Skip to main content

Plant Bioinformatics: Next Generation Sequencing Approaches

  • Chapter
  • First Online:
Plant Bioinformatics

Abstract

The genomic revolution of the past decade has greatly improved our understanding of the genetic make-up of living organisms. Bioinformatic resources and web databases are essential for the most effective use of genetic, proteomic, metabolomic and phenome information important in increasing agricultural crop productivity. During this decade, remarkable advances in DNA and RNA sequencing technologies have emerged with the advent of next-generation sequencing (NGS). NGS technologies now allow virtually millions of bases to be sequenced in one sample, at very low costs relative to traditional Sanger sequencing. As costs and capabilities of these methods continue to be reduced, we are only beginning to see the possibilities of NGS, which are developing in parallel with online and computer availability of a wide range of biological datasets, and allowing us to address a variety of questions not possible before. As techniques and data continue to improve and grow, we are rapidly moving to the point where every plant, not just select ‘model plants’, is open to the power of NGS applications. Re-sequencing allows the identification of an unlimited number of markers and analysis of germplasm allelic diversity based on allele mining. The availability of NGS information is enabling genome editing (i.e. site-specific mutations) to obtain gene sequences desired by plant breeders. This chapter presents a brief synopsis of NGS technologies and the development of typical applications of such methods in the fields of molecular marker development, hybridisation and introgression, biodiversity, phylogenetic, evolutionary and ecological studies, polyploid genetics, proteomics and applications for large genebank collections. The information is set out under the molecular biology divisions of DNA-based resources and sequencing, RNA and variation analysis, proteomics, structural proteins, post-translation modifications, and plant bioactive peptides. This chapter illustrates how next-generation sequencing-derived information can be used to tailor genomic tools for different needs and application to crop improvement, and how such developments should assist in better crop and food security. Finally, a list of present and future perspectives and research are detailed, which in time should enable the full potential of bioinformatics to be achieved, and utilised in crop improvement programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams MJ, Blundell TL, Dodson EJ, Dodson GG, Vijaya M, Baker EN, Harding MM, Hodgkin DC, Rimmer B, Sheat S (1969) Structure of rhombohedral 2 zinc insulin crystals. Nature 224:957–964

    Google Scholar 

  • Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL et al (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134

    Article  CAS  PubMed  Google Scholar 

  • Akula S, Miriyala R, Thota H, Rao A, Gedela S (2009) Techniques for integrating–omics data. Bioinformation 3:284–286

    Google Scholar 

  • Albers CA, Lunter G, Mccarthur DG, McVean G, Ouwehand WH, Durbin R (2010) Dindel: accurate indel calls from short-read data. Genome Res. https://doi.org/10.1101/gr.112326.110

  • Allen JE, Pertea M, Salzberg SL (2004) Computational gene prediction using multiple sources of evidence. Genome Res 14:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson CL, Strope CL, Moriyama EN (2011) Assessing multiple sequence alignments using visual tools In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Andrew RL et al (2012) Adaptation with gene flow across the landscape in a dune sunflower. Mol Ecol 21:2078–2091

    Article  PubMed  Google Scholar 

  • Angenendt P (2005) Progress in protein and antibody microarray technology. DDT 10:503–511

    Article  CAS  PubMed  Google Scholar 

  • Angres B (2005) Cell microarrays. Expert Rev Mol Diagn 5:769–779

    Article  CAS  PubMed  Google Scholar 

  • Aparicio G, Götz S, Conesa A, Segrelles D, Blanque, García JM, Hernandez V, Robles M, Talon M (2006) Blast2go goes grid: developing a grid-enabled prototype for functional genomics analysis. Stud Health Technol Inform 120:194–204

    CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2001) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149

    Article  CAS  PubMed  Google Scholar 

  • Aranda B et al (2010) The IntAct molecular interaction database in 2010. Nucleic Acids Res 38:D525–D531

    Article  CAS  PubMed  Google Scholar 

  • Arita M (2009) A pitfall of wiki solution for biological databases. Brief Bioinform 10:295–296

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwood TK, Gisel A, Eriksson N-E, Bongcam-Rudloff E (2011) Concepts, historical milestones and the central place of bioinformatics in modern biology: a European perspective In: Mahdavi MA (ed), Bioinformatics – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Baggerman G, Liu F, Wets G, Schoofs L (2005) Bioinformatic analysis of peptide precursor proteins. Ann N Y Acad Sci 1040:59–65

    Article  CAS  PubMed  Google Scholar 

  • Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28:93–120

    Article  CAS  PubMed  Google Scholar 

  • Barabaschi D, Tondellia A, Desiderioa F, Volanteb A, Vaccinoc P, Valèb G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3–13

    Article  CAS  PubMed  Google Scholar 

  • Barbulovic-Nad I, Lur M, Sun Y, Zhang M, Wheeler AR, Bussmann M (2006) Bio-microarray fabrication techniques – a review. Crit Rev Biotechnol 26:237–259

    Article  CAS  PubMed  Google Scholar 

  • Bar-Or C, Czosnek H, Koltai H (2007) Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet 23:200–207

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Kawasaki ES (2003) Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression. DDT 8:134–141

    Article  CAS  PubMed  Google Scholar 

  • Barrett T et al (2011) NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res 39:D1005–D1010

    Article  CAS  PubMed  Google Scholar 

  • Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Baxevanis AD, Ouellette BF (2005) Bioinformatics: a practical guide to the analysis of genes and proteins. Wiley International, New York

    Google Scholar 

  • Bedbrook JR, Kolodner R, Bogorad L (1977) Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell 11:739–749

    Article  CAS  PubMed  Google Scholar 

  • Belhaj A, Chaparro-Garcia S, Kamoun V, Nekrasov I (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benson DA et al (2006) GenBank Nucleic Acids Res 34:D16–D20

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Karsch-Mizrach I, Lipman DJ, Ostell J, Wheeler DL (2008) Genbank Nucleic Acids Res 36:D25–D30

    Article  CAS  PubMed  Google Scholar 

  • Beranova-Giorgianni S (2003) Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations. Trends Anal Chem 22:273–281

    Article  CAS  Google Scholar 

  • Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N (2003) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322–1324

    Article  CAS  Google Scholar 

  • Berkman PJ, Lai K, Lorenc MT, Edwards D (2012) Next generation sequencing applications for wheat crop improvement. Amer J Bot 99:365–371

    Article  CAS  Google Scholar 

  • Bernatsky R, Tanksley S (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genet 112:887–898

