Skip to main content

Nanocarriers as CNS Drug Delivery Systems for Enhanced Neuroprotection

  • Chapter
  • First Online:
Drug and Gene Delivery to the Central Nervous System for Neuroprotection

Abstract

Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BSCFB) separate central nervous system (CNS) from blood circulation and tightly protect CNS by hindering the passage of harmful substances across the barriers and allowing the transport of essential compounds for brain function. These selectively permeable barriers have become a major challenge in delivering drugs into the nervous system for the treatment of CNS diseases and complications such as Alzheimer’s disease, Multiple sclerosis, and encephalitis. Due to the advancements in nanotechnology and medicine, nanocarrier-based drug delivery has emerged as a new and potential strategy for neurological treatment and protection. Depending on the techniques in preparation and functionalization, nanocarriers may be developed with different properties for cell-/tissue-/organ-specific targeted delivery and for sustained and controlled release of neurotherapeutic agents. Even though several attempts have shown successful results in effective drug delivery to the central nervous system, the lack of information about long-term nanocarrier toxicity, accumulation, and excretion restrict their use in current clinical practice. This chapter highlights recent developments in nanocarriers specifically designed to protect CNS. The interactions between nanocarriers including liposomes, micelles, organic and inorganic nanoparticles, nanofibers, and carbon-based materials with various neuroprotective agents, and their capabilities of delivering the encapsulated or conjugated drugs to the CNS are reviewed. The review also includes our investigations on the development of titanate nanospheres and nanowires and their potential use as drug delivery tools in neuroprotection. Finally, future prospects of drug delivery systems in the treatment of neurodegenerative pathologies for clinical translation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules. 2008;13(5):1035–65. doi:10.3390/molecules13051035.

    Article  CAS  PubMed  Google Scholar 

  2. Pathan SA, Iqbal Z, Zaidi SM, et al. CNS drug delivery systems: novel approaches. Recent Pat Drug Deliv Formul. 2009;3(1):71–89. https://www.ncbi.nlm.nih.gov/pubmed/19149731.

    Article  CAS  PubMed  Google Scholar 

  3. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47. doi:10.1016/j.jconrel.2016.05.044.

    Article  CAS  PubMed  Google Scholar 

  4. Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252–73.

    CAS  PubMed  Google Scholar 

  5. Ye D, Raghnaill MN, Bramini M, et al. Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale. 2013;5(22):11153–65. doi:10.1039/c3nr02905k.

    Article  CAS  PubMed  Google Scholar 

  6. Sharma HS, Ali S, Tian ZR, et al. Nano-drug delivery and neuroprotection in spinal cord injury. J Nanosci Nanotechnol. 2009;9(8):5014–37. doi:10.1166/jnn.2009.GR04.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar P, Choonara YE, Modi G, Naidoo D, Pillay V. Nanoparticulate strategies for the five R’s of traumatic spinal cord injury intervention: restriction, repair, regeneration, restoration and reorganization. Nanomedicine (Lond). 2014;9(2):331–48. doi:10.2217/nnm.13.203.

    Article  CAS  Google Scholar 

  8. Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012;64(7):686–700. doi:10.1016/j.addr.2011.10.007.

    Article  CAS  PubMed  Google Scholar 

  9. Ramos-Cabrer P, Campos F. Liposomes and nanotechnology in drug development: focus on neurological targets. Int J Nanomedicine. 2013;8:951–60. doi:10.2147/IJN.S30721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99. doi:10.2147/IJN.S68861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toh M-R, Chiu GNC. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci. 2013;8(2):88–95. doi:10.1016/j.ajps.2013.07.011.

    Article  CAS  Google Scholar 

  12. Rip J, Chen L, Hartman R, et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target. 2014;22(5):460–7. doi:10.3109/1061186X.2014.888070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee DH, Rötger C, Appeldoorn CCM, et al. Glutathione PEGylated liposomal methylprednisolone (2B3-201) attenuates CNS inflammation and degeneration in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;274(1–2):96–101. doi:10.1016/j.jneuroim.2014.06.025.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma G, Modgil A, Zhong T, Sun C, Singh J. Influence of short-chain cell-penetrating peptides on transport of doxorubicin encapsulating receptor-targeted liposomes across brain endothelial barrier. Pharm Res. 2014;31(5):1194–209. doi:10.1007/s11095-013-1242-x.

