Skip to main content

Transcription Factors Associated with Abiotic Stress and Fruit Development in Oil Palm

  • Chapter
  • First Online:
Crop Improvement

Abstract

Oil palm is the most productive oil crop which plays a key role in meeting current and future demand for vegetable oil. Palm oil has a multitude of edible and nonedible applications and it is an important contributor to the economy of a few countries in the Southeast Asian region such as Malaysia, Indonesia, and Thailand. Water, temperature, and nutritional stresses are identified as key factors suppressing oil palm productivity. Addressing issues in key biological processes such as fruit development and responses to abiotic stress is essential in oil palm genetic improvement efforts. Gene expression at the transcriptional level is mainly regulated by transcription factors (TFs) which mediate cellular signaling responses and coordinate expression of biosynthetic pathway genes. Several transcription factors of the APETALA2/ethylene response factor (AP2/ERF) family including from the AP2 and ERF subfamilies have been identified to be involved in fruit ripening while the dehydration responsive element-binding 1 (DREB1)/C-repeat-binding factor (CBF) subfamilies are associated with abiotic stress response in oil palm. Their expression profiles have been studied in oil palm tissues at different stages of development and in response to various phytohormones and abiotic factors as well as in transgenic tomato as a model system. Their DNA binding abilities to specific motifs in stress-responsive and fruit ripening associated genes have been characterized through yeast one-hybrid and electrophoretic mobility shift assay (EMSA). This chapter also looks at other transcription factor families that have been shown to regulate these important biological processes in oil palm. The potential applications of the transcription factors for crop improvement efforts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah SNA, Akhtar MS (2016) Plant necrotrophic fungal pathogen interaction: mechanism and mode of action. In: Hakeem KR, Akhtar MS, Siti Nor Akmar A (eds) Plant, soil and microbes. Springer, New York, pp 29–53

    Chapter  Google Scholar 

  • Adam H, Jouannic S, Morcillo F, Richaud F, Duval Y, Tregear JW (2006) MADS box genes in oil palm (Elaeis guineensis): patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J Mol Evol 62:15–31

    Article  CAS  PubMed  Google Scholar 

  • Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5:e1000777. doi:10.1371/journal.pgen.1000777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91:385–395

    Article  CAS  PubMed  Google Scholar 

  • Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep 8:279–293

    Article  Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin G, Tanksley S, Giovannoni J (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad CM, Armanto ME, Zain AM (2012) Evaluation of climate suitability for oil palm (Elaeis guineensis Jacq.) cultivation. J Environ Sci Eng B 1:272–276

    Google Scholar 

  • Awan AM, Sap MNM (2006) A framework for predicting oil-palm yield from climate data. Proceedings of the postgraduate annual research seminar 2006, pp 360–366

    Google Scholar 

  • Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM (2016) Oil palm leaves and roots differ in physiological response, antioxidant enzyme activities and expression of stress-responsive genes upon exposure to drought stress. Acta Physiol Plant 38:1–12

    Article  CAS  Google Scholar 

  • Azzeme MA, Abdullah SNA, Aziz MA, Wahab PEM (2017) Oil palm drought inducible DREB1 induced expression of DRE/CRTandnon-DRE/CRT-containing genes in lowland transgenic tomato under cold and PEG treatments. Plant Physiol Biochem 112:129–151

    Article  CAS  PubMed  Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Driraf N, Ohlrogged JB, Arondela V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A 108:12527–12532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B-h, Hong X, Agarwal M, Zhu J-K (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HI, Hong JH, Ha JO, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936–947

    Article  CAS  PubMed  Google Scholar 

  • Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M, Fernie AR, Rathjen JP, Botella MA, Valpuesta V, Medina-Escobar N (2011) Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytol 191:376–390

    Article  CAS  PubMed  Google Scholar 

  • Dalcorso G, Manara A, Piasentin S, Furini A (2014) Nutrient metal elements in plants. Metallomics 6:1770–1788

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Druege U (2006) Ethylene and plant responses to abiotic stress. In: Khan NA (ed) Ethylene action in plants. Springer-Verlag, New York, pp 81–118

    Chapter  Google Scholar 

  • Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:1–10

    Article  Google Scholar 

  • Ebrahimi M, Abdullah SNA, Aziz MA, Namasivayam P (2015) A novel CBF that regulates abiotic stress response and the ripening process in oil palm (Elaeis guineensis) fruits. Tree Genet.Genomes 11(3):56