    Google Scholar 

  • Bhinge AA, Kim J, Euskirchen GM, Snyder M, Iyer VR (2007) Mapping the chromosomal targets of STAT1 by sequence tag analysis of genomic enrichment (STAGE). Genome Res 17:910–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilban M, Buehler LK, Head S, Desoye G, Quaranta V (2002) Normalizing DNA microarray data. Curr Issues Mol Biol 4:57–64

    CAS  PubMed  Google Scholar 

  • Biran I, Rissin DM, Ron EZ, Walt DR (2003) Optical imaging fiber-based live bacterial cell array biosensor. Anal Biochem 315:106–113

    Article  CAS  PubMed  Google Scholar 

  • Biselli C, Urso S, Tacconi G, Steuernagel B, Schulte D, Gianinetti A, Bagnaresi P, Stein N, Cattivelli L, Valè G (2013) Haplotype variability and identification of new functional alleles at the Rdg2a leaf stripe resistance gene locus. Theor Appl Genet 126:1575–1586

    Article  PubMed  Google Scholar 

  • Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L (2008) Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci 31:427–445

    Article  CAS  PubMed  Google Scholar 

  • Borevitz JO, Nordborg M (2003) The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol 132:718–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics forecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brazas MD et al (2010) Providing web servers and training in bioinformatics: 2010 update on the bioinformatics links directory. Nucleic Acids Res 38:W3–W6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadhurst LM (2013) A genetic analysis of scattered yellow box trees (Eucalyptus melliodora A. Cunn. ex Schauer, Myrtaceae) and their restored cohorts. Biol Conserv 161:48–57

    Article  Google Scholar 

  • Broadhurst LM et al (2006) Sourcing seed for Acacia acinacea, a key revegetation species in south eastern Australia. Conserv Genet 7:49–63

    Article  Google Scholar 

  • Broadhurst LM et al (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol Appl 1:587–597

    PubMed  PubMed Central  Google Scholar 

  • Brown H, Sanger F, Kitai R (1955) The structure of pig and sheep insulins. Biochem J 60:556–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buggs RJA, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, Chamala S, Leitch AR et al (2012) Next generation sequencing and genome evolution in allopolyploids. Amer J Bot 99:372–382

    Article  Google Scholar 

  • Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 44:661–678

    Article  CAS  Google Scholar 

  • Bussell JD et al (2006) Rapid genetic delineation of local provenance seed-collection zones for effective rehabilitation of an urban bushland remnant. Austral Ecol 31:164–175

    Article  Google Scholar 

  • Cai L, Friedman N, Xie S (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceol A et al (2010) MINT, the molecular interaction database: 2009 update. Nucleic AcidsRes 38:D532–D539

    Article  CAS  Google Scholar 

  • Chan EY (2009) Next-generation sequencing methods: impact of sequencing accuracy on SNP discovery. Methods Mol Biol 578:95–111

    Article  CAS  PubMed  Google Scholar 

  • Chen DS, Davis MM (2006) Molecular and functional analysis using live cell microarrays. Curr Opin Chem Biol 10:28–34

    Article  CAS  PubMed  Google Scholar 

  • Chiu RWK, Sun H, Akolekar R, Clouser C, Lee C, McKernan K, Zhou D et al (2010) Maternal plasma DNA analysis with massively parallel sequencing by ligation for non-invasive prenatal diagnosis of trisomy 21. Clin Chem 56:459–463

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark KR, Gorley RN (2001) Primer version 5.2.7 user manual/tutorial. Plymouth Marine Laboratory, PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771

    Article  CAS  PubMed  Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum centroradıalıs contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA et al (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  CAS  PubMed  Google Scholar 

  • Conn R, Knaus B, Liston A, Maughan PJ, Parks M, Syring J J, Udall J (2012) Targeted enrichment strategies for next generation plant biology. Amer J Bot 99:291–311

    Article  CAS  Google Scholar 

  • Conte MG, Gaillard S, Lanau N, Rouard M, Perin C (2008) GreenPhylDB: a database for plant comparative genomics. NucleicAcids Res 36:D991–D998

    Article  CAS  Google Scholar 

  • Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg LA, Bouffard P et al (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8(9):e1000475. https://doi.org/10.1371/journal.pbio.1000475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dardel F, Kepes F (2006) Sequence comparison. In: Bioinformatics: genomics and post-genomics. Wiley, USA, pp 25–50

    Google Scholar 

  • Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM (2009) Shedding light on an extremophile lifestyle through transcriptomics. New Phytol 183:764–775

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Datta S, Kim S, Chakraborty S, Gill RS (2010) Statistical analyses of next generation sequence data: a partial overview. J Proteomics Bioinform 3:183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Hohenloh PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Davidsen T et al (2010) The comprehensive microbial resource. Nucleic Acids Res 38:D340–D345

    Article  CAS  PubMed  Google Scholar 

  • Dayhoff MO, Eck RV, Chang MA, Sochard MR (eds) (1965) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Chen HR, Barker WC, Hunt LT (1981) Orcutt BC. Nucleic acid sequence database DNA 1:51–58

    CAS  PubMed  Google Scholar 

  • De Filippis LF (2013) Bioinformatic tools in crop improvement. In: Haeem KR, Ahmad PA, Ozturk MA (eds) Crop improvement – new approaches and modern techniques. Springer Business, Dordrecht, pp 49–122

    Google Scholar 

  • De Filippis LF, Magel E (2012) Identification of biochemical differences between the sapwood and transition zone in Robinia pseudoacacia L. by differential display of proteins. Z Holzforschung 66:543–549

    Google Scholar 

  • Demir E, Babur O, Dogrusoz U, Gursoy A, Nisanci G, Cetin-Atalay R, Ozturk M (2002) PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways. Bioinformatics 18:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Demir E et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3.1

    Article  Google Scholar 

  • Dobrindt U, Hacker J (2001) Whole genome plasticity in pathogenic bacteria. Curr OpinMicrobiol 4:550–557

    CAS  Google Scholar 

  • Dodson G (2005) Fred Sanger: sequencing pioneer. Biochem J. https://doi.org/10.1042/BJ2005c013

  • Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultrashort read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36:e105. https://doi.org/10.1093/nar/gkn425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doyle HA, Mamula MJ (2001) Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 22:443–449

    Article  CAS  PubMed  Google Scholar 

  • Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Durbin R, Eddy S, Krogh A, Mitchison G (2004) Biological sequence analysis. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Durbin RM, Gibbs RA et al (2010) A map of human genome variation from population-scale sequencing. Nature 46:1061–1070