    Article  CAS  PubMed  Google Scholar 

  15. Lin Q, Mao KL, Tian FR, et al. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes. Cancer Chemother Pharmacol. 2016;77(2):269–80. doi:10.1007/s00280-015-2926-1.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Shehri A, Favretto ME, Ioannou PV, et al. Permeability of PEGylated immunoarsonoliposomes through in vitro blood brain barrier-medulloblastoma co-culture models for brain tumor therapy. Pharm Res. 2015;32(3):1072–83. doi:10.1007/s11095-014-1519-8.

    Article  CAS  PubMed  Google Scholar 

  17. Li X-T, Tang W, Jiang Y, et al. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells. Oncotarget. 2016. doi:10.18632/oncotarget.8360.

    Google Scholar 

  18. Zong T, Mei L, Gao H, et al. Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Mol Pharm. 2014;11(7):2346–57. doi:10.1021/mp500057n.

    Article  CAS  PubMed  Google Scholar 

  19. Guo J, Waknine-Grinberg JH, Mitchell AJ, Barenholz Y, Golenser J. Reduction of experimental cerebral malaria and its related proinflammatory responses by the novel liposome-based beta-methasone nanodrug. Biomed Res Int. 2014;2014:292471. doi:10.1155/2014/292471.

    PubMed  PubMed Central  Google Scholar 

  20. Sun C, Wang J, Liu J, Qiu L, Zhang W, Zhang L. Liquid proliposomes of nimodipine drug delivery system: preparation, characterization, and pharmacokinetics. AAPS PharmSciTech. 2013;14(1):332–8. doi:10.1208/s12249-013-9924-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Corace G, Angeloni C, Malaguti M, et al. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J Liposome Res. 2014;24(4):323–35.

    Article  CAS  PubMed  Google Scholar 

  22. Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2010;48(Suppl 2):1–6. doi:10.1097/MPG.0b013e3181a15ae8.Screening.

    Google Scholar 

  23. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23. doi:10.1016/j.yexmp.2008.12.004.Nanoparticle-based.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li AJ, Zheng YH, Liu GD, Liu WS, Cao PC, Bu ZF. Efficient delivery of docetaxel for the treatment of brain tumors by cyclic RGD-tagged polymeric micelles. Mol Med Rep. 2015;11(4):3078–86. doi:10.3892/mmr.2014.3017.

    CAS  PubMed  Google Scholar 

  25. Huang Y, Liu W, Gao F, Fang X, Chen Y. c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma. Int J Nanomedicine. 2016;11:1629–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li C, Li S, Tu T, et al. Paclitaxel-loaded cholesterol-conjugated polyoxyethylene sorbitol oleate polymeric micelles for glioblastoma therapy across the blood-brain barrier. Polym Chem. 2015;6:2740–51. doi:10.1039/c4py01422g.

    Article  CAS  Google Scholar 

  27. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi:10.1186/1556-276X-8-102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sur S, Fries AC, Kinzler KW, Zhou S, Vogelstein B. Remote loading of preencapsulated drugs into stealth liposomes. Proc Natl Acad Sci U S A. 2014;111(6):2283–8. doi:10.1073/pnas.1324135111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release. 2015;219:141–54. doi:10.1016/j.jconrel.2015.08.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int. 2014. doi:10.1155/2014/869269.

    Google Scholar 

  31. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–49. doi:10.2147/IJN.S596.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev. 2014;71:2–14. doi:10.1016/j.addr.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  33. Polak P, Shefi O. Nanometric agents in the service of neuroscience: manipulation of neuronal growth and activity using nanoparticles. Nanomedicine. 2015;11(6):1467–79. doi:10.1016/j.nano.2015.03.005.