    Google Scholar 

  • Ebrahimi M, Abdullah SNA, Aziz MA, Namasivayam P (2016) Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway. J plant physiol 202:107–120

    Google Scholar 

  • Elitzur T, Vrebalov J, Giovannoni JJ, Goldschmidt EE, Friedman H (2010) The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. J Exp Bot 61:1523–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent GC, Immink RG (2006) A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J 47:934–946

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Miao Y, Shao L, Hu T, Yang P (2016) De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genomics 17:1–19

    Article  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    Article  PubMed  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  CAS  PubMed  Google Scholar 

  • Grimplet J, Martinez-Zapater JM, Carmona MJ (2016) Structural and functional annotation of the MADS-box transcription factor family in grapevine. BMC Genomics 17:1–23

    Article  CAS  Google Scholar 

  • Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, Zhang SL (2017) Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud 58:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo B, Wei Y, Xu R, Lin S, Luan H, Lv C, Zhang X, Song X, Xu R (2016) Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.) PLoS One 11:e0161322. doi:10.1371/journal.pone.0161322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68:533–555

    Article  CAS  PubMed  Google Scholar 

  • Hall BP, Shakeel SN, Amir M, UlHaq N, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haniff MH, Mohammad AT, Noor MRM, Din AK, Latiff J, Sani ARA, Abdullah R (2010) Impact of El Niño occurrence on oil palm yield in Malaysia. Planter 86:873–852

    Google Scholar 

  • Hao-Li M, Han-lin Z, Huai-yu Z, Jie Z (2010) Cloning and expression analysis of an AP2/ERF gene and its responses to phytohormones and abiotic stresses in rice. Ric Sci 17:1–9

    Article  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song X, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  CAS  Google Scholar 

  • Hu W, Wang L, Tie W, Yan Y, Ding Z, Liu J, Li M, Peng M, Xu B, Jin Z (2016) Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana. Sci Rep 6:1–15

    Article  Google Scholar 

  • IMARC Group. (2016) Global vegetable oil market stimulated by demand for biofuel and potential opportunities in emerging markets. https://imarcgroup.wordpress.com/2016/09/23/global-vegetable-oil-market/. Accesed 6 June 2017

  • Ito Y (2016) Regulation of tomato fruit ripening by MADS-box transcription factor. Jpn Agric Res Quart 50:33–38

    Article  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA (2014) Transcriptional control of fleshy fruit development and ripening. J Exp Bot 65:4527–4541

    Article  CAS  PubMed  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Kizis D, Lumbreras V, Pages M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S (2008) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot 59:891–905

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei X, Xiao Y, Xia W, Mason AS, Yang Y, Ma Z, Peng M (2014) RNA-seq analysis of oil palm under cold stress reveals a different C-repeat binding factor (CBF) mediated gene expression pattern in Elaeis guineensis compared to other species. PLoS One 9:1–20

    Google Scholar 

  • Leng P, Yuan B, Yangdong G (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65:4577–4588

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ng CK-Y, Fan L-M (2015) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot 114:80–91

    Article  CAS  Google Scholar 

  • Li Y, Zhu B, Xu W, Zhu H, Chen A, Xie Y, Shao Y, Luo Y (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors:mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Baek W, Jung J, Kim J-H, Lee SC (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16:15251–15270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhao T, Liu J, Liu W, Liu Q, Yan Y, Zhou H (2006) The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett 580:1303–1308

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Gomes BL, Mila I, Purgatto E, Peres LE, Frasse P, Maza E, Zouine M, Roustan JP, Bouzayen M, Pirrello J (2016) Comprehensive profiling of ethylene response factor expression identifies ripening-associated ERF genes and their link to key regulators of fruit ripening in tomato. Plant Physiol 170:1732–1744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Muller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Kong Q, Arondel V, Kilaru A, Bates PD, Thrower NA, Benning C, Ohlrogge JB (2013) Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS One 8:1–13

    Article  Google Scholar 

  • Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis Thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79. doi:10.3389/Fpls.2013.00079

    Article  PubMed  PubMed Central  Google Scholar 

  • Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570

    Article  CAS  PubMed  Google Scholar 

  • Meng C, Cai C, Zhang T, Guo W (2009) Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci 176:352–359

    Article  CAS  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mes PJ, Boches P, Myers JR, Durst R (2008) Characterization of tomatoes expressing anthocyanin in the fruit. J Am Soc Hort Sci 133:262–269