    Article  CAS  Google Scholar 

  • Edgar RC (2009) Optimizing substitution matrix choice and gap parameters for sequence alignment. BMC Bioinformatics 10:396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgar RC (2010) Quality measures for protein alignment benchmarks. Nucleic Acids Res 38:2145–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC, Sjolander K (2004) COACH: profile–profile alignment of protein families using hidden Markov models. Bioinformatics 20:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Amer J Bot 99:175–185

    Article  CAS  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ekblom R, Sæther SA, Jacobsson P, Fiske P, Sahlman T, Grahn M et al (2007) Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol Ecol 16:1439–1451

    Article  PubMed  Google Scholar 

  • Ekins R, Chu F, Biggart E (1989) Development of microspot multi-analyte ratiometric immunoassay using dual fluorescent-labelled antibodies. Anal Chim Acta 227:73–96

    Article  CAS  Google Scholar 

  • ElHefnawi M, Mysara M (2011) In-silico approaches for RNAi post-transcriptional gene regulation: optimizing siRNA design and selection tools In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Ellegren H (2008) Sequencing goes 454 and takes large-scale genomics into the wild. Mol Ecol 17:1629–1631

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • Farsani SF, Mahdavi MA (2011) Quantification of gene expression based on microarray In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Feder ME, Mitchell-Olds T (2003) Evolutionary and ecological functional genomics. Nat Rev Genet 4:649–655

    Article  CAS  Google Scholar 

  • Feng DF, Johnson MS, Doolittle RF (1985) Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol 21:112–125

    Article  CAS  Google Scholar 

  • Ferdinandez YS et al (2005) Detecting genetic changes over two generations of seed increase in an awned slender wheatgrass population using AFLP markers. Crop Sci 45:1064–1068

    Article  CAS  Google Scholar 

  • Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JM (2009) High throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes TG, Kwon SJ, Bale SS, Lee MY, Diogo MM, Clark DS, Cabral JM, Dordick JS (2010) Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnol Bioeng 106:106–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nature Rev Genetics 7:85–97

    Google Scholar 

  • Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G, Ysebaert M (1976) Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260:500–507

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1970a) Distinguishing homologous from analogous proteins. Syst Zool 19:99–113

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1970b) An improved method for determining codon variability in a gene and its application to the rate of fixation of the mutations in evolution. Biochem Genet 4:579–593

    Article  CAS  PubMed  Google Scholar 

  • Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organisation (FAO) (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization, Rome

    Google Scholar 

  • Franklin RE, Gosling RG (1953a) The structure of sodium thymonucleate fibres. I. The influence of water content. Acta Cryst 6:673–677

    Article  CAS  Google Scholar 

  • Franklin RE, Gosling RG (1953b) Molecular configuration in sodium thymonucleate. Nature 171:740–7411

    Article  CAS  PubMed  Google Scholar 

  • Friedman C, Kra P, Yu H, Krauthammer M, Rzhetsky A (2001) GENIES: a natural language processing system for the extraction of molecular pathways from journal articles. Bioinformatics 17:S74–S82

    Article  PubMed  Google Scholar 

  • Frith MC, Wan R, Horton P (2010) Incorporating sequence quality data into alignment improves DNA read mapping. Nucleic Acids Res 38:e100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Reyero N, Griffitt RJ, Liu L, Kroll KJ, Farmerie WG, Barber DS et al (2008) Construction of a robust microarray from a non-model species largemouth bass, Micropterus salmoides (Lacepede), using pyrosequencing technology. J Fish Biol 72:2354–2376

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasc C, Peyretaillade E, Peyret P (2016) Sequence capture by hybridization to explore modern and ancient genomic diversity in model and non-model organisms. Nucleic Acids Res 1. https://doi.org/10.1093/nar/gkw309

  • Gepts P (2004) Crop domestication as a long term selection experiment. Plant Breed Rev 24:1–44

    Google Scholar 

  • Ghahremani A, Mahdavi MA (2011). Optimal sequence alignment and its relationship with phylogeny. In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Gibas C, Jambeck P (2001) Developing bioinformatics computer skills. O’Reilly 1:21–22

    Google Scholar 

  • Gibbs AJ, McIntyre GA (1970) The diagram, a method for comparing sequence. Its use with amino acid and nucleotide sequences. Eur J Biochem 16:1–11

    Article  CAS  PubMed  Google Scholar 

  • Gilad Y, Pritchard JK, Thornton K (2009) Characterizing natural variation using next-generation sequencing technologies. Trends Genet 25:463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert W, Maxam A (1973) The nucleotide sequence of the lac operator. Proc Nat AcadSci USA 70:3581–3584

    Article  CAS  Google Scholar 

  • Giles J (2005) Internet encyclopaedias go head to head. Nature 438:900–901

    Article  CAS  PubMed  Google Scholar 

  • Giles J (2007) Key biology databases go wiki. Nature 445:691

    Article  CAS  PubMed  Google Scholar 

  • Gilks WR, Audit B, De Angeli D, Tsoka S, Ouzounis CA (2002) Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics 18:1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:1314–1317

    Article  PubMed  Google Scholar 

  • Good BM, Wilkinson MD (2006) The life sciences semantic web is full of creeps! Brief Bioinform 7:275–286

    Article  PubMed  Google Scholar 

  • Goodswen SJ, Gondro C, Watson-Haigh NS, Kadarmideen HN (2010) FunctSNP: an R package to link SNPs to functional knowledge and dbAutoMaker: a suite of Perl scripts to build SNP database. BMC Bioinformatics 11:311. http://doi.org/10.1186/1471-2105-11-311

  • Greene LH et al (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35:D291–D297

    Article  CAS  PubMed  Google Scholar 

  • Gribskov M, Homyak M, Edenfield J, Eisenberg D (1988) Profile scanning for three dimensional structural patterns in protein sequences. Comput Appl Biosci 4:61–66

    CAS  PubMed  Google Scholar 

  • Griffin PC, Robin C, Hoffmann AA (2011) A next-generation sequencing methods of overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses. BMC Biol 9:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang YK, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2010) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29:159–171

    Article  Google Scholar 

  • Grover CE, Salmon A, Wendel JE (2012) Targeted sequence capture as a powerful tool for evolutionary analysis. Amer J Bot  9:312–319