    Article  CAS  PubMed  Google Scholar 

  34. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913. doi:10.1016/j.progpolymsci.2011.01.001.

    Article  CAS  Google Scholar 

  35. Sellers DL, Kim TH, Mount CW, Pun SH, Horner PJ. Poly(lactic-co-glycolic) acid microspheres encapsulated in Pluronic F-127 prolong hirudin delivery and improve functional recovery from a demyelination lesion. Biomaterials. 2014;35(31):8895–902. doi:10.1016/j.biomaterials.2014.06.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doggui S, Sahni JK, Arseneault M, Dao L, Ramassamy C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis. 2012;30(2):377–92. doi:10.3233/JAD-2012-112141.

    CAS  PubMed  Google Scholar 

  37. Ewe A, Höbel S, Heine C, et al. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Deliv Transl Res. 2016. doi:10.1007/s13346-016-0306-y.

    Google Scholar 

  38. Liu Z, Gao X, Kang T, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem. 2013;24(6):997–1007. doi:10.1021/bc400055h.

    Article  CAS  PubMed  Google Scholar 

  39. Gao H, Qian J, Cao S, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012;33(20):5115–23. doi:10.1016/j.biomaterials.2012.03.058.

    Article  CAS  PubMed  Google Scholar 

  40. Xin H, Chen L, Gu J, et al. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: in vitro and in vivo evaluation. Int J Pharm. 2010;402(1–2):238–47. doi:10.1016/j.ijpharm.2010.10.005.

    Article  CAS  PubMed  Google Scholar 

  41. Cho Y, Shi R, Borgens RB. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J Biol Eng. 2010;4(1):2. doi:10.1186/1754-1611-4-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen B, Bohnert D, Borgens RB, Cho Y. Pushing the science forward: chitosan nanoparticles and functional repair of CNS tissue after spinal cord injury. J Biol Eng. 2013;7(1):15. doi:10.1186/1754-1611-7-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim ID, Sawicki E, Lee HK, et al. Robust neuroprotective effects of intranasally delivered iNOS siRNA encapsulated in gelatin nanoparticles in the postischemic brain. Nanomedicine. 2016;12(5):1219–29. doi:10.1016/j.nano.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao YZ, Jin RR, Yang W, et al. Using gelatin nanoparticle mediated intranasal delivery of neuropeptide substance P to enhance neuro-recovery in hemiparkinsonian rats. PLoS One. 2016;11(2):1–18. doi:10.1371/journal.pone.0148848.

    Google Scholar 

  45. Santos T, Boto C, Saraiva CM, Bernardino L, Ferreira L. Nanomedicine approaches to modulate neural stem cells in brain repair. Trends Biotechnol. 2016;34(6):437–9. doi:10.1016/j.tibtech.2016.02.003.

    Article  CAS  PubMed  Google Scholar 

  46. Siddique YH, Khan W, Fatima A, et al. Effect of bromocriptine alginate nanocomposite (BANC) on a transgenic Drosophila model of Parkinson’s disease. Dis Model Mech. 2016;9(1):63–8. doi:10.1242/dmm.022145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fenn SL, Miao T, Scherrer RM, Oldinski RA. Dual-cross-linked methacrylated alginate sub-microspheres for intracellular chemotherapeutic delivery. ACS Appl Mater Interfaces. 2016;8(28):17775–83. doi:10.1021/acsami.6b03245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Int J Nanomedicine. 2014;9(1):575–88. doi:10.2147/IJN.S54750.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Saucier-Sawyer JK, Deng Y, Seo Y-E, et al. Systemic delivery of blood–brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. J Drug Target. 2015;23(7-8):736–49. doi:10.3109/1061186X.2015.1065833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu S-P, Wang Z-G, Zhao Y-Z, et al. Gelatin nanostructured lipid carriers incorporating nerve growth factor inhibit endoplasmic reticulum stress-induced apoptosis and improve recovery in spinal cord injury. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9372-2.

