC (2010) Bayesian analysis of molecular variance in pyrosequences quantifies population genetic structure across the genome of Lycaeides butterflies. Mol Ecol 19:2455ā€“2473

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH (2009) A first-generation haplotype map of maize. Science 326:1115ā€“1117

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Grimmer MK, Kraft T, Francis SA, Asher MJ (2008) QTL mapping of BNYVV resistance from the WB258 source in sugar beet. Plant Breed 127:650ā€“652

    ArticleĀ  Google ScholarĀ 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics 270:315ā€“323

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145ā€“161

    ArticleĀ  Google ScholarĀ 

  • Guryev V, Berezikov E, Cuppen E (2005) CASCAD: a database of annotated candidate single nucleotide polymorphisms associated with expressed sequences. BMC Genomics 6:1

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ha BK, Hussey RS, Boerma HR (2007) Development of SNP assays for marker-assisted selection of two southern root-knot nematode resistance QTL in soybean. Crop Sci 47:S-73

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hack C, Kendall G (2005) Bioinformatics: current practice and future challenges for life science education. Biochem Mol Biol Educ 33:82ā€“85

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hanover JW (1966) Genetics of terpenes. I. Gene control of monoterpene levels in Pinus monticola Dougl. Heredity 21:73ā€“84

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Harry DE, Temesgen B, Neale DB (1998 Aug 1) Codominant PCR-based markers for Pinus taeda developed from mapped cDNA clones. Theor Appl Genet 97:327ā€“336

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hashimoto K, Hashimoto M, Mishiro S, Oota Y, inventors (2002) Method of detecting nucleic acid relating to disease. United States patent application US 10/070,415

    Google ScholarĀ 

  • Hauge XY, Litt M (1993) A study of the origin of ā€˜shadow bandsā€™ seen when typing dinucleotide repeat polymorphisms by the PCR. Hum Mol Genet 2:411ā€“415

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hayashi K, Hashimoto N, Daigen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:1212ā€“20

    Google ScholarĀ 

  • Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1996) PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet 93:1202ā€“1210

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Horner DS, Pavesi G, CastrignanĆ² T, De Meo PD, Liuni S, Sammeth M, Picardi E, Pesole G (2009) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform 11:181ā€“197

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 21:289ā€“294

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068ā€“1076

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, Weiner MP (2000) Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39:131ā€“140

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jones ES, Sullivan H, Bhattramakki D, Smith JS (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361ā€“71

    Google ScholarĀ 

  • James KE, Schneider H, Ansell SW, Evers M, Robba L, Uszynski G, Pedersen N, Newton AE, Russell SJ, Vogel JC, Kilian A (2008) Diversity arrays technology (DArT) for pan-genomic evolutionary studies of non-model organisms. PLoS One 3:e1682

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Joshi SP, Ranjekar PK, Gupta VS (1999) Molecular markers in plant genome analysis. Curr Sci 77:230ā€“240

    CASĀ  Google ScholarĀ 

  • Karp A (1997) Molecular tools in plant genetic resources conservation: a guide to the technologies. Bioversity Int. IPGRI Technical Bulletin No. 2, Rome, Italy

    Google ScholarĀ 

  • Kim KS, Bellendir S, Hudson KA, Hill CB, Hartman GL, Hyten DL, Hudson ME, Diers BW (2010a) Fine mapping the soybean aphid resistance gene Rag1 in soybean. Theor Appl Genet 120:1063ā€“1071

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim KS, Hill CB, Hartman GL, Hyten DL, Hudson ME, Diers BW (2010b) Fine mapping of the soybean aphid-resistance gene Rag2 in soybean PI 200538. Theor Appl Genet 121:599ā€“610

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Korbin MA, Kuras AN, Zurawicz E (2002) Fruit plant germplasm characterisation using molecular markers generated in RAPD and ISSR-PCR. Cell Mol Biol Lett 7:785ā€“794

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kozlowski TT, Pallardy SG (1979) Stomatal responses of Fraxinus pennsylvanica seedlings during and after flooding. Physiol Plant 46:155ā€“158

    ArticleĀ  Google ScholarĀ 

  • Kwok PY, Deng Q, Zakeri H, Taylor SL, Nickerson DA (1996) Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics 31:123ā€“126

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kwon SJ, Hong SW, Son JH, Lee JK, Cha YS, Eun MY, Kim NS (2006) CACTA and MITE transposon distributions on a genetic map of rice using F 15 RILs derived from Milyang 23 and Gihobyeo hybrids. Mol Cells (Springer Science & Business Media BV) 21:360ā€“366

    CASĀ  Google ScholarĀ 

  • Leal SM (2003) Genetic maps of microsatellite and single-nucleotide polymorphism markers: are the distances accurate? Genet Epidemiol 24:243ā€“252