    Google Scholar 

  • Gupta PK (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol 26:602–611

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Sengupta A, Saha J, Gupta B (2014) The attributes of RNA interference in relation to plant abiotic stress tolerance. Gene Technology 3:1. ISSN 2329-6682 GNT open access journal

    Article  CAS  Google Scholar 

  • Guttikonda SK, Marri P, Mammadov J, Ye L, Soe K, Richey K, Cruse J, Zuang M, Gao Z, Evans C, Rounsley S, Kumpatia SP (2016) Molecular characterisation of transgenic events using next generation sequencing approach. PLoS One 11:e0149515. https://doi.org/10.1371/journal.pone.0149515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hacker J, Carnie E (2001) Ecological fitness, genomic islands and bacterial pathogenicity; a darwinian view of the evolution of microbes. EMBO Report 2:376–381

    Google Scholar 

  • Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128:161–167

    Article  CAS  PubMed  Google Scholar 

  • Hamrick J et al (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hayden EC (2009) Genome sequencing: the third generation. Nature 457:768–769

    Article  CAS  Google Scholar 

  • Hayden EC (2014) The $1000 genome. Nature 507:294–295

    Article  PubMed  CAS  Google Scholar 

  • He J, Zhao X, Laroche A, Lu Z-X, Liu HK, Li Z (2014) Genotyping-by-sequencing(GBS), an ultimate marker-assisted selection(MAS)tool to accelerate plant breeding. Front Plant Sci 5:484 | 1

    Article  Google Scholar 

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318. 32

    Article  PubMed  Google Scholar 

  • Hedrick PW (2004) Recent developments in conservation genetics. Forest Ecol Manag 197:3–19

    Article  Google Scholar 

  • Heffner L, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hegde PS, White IR, Debouck C (2003) Interplay of transcriptomics and proteomics. Cur Opin Biotechnol 14:647–651

    Article  CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Henikoff JG (1996) Blocks database and its applications. Methods Enzymol 266:88–105

    Article  CAS  PubMed  Google Scholar 

  • Henikoff JG, Greene EA, Pietrokovski S, Henikoff S (2000) Increased coverage of protein families with the blocks database servers. Nucleic Acids Res 28:228–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry RJ (2012) Next-generation sequencing for understanding and accelerating crop domestication. Brief Funct Genomics 11:51–56

    Article  CAS  PubMed  Google Scholar 

  • Hershberg R, Petrov DA (2009) General rules for optimal codon choice. PLoS Genet 5(7):e1000125

    Article  CAS  Google Scholar 

  • Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Hirs HCW, Moore S, Stein WH (1960) The sequence of the amino acid residues in performic acid-oxidized ribonuclease. J Biol Chem 235:633–647

    CAS  PubMed  Google Scholar 

  • Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527

    Article  CAS  PubMed  Google Scholar 

  • Hoeglund J (2009) Evolutionary conservation genetics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hogeweg P (1978) Simulating the growth of cellular forms. Simulation 31:90–96

    Article  Google Scholar 

  • Hogeweg P, Hesper B (1978) Interactive instruction on population interactions. Comput Biol Med 8:319–327

    Article  CAS  PubMed  Google Scholar 

  • Holderegger R et al (2008) Land ahead: using genome scans to identify molecular markers of adaptive relevance. Plant Ecol Divers 1:273–283

    Article  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Huang X-C, Xi X-Q, Conran JG, Li J (2015) Application of DNA barcodes in Asian tropical trees-a case study from Xishuangbanna nature reserve, Southwest China. PLoS One 10(6):e0129295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hufford KM et al (2012) Inbreeding and outbreeding depression in Stylidium hispidum: implications for mixing seed sources for ecological restoration. Ecol Evol 2:2262–2273

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulo N, Sigrist CJ, Le SV, Langendijk-Genevaux PS, Bordoli L, Gattiker A, DeCastro E, Bucher P, Bairoch A (2008) Recent improvements to the PROSITE database. Nucleic Acids Res 32:D134–D137

    Article  CAS  Google Scholar 

  • Hunter DJ (2006) Genomics and proteomics in epidemiology: treasure trove or ‘high-tech stamp collecting’? Epidemiology 17:487–489

    Article  PubMed  Google Scholar 

  • Hurd PJ, Nelson CJ (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 8:174–183

    Article  CAS  PubMed  Google Scholar 

  • Husemann P, Stoye J (2010) Phylogenetic comparative assembly. Algorithms for Molecular Biology (AMB) 5:3. https://doi.org/10.1186/1748-7188-5-3

    Article  CAS  Google Scholar 

  • Husson SJ, Landuyt B, Nys T, Baggerman G, Boonen K, Clynen E, Lindemans M, Janssen T, Schoofs L (2009) Comparative peptidomics of Caenorhabditis elegans versus C. briggsae by LC-MALDI-TOF MS. Peptides 30:449–457

    Article  CAS  PubMed  Google Scholar 

  • Husson SJ, Clynen E, Boonen K, Janssen T, Lindemans M, Baggerman G, Schoofs L (2010) Approaches to identify endogenous peptides in the soil nematode Caenorhabditis elegans. Methods Mol Biol 615:29–47

    Article  CAS  PubMed  Google Scholar 

  • Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240

    Article  PubMed  Google Scholar 

  • Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ (2012) A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. Amer J Bot 9:383–396

    Google Scholar 

  • Imelfort M, Duran C, Batley J, Edwards D (2009) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J 7:312–317

    Article  CAS  PubMed  Google Scholar 

  • Ingvardsen CR, Schejbel B, Lubberstedt T (2008) Functional markers in resistance breeding. In: Luttge U, Beyschlag W, Murata J (eds) Progress in Botany. Springer, Berlin

    Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Isakov O, Modai S, Shomron N (2011) Pathogen detection using short-RNA deep sequencing subtraction and assembly. Bioinformatics 27:2027–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Iwata A, Lee S-H, Schmutz J, Shoemaker R (2011) Sequencing crop genomes: approaches and applications. New Pytol 191:915–926

    Article  CAS  Google Scholar 

  • Jacobs DF et al (2013) A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction. New Phytol 197:378–393

    Article  PubMed  Google Scholar 

  • Jensen H, Evans EA Jr (1935) Studies on crystalline insulin. XVIII. The nature of the free amino groups in insulin and the isolation of phenylalanine and proline from crystalline insulin. J Biol Chem 108:1–12

    CAS  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) Ncbi blast: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonassen I, Collins JF, Higgins DG (1995) Finding flexible patterns in unaligned protein sequences. Protein Sci 4:1587–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi-Top G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L (2005) Reactome: a knowledge base of biological pathways. Nucleic Acids Res 33:D428–D432