    Google Scholar 

  51. Cho Y, Shi R, Borgens RB. Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury. J Exp Biol. 2010;213(9):1513–20. doi:10.1242/jeb.035162.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou S, Yang Y, Gu X, Ding F. Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett. 2008;444(3):270–4. doi:10.1016/j.neulet.2008.08.040.

    Article  CAS  PubMed  Google Scholar 

  53. Liu H-T, Li W-M, Xu G, et al. Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacol Res. 2009;59:167–75. doi:10.1016/j.phrs.2008.12.001.

    Article  CAS  PubMed  Google Scholar 

  54. Sadigh-Eteghad S, Talebi M, Farhoudi M, Mahmoudi J, Reyhani B. Effects of Levodopa loaded chitosan nanoparticles on cell viability and caspase-3 expression in PC12 neural like cells. Neurosciences (Riyadh). 2013;18(3):281–3.

    Google Scholar 

  55. Wu W, Lee SY, Wu X, et al. Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials. 2014;35(7):2355–64. doi:10.1016/j.biomaterials.2013.11.074.

    Article  CAS  PubMed  Google Scholar 

  56. Khanbabaie R, Jahanshahi M. Revolutionary impact of nanodrug delivery on neuroscience. Curr Neuropharmacol. 2012;10(4):370–92. doi:10.2174/157015912804143513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ojea-Jimenez I, Comenge J, Garcia-Fernandez L, Megson ZA, Casals E, Puntes VF. Engineered inorganic nanoparticles for drug delivery applications. Curr Drug Metab. 2013;14:518–30. doi:10.2174/13892002113149990008.

    Article  CAS  PubMed  Google Scholar 

  58. Papastefanaki F, Jakovcevski I, Poulia N, et al. Intraspinal delivery of polyethylene glycol coated gold nanoparticles promotes functional recovery after spinal cord injury. Mol Ther. 2015;23(6):993–1002. doi:10.1038/mt.2015.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen H, Wang Y, Zhang J, et al. NAD+-carrying mesoporous silica nanoparticles can prevent oxidative stress-induced energy failures of both rodent astrocytes and PC12 cells. PLoS One. 2013;8(9):1–10. doi:10.1371/journal.pone.0074100.

    CAS  Google Scholar 

  60. Peng H, Dong R, Wang S, et al. A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: fabrication, characterization and properties for controlled release of salidroside. Int J Pharm. 2013;446(1-2):153–9. doi:10.1016/j.ijpharm.2013.01.071.

    Article  CAS  PubMed  Google Scholar 

  61. Kim MS, El-Fiqi A, Kim J-W, et al. Nanotherapeutics of PTEN inhibitor with mesoporous silica nanocarrier effective for axonal outgrowth of adult neurons. ACS Appl Mater Interfaces. 2016;8(29):18741–53. doi:10.1021/acsami.6b06889.

    Article  CAS  PubMed  Google Scholar 

  62. Dowding JM, Song W, Bossy K, et al. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014;21(10):1622–32. doi:10.1038/cdd.2014.72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim CK, Kim T, Choi IY, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chemie Int Ed. 2012;51(44):11039–43. doi:10.1002/anie.201203780.

    Article  CAS  Google Scholar 

  64. Heckman KL, Decoteau W, Estevez A, et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 2013;7(12):10582–96. doi:10.1021/nn403743b.

    Article  CAS  PubMed  Google Scholar 

  65. Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun. 2006;342(1):86–91. doi:10.1016/j.bbrc.2006.01.129.

    Article  CAS  PubMed  Google Scholar 

  66. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12(5):698–714.

    Article  CAS  PubMed  Google Scholar 

  67. Chen X, Selloni A. Introduction: titanium dioxide (TiO2) nanomaterials. Chem Rev. 2014;114(19):9281–2. doi:10.1021/cr500422r.

    Article  CAS  PubMed  Google Scholar 

  68. Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Van Ravenzwaay B. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol. 2008;82(3):151–7. doi:10.1007/s00204-007-0253-y.

    Article  CAS  PubMed  Google Scholar 

  69. Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomedicine. 2011;6:2321–6. doi:10.2147/IJN.S25460.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li Q, Wang X, Lu X, et al. The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials. 2009;30(27):4708–15. doi:10.1016/j.biomaterials.2009.05.015.