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117:721ā€“728

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203ā€“221

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrowsā€“Wheeler transform. Bioinformatics 25:1754ā€“1760

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455ā€“461

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lidholm J, Gustafsson P (1991) Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Mol Biol 17:787ā€“798

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481ā€“487

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lyamichev V, Mast AL, Hall JG, Prudent JR, Kaiser MW, Takova T, Kwiatkowski RW, Sander TJ, de Arruda M, Arco DA, Neri BP (1999) Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol 17:292ā€“296

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Machugh DE, Loftus RT, Bradley DG, Sharp PM, Cunningham P (1994) Microsatellite DNA variation within and among European cattle breeds. Proc R Soc Lond B Biol Sci 256:25ā€“31

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Malik A (2016) Genomics resources for plants. In Hakeem KR, Tombuloğlu H, Tombuloğlu G (eds) Plant omics: trends and applications. Springer Switzerland, 29ā€“57Ā Ā 

    Google ScholarĀ 

  • Mammadov JA, Chen W, Ren R, Pai R, Marchione W, YalƧin F, Witsenboer H, Greene TW, Thompson SA, Kumpatla SP (2010) Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding. Theor Appl Genet 121:577ā€“588

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics 2012:1ā€“11

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Maphosa M, Talwana H, Tukamuhabwa P (2012) Enhancing soybean rust resistance through Rpp2, Rpp3 and Rpp4Ā pair wiseĀ gene pyramiding. Afr J Agric Res 30:4271ā€“4277

    Google ScholarĀ 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, De Kock MJ, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487ā€“500

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maroof MS, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci 91:5466ā€“5470

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095ā€“1106

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McCouch SR, Zhao K, Wright M, Tung CW, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML, McClung A (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524ā€“535

    ArticleĀ  Google ScholarĀ 

  • McDermott JM, Brandle U, Dutly F, Haemmerli UA, Keller S, Muller KE, Wolfe MS (1994) Genetic variation in powdery mildew of barley: development of RAPD, SCAR, and VNTR markers. Phytopathology 84:1316ā€“1321

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Miller MR, Atwood TS, Eames BF, Eberhart JK, Yan YL, Postlethwait JH, Johnson EA (2007a) RAD marker microarrays enable rapid mapping of zebrafish mutations. Genome Biol 8:1

    Google ScholarĀ 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007b) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240ā€“248

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969ā€“977

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Morgante M, Rafalski A, Biddle P, Tingey S, Olivieri AM (1994) Genetic mapping and variability of seven soybean simple sequence repeat loci. Genome 37:763ā€“769

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389ā€“394

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Murray V, Monchawin C, England PR (1993) The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids Res 21:2395ā€“2398

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720ā€“723

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Okii D, Chilagane LA, Tukamuhabwa P, Maphosa M (2014) Application of bioinformatics in crop improvement: annotating the putative soybean rust resistance gene Rpp3 for enhancing marker assisted selection. J Proteomics Bioinforma 7:1

    CASĀ  Google ScholarĀ 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci 86:2766ā€“2770

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Holloway E, Kurbatova N (2010) ArrayExpress updateā€”an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39(suppl_1):D1002ā€“D1004

    Google ScholarĀ 

  • Perry DJ, Bousquet J (1998) Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers. Theor Appl Genet 97:735ā€“743

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pop M, Salzberg SL (2008) Bioinformatics challenges of new sequencing technology. Trends Genet 24:142ā€“149

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215ā€“222

    ArticleĀ  Google ScholarĀ 

  • Pratap A, Gupta SK, Kumar J, Solanki RK (2012) Soybean. In: Technological innovations in major world oil crops, vol 1. Springer, New York, p 293ā€“321

    Google ScholarĀ 

  • Pushpendra KG, Harindra SB, Pawan LK, Neeraj K, Ajay K, Reyazul RM, Amita M, Jitendra K (2007) QTL analysis for some quantitative traits in bread wheat. J Zhejiang Univ Sci B 8:807ā€“814

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ramkumar G, Biswal A, Mohan KM, Sakthivel K, Sivaranjani A, Neeraja CN, Ram T, Balachandran SM, Sundaram RM, Prasad MS, Viraktamath BC (2010) Identifying novel alleles of rice blast resistance genes Pikh and Pita through allele mining. Intl Rice Res Notes 117:185

    Google ScholarĀ 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Gen Genomics 274:515ā€“527

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243ā€“256

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34:374

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, GhesquiĆØre A, Notteghem JL (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106:794ā€“803

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Saxena RK, Cui X, Thakur V, Walter B, Close TJ, Varshney RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.) Funct Integr Genomics 11:651ā€“657

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723ā€“726

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Semagn K, BjĆørnstad ƅ, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540