    Article  Google Scholar 

  • Jukić N, Nestorov S (2005) Comprehensive data warehouse exploration with qualified association-rule mining. Decision Support Systems. O’Reilly Press

    Google Scholar 

  • Kane N, Sveinsson S, Dempewolf H, Yang JY, Zhang DZ, Engels MM, Cronk Q (2012) Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Amer J Bot 99:320–329

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 3:D480–D484

    Google Scholar 

  • Kang C, Zhang J, Wang Y, Liu N, Liu J, Zeng H, Jiang T, You Y,Pu P (2011) Data mining identifies core signalings and miRNA regulatory module. In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Karahoca A, Karahoca D, Şanver M (2012) Survey of data mining and applications (Review from 1996 to Now), InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License. http://creativecommons.org/licenses/by/3.0

  • Karakach TK, Flight RM, Douglas S (2010) An introduction to DNA microarrays for gene expression analysis. Chemom Intell Lab Syst 104:28–52

    Article  CAS  Google Scholar 

  • Karasavvas KA et al (2004) Bioinformatics integration and agent technology. J Biomed Inform 37:205–219

    Article  CAS  PubMed  Google Scholar 

  • Karlin S, Mrázek J, Campbell AM (1998) Codon usages in different gene classes of the Escherichia coli genome. Mol Microbiol 29:1341–1355

    Article  CAS  PubMed  Google Scholar 

  • Kemena C, Notredame C (2009) Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics 25:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Kececioglu J (2008) Learning scoring schemes for sequence alignment from partial examples. IEEE/ACM Trans Comput Biol Bioinform 5:546–556

    Article  PubMed  Google Scholar 

  • Kim MY, Lee S, Van K et al (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycinesoja Sieb. and Zucc.) genome. Proc Natl Acad Sci U S A 107:22032–22037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-I, Kim HT, Tai et al (2014) Identification of novel rice low phytic acid mutations via TILLING by sequencing. Mol Breed 34:1717–1729

    Article  CAS  Google Scholar 

  • Kircher M, Kelso J (2010) High-throughput DNA sequencing concepts and limitations. BioEssays: News Rev Mol Cell Dev Biol 32:524–536

    Article  CAS  Google Scholar 

  • Kislyuk AO, Katz LS, Agrawal S, Hagen MS, Conley AB, Jayaraman P, Nelakuditi V, Humphrey JC, Sammons SA, Govil D et al (2010) A computational genomics pipeline for prokaryotic sequencing projects. Bioinformatics 26:1819–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp G, Beckwith JS, Johnson PF, Fuhrman SA, Abelson J (1978) Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14:221–236

    Article  CAS  PubMed  Google Scholar 

  • Koboldt DC, Ding L, Mardis ER, Wilson RK (2010) Challenges of sequencing human genomes. Brief Bioinform 11:484–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolari I-L, Laitinan P, Turunen MP, Yla-Herttuala S (2015) Novel nuclear biology of small non-coding RNAs. Gene Technology 4:2

    Article  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  CAS  PubMed  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Krauss SL, He TH (2006) Rapid genetic identification of local provenance seed collection zones for ecological restoration and biodiversity conservation. J Nat Conserv 14:190–199

    Article  Google Scholar 

  • Krauss SL et al (2013) An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecol Evol 3:2138–2149

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Amer J Bot 99:248–256

    Article  Google Scholar 

  • Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ (2015) A comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol 15:89

    Google Scholar 

  • Langille MGI, Hsiao WWL, Brinkman FSL (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9:329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langlet O (1971) Two hundred years genecology. Taxon 20:653–721

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lautner M, Schunder E, Herrmann V, Heuner K (2013) Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila. J Bacteriol 195:1583–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TL (2008) Big data: open-source format needed to aid wiki collaboration. Nature 455:461

    Article  CAS  PubMed  Google Scholar 

  • Lee TJ et al (2006) BioWarehouse: a bioinformatics database warehouse toolkit. BMC Bioinformatics 7:170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lerat E, Ochman H (2005) Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res 33:3125–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD et al (2008) DNA sequencing of acytogenetically normal acute myeloid leukaemia genome. Nature 456:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A (2006) Facing the challenges of data integration in biosciences. Eng Lett 13:EL-13

    Google Scholar 

  • Li H (2011) Improving SNP discovery by base alignment quality. Bioinformatics 27:1157–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Shig M, Ching W-K, Mamitsuka H (2010) Annotating gene functions with integrative spectral clustering on microarray expressions and sequences. Genome Inform 22:95–120

    PubMed  Google Scholar 

  • Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21(1 Supplement):20–24

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Schoofs L, Baggerman G, Wets G, Lindemans M (2011) A pattern search method for discovering conserved motifs in bioactive peptide families. In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J et al (2014) An evaluation of genotyping by sequencing(GBS) to map the Breviaristatum-e(ari-e) locus incultivated barley. BMC Genomics 15:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H et al (2015) Development of genome-wide insertion and deletion polymorphism markers from next-generation sequencing data. Rice 8:27

    Article  PubMed Central  Google Scholar 

  • Llaca V (2012) Sequencing technologies and their use in plant biotechnology and breeding. In: Munshi A (ed), DNA sequencing – methods and applications. ISBN: 978–953–51-0564-0

    Google Scholar 

  • Lord P et al (2004) Applying semantic web services to bioinformatics: experiences gained lessons learnt. Semant Web – ISWC Proc 3298:350–364

    Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess over-representation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi MA (2010) Medical informatics: transition from data acquisition to data analysis by means of bioinformatics tools and resources. Int J Data Mining andBioinformatics 4:158–174

    Article  Google Scholar 

  • Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A et al (2010) Target-enrichment strategies for next generation sequencing. Nat Methods 7:111–118

    Article  CAS  PubMed  Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Qurcus subgenus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet (TIG) 24:133–141

    Article  CAS  Google Scholar 

  • Mardis ER (2010) The $1,000 genome, the $100,000 analysis? Genome Med 2:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, McNally KL, Wang W, Hamilton RS (2012) Genomics of gene banks: a case study in rice. Amer JBot 99:407–423

    Google Scholar 

  • McKain MR, Ickett W, Zhang NY, Yyampalayam SA, McCombie WR, Chase MW, Pires JC et al (2012) Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Am J Bot 99:397–406