    Article  CAS  PubMed  Google Scholar 

  71. Kim C, Kim S, Oh WK, Choi M, Jang J. Efficient intracellular delivery of camptothecin by silica/titania hollow nanoparticles. Chemistry. 2012;18(16):4902–8. doi:10.1002/chem.201200043.

    Article  CAS  PubMed  Google Scholar 

  72. Devanand Venkatasubbu G, Ramasamy S, Ramakrishnan V, Kumar J. Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv Powder Technol. 2013;24(6):947–54. doi:10.1016/j.apt.2013.01.008.

    Article  CAS  Google Scholar 

  73. Zhang P, Li A, Gong J. Hollow spherical titanium dioxide nanoparticles for energy and environmental applications. Particuology. 2015;22:13–23. doi:10.1016/j.partic.2015.03.001.

    Article  CAS  Google Scholar 

  74. Wang ZL. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv Mater. 2003;15(5):432–6. doi:10.1002/adma.200390100.

    Article  Google Scholar 

  75. Hill C, Jain A, Takemoto H, et al. Nanomedicine for treating spinal cord injury. Proc SPIE Int Soc Opt Eng. 2015;73(4):389–400. doi:10.1530/ERC-14-0411.Persistent.

    Google Scholar 

  76. Schaub NJ, Johnson CD, Cooper B, Gilbert RJ. Electrospun fibers for spinal cord injury research and regeneration. J Neurotrauma. 2015;33:1405–15. doi:10.1089/neu.2015.4165.

    Article  Google Scholar 

  77. Kubinová S, Syková E. Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen Med. 2012;7(2):207–24. doi:10.2217/rme.11.121.

    Article  PubMed  CAS  Google Scholar 

  78. In KS, Won HS, Sang YL, et al. Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J Biomed Mater Res A. 2009;90(2):595–602. doi:10.1002/jbm.a.32109.

    Google Scholar 

  79. Jacobs V, Patanaik A, Anandjiwala RD, Maaza M. Optimization of electrospinning parameters for chitosan nanofibres. Curr Nanosci. 2011;7(3):396–401. doi:10.2174/157341311795542570.

    Article  CAS  Google Scholar 

  80. Mokarizadeh A, Mehrshad A, Mohammadi R. Local polyethylene glycol in combination with chitosan based hybrid nanofiber conduit accelerates transected peripheral nerve regeneration. J Invest Surg. 2016;29(3):167–74. doi:10.3109/08941939.2015.1098758.

    Article  PubMed  Google Scholar 

  81. Liu T, Xu J, Chan BP, Chew SY. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A. 2012;100 A(1):236–42. doi:10.1002/jbm.a.33271.

    Article  CAS  Google Scholar 

  82. Liu T, Teng WK, Chan BP, Chew SY. Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J Biomed Mater Res A. 2010;95(1):276–82. doi:10.1002/jbm.a.32831.

    Article  PubMed  CAS  Google Scholar 

  83. Simpson DG, Jha BS, Ayres CE, et al. Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. J Nanomater. 2011. doi:10.1155/2011/348268.

    Google Scholar 

  84. Zhong S, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LYL. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A. 2006;79(3):456–63. doi:10.1002/jbm.a.30870.

    Article  PubMed  CAS  Google Scholar 

  85. Qu J, Wang D, Wang H, et al. Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J Biomed Mater Res A. 2013;101 A(9):2667–78. doi:10.1002/jbm.a.34551.

    Article  Google Scholar 

  86. Xie J, Willerth SM, Li X, Macewan MR, Rader A, Shelly E. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 2010;30(3):354–62. doi:10.1016/j.biomaterials.2008.09.046.The.

    Article  CAS  Google Scholar 

  87. Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials. 2008;29(26):3574–82. doi:10.1016/j.biomaterials.2008.05.014.

    Article  CAS  PubMed  Google Scholar 

  88. Ebrahimi-Barough S, Norouzi Javidan A, Saberi H, et al. Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Mol Neurobiol. 2014;52(3):1704–13. doi:10.1007/s12035-014-8931-2.