    Google Scholar 

  • Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T (2016) Autophagy in plants–what's new on the menu? Trends Plant Sci 21:134–144

    Article  CAS  PubMed  Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security. Int J Sustainable Built Environ 3:153–165

    Article  Google Scholar 

  • Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc-bertossi F, Collin M, Verdeil JL, Tregear JW (2007) EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Morkunas I, Mai VC, Waskiewicz A, Formela M, Golinski P (2014) Major phytohormones under abiotic stress. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment, vol 2. Springer, New York, pp 87–135

    Chapter  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul SE, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB⁄CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Munne-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ (2009) Oil palm: future prospects for yield and quality improvements. Lipid Technol 21:257–260

    Article  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinsh H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat. Front Plant Sci 5:1–7

    Article  Google Scholar 

  • Nualwijit N, Lerslerwong L (2014) Post harvest ripening of oil palm fruit is accelerated by application of exogenous ethylene. Songklanakarin J Sci Technol 36:255–259

    Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors:structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  CAS  PubMed  Google Scholar 

  • Omidvar V, Abdullah SNA, Ho CL, Mahmood M, Al-Shanfari AB (2012) Isolation and characterization of two ABRE-binding proteins: EABF and EABF1 from the oil palm. Mol Biol Rep 39:8907–8918

    Article  CAS  PubMed  Google Scholar 

  • Omidvar V, Abdullah SNA, Ho CL, Mahmood M (2013a) Isolation and characterization of an ethylene-responsive element binding protein (EgEREBP) from oil palm (Elaies guineensis). Aust J Crop Sci 7:219–226

    CAS  Google Scholar 

  • Omidvar V, Abdullah SNA, Ebrahimi M, Ho CL, Mahmood M (2013b) Gene expression and functional characterization of the EgAP2-1 transcription factor during oil palm fruit ripening and in response to ethylene and ABA treatments. Biol Plant 57:646–654

    Article  CAS  Google Scholar 

  • Ooi LCL, Low ETL, Abdullah MO, Nookiah R, Ting NC, Nagappan J, Manaf MAA, Chan KL, Halim MA, Azizi N, Omar W, Murad AJ, Lakey N, Ordway JM, Favello A, Budiman MA, Brunt AV, Beil M, Leininger MT, Jiang N, Smith SW, Brown CR, Kuek ACS, Bahrain S, Hoynes-O’Connor A, Nguyen AY, Chaudhari HG, Shah SA, Choo YM, Sambanthamurthi R, Singh R (2016) Non-tenera contamination and the economic impact of SHELL genetic testing in the Malaysian independent oil palm industry. Front Plant Sci 7:1–13

    Article  Google Scholar 

  • Osobamiro MT, Adewuyi GO (2015) Levels of heavy metals in the soil: effects of season, agronomic practice and soil geology. J Agric Chem Environ 4(4):109

    Google Scholar 

  • Organization for Economic Co-operation and Development-Food and Agricultural Organization of the United Nations (OECD-FAO) (2011) Agriculture outlook 2011–2020.

    Google Scholar 

  • Park JM, Park C, Lee S, Ham B, Shin R, Paek K (2001) Overexpression of the tobacco TSi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta M, Bouzayen M (2006) Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol 47:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Popko J, Hansch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12:242–258

    Article  CAS  PubMed  Google Scholar 

  • Prokurat S (2013) Palm oil - strategic source of renewable energy in Indonesia and Malaysia. J Modern Sci 3:425–443

    Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins:regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681

    Article  CAS  PubMed  Google Scholar 

  • Riechmann J, Ratcliffe O (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434

    Article  CAS  PubMed  Google Scholar 

  • Rossini MA, Maddonni GA, Otegui ME (2016) Multiple abiotic stresses on maize grain yield determination: additive vs multiplicative effects. Field Crop Res 198:280–289

    Article  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:1–26

    Article  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Salmiyati HA, Idayu I, Supriyanto E (2014) Oil palm plantations management effects on productivity fresh fruit bunch (FFB). APCBEE Procedia 8:282–286

    Article  Google Scholar 

  • Sambanthamurthi R, Sundram K, Tan Y (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 16:194–199

    Article  CAS  Google Scholar 

  • Seo JS, Koo YJ, Jung C, Yeu SY, Song JT, Kim J, Choi Y, Lee JS, Choi YD (2013) Identification of a novel jasmonate-responsive element in the AtJMT promoter and its binding protein for AtJMT repression. PLoS One 8:1–14