    Article  PubMed  Google Scholar 

  • McKay JR, Latta RG (2002) Adaptive divergence population: markers, QTLs and traits. Trends Ecol Evol 17:285–291

    Article  Google Scholar 

  • McKay JK et al (2005) ‘How local is local?’ – a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J, Coppieters W, Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299:1335–1344

    Article  Google Scholar 

  • McLean R et al (2007) The effect of Web 2.0 on the future of medical practice and education: Darwikinian evolution or folksonomic revolution? Medical JAustralia 187:174–177

    Google Scholar 

  • Medvedev P, Stanciu M, Brudno M (2009) Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6(11 Suppl):S13–S20

    Article  CAS  PubMed  Google Scholar 

  • Mejlhede N, Kyjovska Z, Backes G, Burhenne K, Rasmussen SK, Jahoor A (2006) EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes Mlo and Mla in barley. Plant Breed 125:461–467

    Article  CAS  Google Scholar 

  • Memon AR (2012) Transcriptomics and proteomics analysis of root nodules of modern legume plants. In: Asharaf M, Ahmad MSA, Ozturk M, Aksoy A (eds) Crop production for agricultural improvement. Springer Science – Business Media, Berlin

    Google Scholar 

  • Menschaert G, Vandekerckhove TT, Baggerman G, Schoofs L, Luyten W, Van Criekinge W (2010) Peptidomics coming of age: a review of contributions from a bioinformatics angle. J Proteome Res 9:2051–2061

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Pühler A (2003) Gendb–an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31:2187–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael TP, Jackson S (2013) The first 5 plant genomes. Plant Genome 6. https://doi.org/10.3835/plantgenome2013.3.1

  • Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1182–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montalvo AM, Ellstrand NC (2001) Transplantation of the subshrub Lotus scoparius: testing the home-site advantage hypothesis. Conserv Biol 14:1034–1045. 28

    Article  Google Scholar 

  • Mortlock WL (2000) Guidelines 10: seed collection ranges for revegetation. FloraBank 31

    Google Scholar 

  • Mosner E et al (2012) Floodplain willows in fragmented river landscapes: understanding spatio-temporal genetic patterns as a basis for restoration plantings. Biol Conserv 153:211–218

    Article  Google Scholar 

  • Muirhead H, Perutz M (1963) Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 Å resolution. Nature 199:633–638

    Article  CAS  PubMed  Google Scholar 

  • Mullaney JM, Mills RE, Pittard WS, Devine SE (2010) Small insertions and deletions (INDELs) in human genomes. Hum Mol Genet 19(R2):R131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray D, Doran P, MacMathuna P, Moss A (2007) In silico gene expression analysis-an overview. Mol Cancer 6:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagasaki M, Saito A, Jeong E, Li C, Kojima K, Ikeda E, Miyano S (2010) Cell illustrator 4.0: a computational platform for systems biology. In Silico Biol 10:0002

    Google Scholar 

  • Narayanaswamy R, Niu W, Scouras AD, Hart GT, Davies J, Ellington AD, Iyer VR, Marcotte EM (2006) Systematic profiling of cellular phenotypes with spotted cell microarrays reveals mating-pheromone response genes. Genome Biol 7:R6–R9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen KL, Hogh AL, Emmersen J (2006) DeepSAGE–digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res 34:e133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nothnagel M, Herrmann A, Wolf A, Schreiber S, Platzer M, Siebert R, Krawczak M et al (2011) Technology-specific error signatures in the 1000 Genomes Project data. Hum Genet. https://doi.org/10.1007/s00439-011-0971-3

  • Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A et al (2008) Genes mirror geography within Europe. Nature 456:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high throughput resequencing. Nat Methods 4:907–909

    Article  CAS  PubMed  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  PubMed  Google Scholar 

  • Pareja E, Pareja-Tobes P, Manrique M, Pareja-Tobes E, Bonal J, Tobes R (2006) Extratrain: a database of extragenic regions and transcriptional information in prokaryotic organisms. BMC Microbiol 6:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkinson H et al (2011) ArrayExpress update – an archive of microarray and high throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39:D1002–D1004

    Article  CAS  PubMed  Google Scholar 

  • Parsons M, Grabsch H (2009) How to make tissue microarrays. Diagn Histopathol 15:142–150

    Article  Google Scholar 

  • Paszkiewicz K, Studholme DJ (2010) De novo assembly of short sequence reads. Brief Bioinform 11:457–472

    Article  CAS  PubMed  Google Scholar 

  • Pearson WR (1996) Effective protein sequence comparison. Methods Enzymol 266:227–258

    Article  CAS  PubMed  Google Scholar 

  • Pearson WR (1998) Empirical statistical estimates for sequence similarity searches. J Mol Biol 276:71–84

    Article  CAS  PubMed  Google Scholar 

  • Pearson WR (2000) Flexible sequence similarity searching with FASTA3 program package. Methods Mol Biol 132:185–219

    CAS  PubMed  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepperkok R, Ellenberg J (2006) High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Biol 7:690–696

    Article  CAS  Google Scholar 

  • Perdew GH, Vanden Heuvel JP, Peters JM (2006) Regulation of gene expression: molecular mechanisms. Humana Press, pp 11–30

    Google Scholar 

  • Pietrokovski S, Henikoff JG, Henikoff S (1996) The blocks database – a system for protein classification. Nucleic Acids Res 24:197–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinet F (2009) Identifying patients at risk of progressive left ventricular dysfunction. Heart Metab 42:10–14

    Google Scholar 

  • Pirovano W, Heringa J (2010) Protein secondary structure prediction. Methods Mol Biol 609:327–348

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012a) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland J, Endelman J, Dawson J et al (2012b) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  • Poptsova MS, Gogarten JP (2010) Using comparative genome analysis to identify problems in annotated microbial genomes. Microbiology 156:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. https://doi.org/10.1038/nature10158

    Article  CAS  Google Scholar 

  • Powell W, Machray G, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Primmer CR (2009) From conservation genetics to conservation genomics. Ann N Y Acad Sci 1162:357–368

    Article  CAS  PubMed  Google Scholar 

  • Pruitt KD et al (2009) NCBI reference sequences: current status, policy and new initiatives. Nucleic Acids Res 37:D32–D36

    Article  CAS  PubMed  Google Scholar 

  • Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H (2009) Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer GeneTher 16:351–361

    CAS  Google Scholar 

  • Radhakrishnan R, Solomon M, Satyamoorthy K, Martin LE, Lingen MW (2008) Tissue microarray – a high-throughput molecular analysis in head and neck cancer. J Oral Pathol Med 37:166–176