    Article  PubMed  CAS  Google Scholar 

  89. Hoveizi E, Tavakol S, Ebrahimi-Barough S. Neuroprotective effect of transplanted neural precursors embedded on PLA/CS scaffold in an animal model of multiple sclerosis. Mol Neurobiol. 2015;51(3):1334–42. doi:10.1007/s12035-014-8812-8.

    Article  CAS  PubMed  Google Scholar 

  90. Milbreta U, Nguyen LH, Diao H, et al. Three-dimensional nanofiber hybrid scaffold directs and enhances axonal regeneration after spinal cord injury. ACS Biomater Sci Eng. 2016;2(8):1319–29. doi:10.1021/acsbiomaterials.6b00248.

    Article  CAS  Google Scholar 

  91. Diao HJ, Low WC, Milbreta U, Lu QR, Chew SY. Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells. J Control Release. 2015;208:85–92. doi:10.1016/j.jconrel.2015.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li Z, Wang C. Effects of working parameters on electrospinning. In: Li Z, Wang C, editors. One-dimensional nanostructures; New York: Springer; 2013. p. 15–28. doi:10.1007/978-3-642-36427-3_2.

    Chapter  Google Scholar 

  93. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C. 2010;30(8):1204–10. doi:10.1016/j.msec.2010.06.018.

    Article  CAS  Google Scholar 

  94. Wang J, Ye R, Wei Y, et al. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J Biomed Mater Res A. 2012;100 A(3):632–45. doi:10.1002/jbm.a.33291.

    Article  CAS  Google Scholar 

  95. Lim SH, Liu XY, Song H, Yarema KJ, Mao HQ. The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials. 2010;31(34):9031–9. doi:10.1016/j.biomaterials.2010.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Greiner A, Wendorff JH, Yarin AL, Zussman E. Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol. 2006;71(4):387–93. doi:10.1007/s00253-006-0356-z.

    Article  CAS  PubMed  Google Scholar 

  97. Zhou Y. Lipid nanotubes: formation, templating nanostructures and drug nanocarriers. Crit Rev Solid State Mater Sci. 2008;33(3–4):183–96. doi:10.1080/10408430802408639.

    Article  CAS  Google Scholar 

  98. Brodin JD, Smith SJ, Carr JR, Tezcan FA. Designed, helical protein nanotubes with variable diameters from a single building block. J Am Chem Soc. 2015;137(33):10468–71. doi:10.1021/jacs.5b05755.

    Article  CAS  PubMed  Google Scholar 

  99. Qu X, Komatsu T. Molecular capture in protein nanotubes. ACS Nano. 2010;4(1):563–73. doi:10.1021/nn901474y.

    Article  CAS  PubMed  Google Scholar 

  100. Chapman R, Warr GG, Perrier S, Jolliffe KA. Water-soluble and pH-responsive polymeric nanotubes from cyclic peptide templates. Chemistry. 2013;19(6):1955–61. doi:10.1002/chem.201203602.

    Article  CAS  PubMed  Google Scholar 

  101. Kwon OS, Park SJ, Lee JS, et al. Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett. 2012;12(6):2797–802. doi:10.1021/nl204587t.

    Article  CAS  PubMed  Google Scholar 

  102. Yuwono VM, Hartgerink JD. Peptide amphiphile nanofibers template and catalyze silica nanotube formation. Langmuir. 2007;23(9):5033–8. doi:10.1021/la0629835.

    Article  CAS  PubMed  Google Scholar 

  103. Long Y-Z, Li M-M, Gu C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci. 2011;36(10):1415–42. doi:10.1016/j.progpolymsci.2011.04.001.

    Article  CAS  Google Scholar 

  104. Mostafalu P, Sonkusale S. A high-density nanowire electrode on paper for biomedical applications. RSC Adv. 2015;5(12):8680–7. doi:10.1039/C4RA12373E.