    Google Scholar 

  • Shanmuganathan S, Narayanan A, Mohamed M, Ibrahim R, Haron K. (2014) A hybrid approach to modelling the climate change effects on Malaysia’s oil palm yield at the regional scale. Paper presented at the first international conference on soft computing and data mining (SCDM 2014), Universiti Tun Hussein Onn Malaysia (UTHM), Johor, Malaysia

    Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi I, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Shinshi H (2008) Ethylene-regulated transcription and crosstalk with jasmonic acid. Plant Sci 175:18–23

    Article  CAS  Google Scholar 

  • Shiriga K, Sharma R, Kumar K, Yadav SK, Hossain F, Thirunavukkarasu N (2014) Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene 2:407–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low EL, Ooi LC, Ong-Abdullah M, Ting N, Nagappan J, Nookiah R, Amiruddin MD, Rosli R, Manaf MAA, Chan KL, Halim MA, Azizi N, Lakey N, Smith SW, Budiman MA, Hogan M, Bacher B, Brunt AV, Wang C, Ordway JM, Sambanthamurthi R, Martienssen RA (2013) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500:340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Qi T, Wasternack C, Xie D (2014) Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr Opin Plant Biol 21:112–119

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Yu J-P, Chen F, Zhao T-J, Fang X-H, Li Y-Q, Sui S-F (2008) TINY, a dehydration-responsive rlement (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J Biol Chem 283:6261–6271

    Article  CAS  PubMed  Google Scholar 

  • Sun CX, Cao HX, Shao HB, Lei XT, Xiao Y (2011) Growth and physiological responses to water and nutrient stress in oil palm. Afr J Biotechnol 10:10465–10471

    Article  CAS  Google Scholar 

  • Tacken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, Schultz K, Bowen J, Atkinson RG, Johnston JW, Putterill J, Hellens RP, Schaffe RJ (2010) The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol 153:294–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tengoua FF, Hanafi MM, Idris AS, Syed-Omar SR (2015) Screening for optimum concentrations of boron, copper and manganese for the growth of three-month old oil palm seedlings in solution culture. Pertanika J Trop Agric Sci 38:113–126

    Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:1–9

    Article  Google Scholar 

  • Tranbarger TJ, Dussert S, Joet T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Uexküll HR, Fairhurst TH (1999) Some nutritional disorders in oil palm. Better Crops Int 13:16–21

    Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14 Suppl:S131–S151

    PubMed  Google Scholar 

  • Wang W, Xu M, Wang G, Galili G (2017) Autophagy: an important biological process that protects plants from stressful environments. Front Plant Sci 7:2030

    PubMed  PubMed Central  Google Scholar 

  • Wituszynska W, Karpinski S (2013) Programmed cell death as a response to high light, UV and drought stress in plants. In: Vahdati K, Leslie C (eds) Abiotic stress-plant responses and applications in agriculture. InTech, Rijeka, Croatia, pp 207–246

    Google Scholar 

  • Xin H, Qin F, Tran LP (2011) Transcription factors involved in environmental stress responses in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptation and stress tolerance of plants in the era of climate change. Springer, New York, pp 279–295

    Google Scholar 

  • Xiong L, Gong Z, Rock CD, Subramaniam S, Guo Y, Xu W, Galbraith D, Zhu J (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  CAS  PubMed  Google Scholar 

  • Yanez M, Caceres S, Orellana S, Bastias A, Verdugo I, Ruiz-Lara S, Casaretto JA (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 28:1497–1507

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Yang P, Zhang Z, Han B, Wang W, Wang Y, Cao Y, Hu T (2014) Isolation and characterization of a buffalograss (Buchloe dactyloides) dehydration responsive element binding transcription factor, BdDREB2. Gene 536:123–128

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Shen L, Fan B, Yu M, Zheng Y, Lv S, Sheng J (2009) Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits. FEBS Lett 583:3329–3334

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66:4863–4871

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Nor Akmar Abdullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdullah, S.N.A., Azzeme, A.M., Ebrahimi, M., Ariff, E.A.K.E., Hanifiah, F.H.A. (2017). Transcription Factors Associated with Abiotic Stress and Fruit Development in Oil Palm. In: Abdullah, S., Chai-Ling, H., Wagstaff, C. (eds) Crop Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-65079-1_4

Download citation

Publish with us

Policies and ethics