    Article  PubMed  Google Scholar 

  • Ray S, Satya PN (2014) Next generation sequencing technologies for next generation plant breeding. Front Plant Sci 5:367 | 2

    Article  Google Scholar 

  • Renaut J, Lutts S, Hoffmann L, Hausman J-F (2004) Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol 6:81–90

    Article  CAS  PubMed  Google Scholar 

  • Ribaut J-M, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218

    Article  PubMed  Google Scholar 

  • Rindflesch TC, Tanabe L, Weinstein JN, Hunter L (2000) EDGAR: extraction of drugs, genes and relations from the biomedical literature. Pac Symp Biocomput 2000:517–528

    Google Scholar 

  • Ronnie W, Hichem S (2011) On-chip living-cell microarrays for network biology. In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Rose JCK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  CAS  PubMed  Google Scholar 

  • Rose PW et al (2011) The RCSB protein data bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401

    Article  CAS  PubMed  Google Scholar 

  • Russo G, Zegar C, Giordano A (2003) Advantages and limitations of microarray technology in human cancer. Oncogene 22:6497–6507

    Article  CAS  PubMed  Google Scholar 

  • Ryan AB et al (2007) Identification and genetic characterization of smooth cord grass for coastal wetland restoration. J Aquat Plant Manag 45:90–99

    Google Scholar 

  • Saintenac C, Jiang D, Wang S, Akhunov E (2013) Sequence-based mapping of the polyploid wheat genome. G3 3:1105–1114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakk E, Odebode IE (2011) Vector space information retrieval techniques. In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Salgotra RK, Gupta BB, Stewart CN Jr (2014) From genomics to functional markers in the era of next-generation sequencing. Biotechnol Lett 36:417–426

    Article  CAS  PubMed  Google Scholar 

  • Salwinski L et al (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F (1988) Sequences, sequences, and sequences. Ann Rev Biochemist 57:1–28

    Article  CAS  Google Scholar 

  • Sanger F, Thompson EOP, Kitai R (1955) The amide groups of insulin. Biochem J 59:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977a) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977b) DNA sequencing with chain-terminating inhibitors. Proc National AcademySci USA 74:5463–5467

    Article  CAS  Google Scholar 

  • Sankoff D (1972) Matching sequences under deletion/insertion constraints. Proc Nat Acad Sci USA 69:c4–c6

    Article  Google Scholar 

  • Sansaloni C, et al (2011) Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. Proc BMC P54, BioMed Central Ltd

    Google Scholar 

  • Sayers EW et al (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 39:D38–D51

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010a) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE et al (2010b) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaub MC, Lucchinetti E, Zaugg M (2009) Genomics, transcriptomics, and proteomics of the ischemic heart. Heart Metab 42:4–9

    Google Scholar 

  • Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Steven B, Cannon Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS (2013) Next generation phenotyping and breeding. Available online at: http://schnablelab.plantgenomics.iastate.edu/docs/resources/media/Schnable-UMN-3-25-13.pdf

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Schoofs L, Baggerman G (2003) Peptidomics in Drosophila melanogaster. Brief Funct Genomic Proteomic 2:114–120

    Article  CAS  PubMed  Google Scholar 

  • Schwenk JM, Stoll D, Templin MF, Joos TO (2002) Cell microarrays: an emerging technology for the characterization of antibodies. BioTech Dec Suppl 54–61

    Google Scholar 

  • Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D et al (2009) Short-read sequencing technologies for transcriptional analyses. Annu Rev Plant Biol 60:305–333

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Sau AK (2010) Tissue microarray: a powerful and rapidly evolving tool for high-throughput analysis of clinical specimens. IJCRI 1:1–6

    Article  Google Scholar 

  • Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton J (2009) Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136:97–107

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD (2010) An overview of the current status of eukaryote gene prediction strategies. Gene 461:1–4

    Article  CAS  PubMed  Google Scholar 

  • Smith RF, Smith TF (1990) Automatic generation of primary sequence patterns from sets of related protein sequences. Proc Natl Acad Sci U S A 87:118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith TF, Waterman MS (1981a) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  CAS  PubMed  Google Scholar 

  • Smith TF, Waterman MS (1981b) Comparison of bio-sequences. Adv Appl Math 2:482–489

    Article  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):3

    Article  Google Scholar 

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273

    Article  CAS  PubMed  Google Scholar 

  • Song J, Braun G, Bevis E, Doncaster K (2006) A simple protocol for protein extraction of recalcitrant fruit tissues suitable for 2-D electrophoresis and MS analysis. Electrophoresis 27:3144–3151

    Article  CAS  PubMed  Google Scholar 

  • Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R et al (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25:705–712

    Article  PubMed  Google Scholar 

  • Steele PR, Hertweck KL, Mayfield D, McKain MR, Leebens-Mack JH, Pires JC (2012) Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. Amer J Bot 99:330–348

    Article  CAS  Google Scholar 

  • Stehr H, et al(2010) PDBWiki: added value through community annotation of the Protein Data Bank. Database (Oxford), baq009

    Google Scholar 

  • Stein LD (2003) Integrating biological databases. Nat Rev Genet 4:337–345

    Article  CAS  PubMed  Google Scholar 

  • Stein LD (2010) The case for cloud computing in genome informatics. Genome Biol 11:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2007) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170

    Article  PubMed  CAS  Google Scholar 

  • Straub SC, Parks M, Weitemeir K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genetic iceberg: next generation sequencing for plant systematic. Amer J Bot 99:349–364

    Article  CAS  Google Scholar 

  • Subramanian AR, Weyer-Menkhoff J, Kaufmann M, Morgenstern B (2005) DIALIGN-T: an improved algorithm for segment-based multiple sequence alignment. BMC Bioinforma 6:66

    Article  CAS  Google Scholar 

  • Suderman M, Hallett M (2007) Tools for visually exploring biological networks. Bioinformatics 23:2651–2659

    Article  CAS  PubMed  Google Scholar 

  • t Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, de Menezes RX et al (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36:1–11

    Article  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tarca AL, Romero R, Draghici S (2006) Analysis of microarray experiments of gene expression profiling. Amer J Obstetrics Gynecology 195:373–388

    Article  CAS  Google Scholar 

  • Taylor WR, Jonassen I (2004) A structural pattern-based method for protein fold recognition. Proteins 56:222–234