    CASĀ  Google ScholarĀ 

  • Slavov GT, Howe GT, Gyaourova AV, Birkes DS, Adams WT (2005) Estimating pollen flow using SSR markers and paternity exclusion: accounting for mistyping. Mol Ecol 14:3109ā€“3121

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Squillace AE (1971) Inheritance of monoterpene composition in cortical oleoresin of slash pine. For Sci 17:381ā€“387

    CASĀ  Google ScholarĀ 

  • Stoehr MU, Orvar BL, Vo TM, Gawley JR, Webber JE, Newton CH (1998) Application of a chloroplast DNA marker in seed orchard management evaluations of Douglas-fir. Can J For Res 28:187ā€“195

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci 85:3898ā€“3902

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • SyvƤnen AC (1999) From gels to chips: ā€œminisequencingā€ primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13:1ā€“0

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Tang J, Vosman B, Voorrips RE, van der Linden CG, Leunissen JA (2006) QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinforma 7:438

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127ā€“4138

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Temesgen B, Neale DB, Harry DE (2000) Use of haploid mixtures and heteroduplex analysis enhance polymorphisms revealed by denaturing gradient gel electrophoresis. BioTechniques 28:114ā€“116

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441ā€“1452

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Terwilliger JD, Haghighi F, Hiekkalinna TS, Gƶring HH (2002) A bias-ed assessment of the use of SNPs in human complex traits. Curr Opin Genet Dev 12:726ā€“734

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tohme J, Gonzalez D, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375ā€“1384

    ArticleĀ  CASĀ  Google ScholarĀ 

  • TĆ³th G, GĆ”spĆ”ri Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967ā€“981

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol 5:735ā€“745

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tsumura Y, Suyama Y, Yoshimura K, Shirato N, Mukai Y (1997) Sequence-tagged-sites (STSs) of cDNA clones in Cryptomeria japonica and their evaluation as molecular markers in conifers. Theor Appl Genet 94:764ā€“772

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Van Eijk MJ, Broekhof JL, van der Poel HJ, Hogers RC, Schneiders H, Kamerbeek J, Verstege E, van Aart JW, Geerlings H, Buntjer JB, van Oeveren AJ (2004) SNPWaveTM: a flexible multiplexed SNP genotyping technology. Nucleic Acids Res 32:e47

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Varshney RK (2010) Gene-based marker systems in plants: high throughput approaches for marker discovery and genotyping. In Molecular techniques in crop improvement. Springer Netherlands, 119ā€“142

    Google ScholarĀ 

  • Vassilev D, Leunissen J, Atanassov A, Nenov A, Dimov G (2005) Application of bioinformatics in plant breeding. Biotechnol Biotechnol Equip 19:139ā€“152

    ArticleĀ  Google ScholarĀ 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407ā€“4414

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Voss-Fels K, Snowdon RJ (2015) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 14:1086ā€“1094

    Google ScholarĀ 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, LĆ¼bberstedt T, Xia XC, Stam P, Zabeau M (1999) Two high-density AFLPĀ® linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921ā€“935

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1ā€“6

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang L, Li P, Brutnell TP (2010) Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics 9:118ā€“128

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • van de Wiel C, Arens P, Vosman B (1999) Microsatellite retrieval in lettuce (Lactuca sativa L.) Genome 42:139ā€“149

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531ā€“6535

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genetics MGG 241:225ā€“235

    Google ScholarĀ 

  • Xiao W, Oefner PJ (2001) Denaturing high-performance liquid chromatography: a review. Hum Mutat 17:439ā€“474

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yahyaa M, Matsuba Y, Brandt W, Doron-Faigenboim A, Bar E, McClain A, Davidovich-Rikanati R, Lewinsohn E, Pichersky E, Ibdah M (2015) Identification, functional characterization, and evolution of terpene synthases from a basal dicot. Plant Physiol 169:1683ā€“1697

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yang W, Kang X, Yang Q, Lin Y, Fang M (2013) Review on the development of genotyping methods for assessing farm animal diversity. J Anim Sci Biotechnol 4:2

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79ā€“92

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6:e17595

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang Z, Guo X, Liu B, Tang L, Chen F (2011) Genetic diversity and genetic relationship of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms. Afr J Biotechnol 10:2825

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176ā€“183

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zimmermann P, Laule O, Schmitz J, Hruz T, Bleuler S, Gruissem W (2008) Genevestigator transcriptome meta-analysis and biomarker search using rice and barley gene expression databases. Mol Plant 1:851ā€“857

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K. (2017). Discovery and Role of Molecular Markers Involved in Gene Mapping, Molecular Breeding, and Genetic Diversity. In: Hakeem, K., Malik, A., Vardar-Sukan, F., Ozturk, M. (eds) Plant Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-67156-7_12

Download citation

Publish with us

Policies and ethics