    Article  CAS  PubMed  Google Scholar 

  • Taylor KH, Kramer RS, Davis JW, Guo J, Duff DJ, Xu D et al (2007) Ultra-deep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67:8511–8518

    Article  CAS  PubMed  Google Scholar 

  • Teer JK, Johnston JJ, Anzick SL, Pineda M, Stone G (2013) NISC comparative sequencing program, massively parallel sequencing of genes on a single chromosome: a comparison of solution hybrid selection and flow sorting. BMC Genomics 14:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templin MF, Stoll D, Schrenk M, Traub PC, Vöhringer CF, Joos TO (2002) Protein microarray technology. Trends Biotechnol 20:160–166

    Article  CAS  PubMed  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. https://doi.org/10.1038/nature11119

    Article  CAS  Google Scholar 

  • Thompson JD, Linard B, Lecompte O, Poch O (2011) A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 6:e18093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tramontano E, Etheridge AM, Gross LJ, Lenhart S, Miani PK, Ranganathan S, Safer HM, Voit EO (eds) (2006) Introduction to bioinformatics. Chapman and Hall/CRC Press, UK

    Google Scholar 

  • Travis SE et al (2002) A comparative assessment of genetic diversity among differently-aged populations of Spartina alterniflora on restored versus natural wetlands. Restor Ecol 10:37–42

    Article  Google Scholar 

  • Trayhuru P (1996) Northern blotting. Proc Nutr Soc 55:583–589

    Article  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, K. Ngo J, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiridis E, Giannoudis PV (2006) Transcriptomics and proteomics. In: Advancing the understanding of genetic basis of fracture healing. Inter J Care Injury 37S: S13–S19

    Google Scholar 

  • Turesson G (1922) The genotypical response of plant species to their habitat. Hereditas 3:211–227

    Article  Google Scholar 

  • Vailaya A, Bluvas P, Kincaid R, Kuchinsky A, Creech M, Adler A (2005) An architecture for biological information extraction and representation. Bioinformatics 21:430–438

    Article  CAS  PubMed  Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117

    Article  PubMed  Google Scholar 

  • Varshney RK, Tuberosa R (eds) (2007) Genomic assisted crop improvement: genomics approaches and platforms. Springer, New York

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Vogt G, Etzold T, Argos P (1995) An assessment of amino acid exchange matrices in aligning protein sequences: the twilight zone revisited. J Mol Biol 249:816–831

    Article  CAS  PubMed  Google Scholar 

  • Vos P et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H et al (2009) Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10:347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JTL, Zaki MJ, Toivonen HTT, Sasha D (eds) (2005) Data mining in Bioinformatics. Spinger, Heidelberg

    Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Wen ZN, Wang K, Li M, Nie F, Yang Y (2005) Analyzing functional similarity of protein sequences with discrete wavelet transform. Comput Biol andChem 29:220–228

    Article  CAS  Google Scholar 

  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. Plant Biol 5:45. 29

    Google Scholar 

  • van der Werf MJ, Jellema RH, Hankemeier T (2005) Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J IndMicrobiol Biotechnol 32:234–252

    Google Scholar 

  • Wheat C (2010) Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica 138:433–451

    Article  CAS  PubMed  Google Scholar 

  • Wheeler N, Sederoff R (2009) Role of genomics in the potential restoration of the American chestnut. Tree Genet Genomes 5:181–187. 55

    Article  Google Scholar 

  • Williams J, Kubelik A, Livak K et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AV, Nevill PG, Krauss SL (2014) Next generation restoration genetics: applications. Trends Plant Sci 19:529–537

    Article  CAS  PubMed  Google Scholar 

  • Wixon J, Kell D (2000) The Kyoto encyclopedia of genes and genomes – KEGG. Yeast 17:48–55

    Article  CAS  PubMed  Google Scholar 

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235

    Article  CAS  PubMed  Google Scholar 

  • Wyckoff HW, Hardman KD, Allewell NM, Inagami T, Johnson LN, Richards FM (1967) The structure of ribonuclease-S at 3.5 Å resolution. J Biol Chem 242:3984–3988

    CAS  PubMed  Google Scholar 

  • Xiao S (2012) Protecting crops from pathogens; novel approaches to an old problem. Gene Technology 1:e103. https://doi.org/10.4172/gnt.1000e103

    Google Scholar 

  • Xu Y (2003) Developing marker-assisted selection strategies for breeding hybrid rice. Plant Breed Rev 23:73–174

    Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu W, Miranker DP (2003) A metric model of amino acid substitution. Bioinformatics 20:1214–1221

    Article  Google Scholar 

  • Yager K (2006) Wiki ware could harness the internet for science. Nature 440:278

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Li C, Lam HM, Clements J, Yan G, Zhao S (2012) Sequencing consolidates molecular markers with plant breeding practice. Theor Appl Genet 128:779–795

    Article  CAS  Google Scholar 

  • Yang H, Tao Y, Zheng Z, Li C, Sweetingham MW, Howieson JG (2015) Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13:318

    Article  CAS  Google Scholar 

  • Yant Y (2012) Genome-wide mapping of transcription factor binding reveals developmental process integration and a fresh look at evolutionary dynamics. Amer J Bot 9:277–290

    Article  CAS  Google Scholar 

  • Zalapa JE et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Townsend JP (2010) The filamentous fungal gene expression database (FFGED). Fungal Genet Biol 47:199–204

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2009) Bringing Web 2.0 to bioinformatics. Brief Bioinform 10:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZH, Lee HK, Mihalek I (2010) Reduced representation of protein structure: implications on efficiency and scope of detection of structural similarity. BMCBioinformatics 11:155

    Google Scholar 

  • Zhang Z, Bajic VB, Yu J, Cheung K-H, Townsend JP (2011) Data integration in bioinformatics: current efforts and challenges. In: Mahdavi MA (ed), Bioinformatic – trends and methodologies. InTech Publications. Available at http://www.intechopen.com/books/bioinformatics

  • Zhao J, Grant SFA (2010) Advances in whole genome sequencing technology. Mol Cell Biol 17:1549–1560. https://doi.org/10.1089/cmb.2010.0127

    Article  CAS  Google Scholar 

  • Ziaudin J, Sabatini DM (2001) Microarrays of cells expressing defined cDNAs. Nature 411:107–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. De Filippis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Filippis, L.F. (2017). Plant Bioinformatics: Next Generation Sequencing Approaches. In: Hakeem, K., Malik, A., Vardar-Sukan, F., Ozturk, M. (eds) Plant Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-67156-7_1

Download citation

Publish with us

Policies and ethics