    Article  CAS  Google Scholar 

  105. Martinez V, Stauffer F, Adagunodo MO, Forro C, Vörös J, Larmagnac A. Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties. ACS Appl Mater Interfaces. 2015;7(24):13467–75. doi:10.1021/acsami.5b02508.

    Article  CAS  PubMed  Google Scholar 

  106. Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293(5533):1289–92. doi:10.1126/science.1062711.

    Article  CAS  PubMed  Google Scholar 

  107. Robinson JT, Jorgolli M, Shalek AK, Yoon M-HH, Gertner RS, Park H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat Nanotechnol. 2012;7(3):180–4. doi:10.1038/Nnano.2011.249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang GJ, Zhang G, Chua JH, et al. DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett. 2008;8(4):1066–70. doi:10.1021/nl072991l.

    Article  CAS  PubMed  Google Scholar 

  109. Bavykin DV, Milsom EV, Marken F, et al. A novel cation-binding TiO2 nanotube substrate for electro- and bioelectro-catalysis. Electrochem Commun. 2005;7(10):1050–8. doi:10.1016/j.elecom.2005.07.010.

    Article  CAS  Google Scholar 

  110. Abidian MR, Corey JM, Kipke DR, Martin DC. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment and neurite outgrowth of neural electrodes. Small. 2010;6(3):421–9. doi:10.1002/smll.200901868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Abidian MR, Kim DH, Martin DC. Conducting-polymer nanotubes for controlled drug release. Adv Mater. 2006;18(4):405–9. doi:10.1002/adma.200501726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1(2):180–92. doi:10.1002/smll.200400118.

    Article  CAS  PubMed  Google Scholar 

  113. Tian ZR, Sharma A, Nozari A, et al. Nanowired drug delivery to enhance neuroprotection in spinal cord injury. CNS Neurol Disord Drug Targets. 2012;11(1):86–95. doi:10.2174/187152712799960727.

    Article  CAS  PubMed  Google Scholar 

  114. Dong W, Zhang T, McDonald M, Padilla C, Epstein J, Tian ZR. Biocompatible nanofiber scaffolds on metal for controlled release and cell colonization. Nanomedicine. 2006;2(4):248–52. doi:10.1016/j.nano.2006.10.005.

    Article  CAS  PubMed  Google Scholar 

  115. Williams R. New effects of aging and lattice intercalation on surface properties of titanate nanobelts. Ph.D. Thesis, University of Arkansas, Fayetteville, USA; 2013.

    Google Scholar 

  116. Sharma HS, Ali SF, Tian ZR, et al. Chronic treatment with nanoparticles exacerbate hyperthermia induced blood-brain barrier breakdown, cognitive dysfunction and brain pathology in the rat. Neuroprotective effects of nanowired-antioxidant compound H-290/51. J Nanosci Nanotechnol. 2009;9(8):5073–90. doi:10.1166/jnn.2009.GR10.

    Article  CAS  PubMed  Google Scholar 

  117. Sharma HS, Ali SF, Dong W, et al. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann N Y Acad Sci. 2007;1122:197–218. doi:10.1196/annals.1403.014.

    Article  CAS  PubMed  Google Scholar 

  118. Sharma HS. Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm. 2011;118(1):155–76. doi:10.1007/s00702-010-0514-4.

    Article  CAS  PubMed  Google Scholar 

  119. Sharma HS, Sharma A. Nanowired drug delivery for neuroprotection in central nervous system injuries: modulation by environmental temperature, intoxication of nanoparticles, and comorbidity factors. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):184–203. doi:10.1002/wnan.172.

    Article  CAS  PubMed  Google Scholar 

  120. Sharma HS, Sharma A. New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine. Amino Acids. 2013;45(5):1055–71. doi:10.1007/s00726-013-1584-z.

    Article  CAS  PubMed  Google Scholar 

  121. Tyler Y, Xu XM, Cheng J-X. Nanomedicine for treating spinal cord injury. Nanoscale. 2015;6(2):356–72. doi:10.1007/s12671-013-0269-8.Moving.

    Google Scholar 

  122. Baldrighi M, Trusel M, Tonini R, Giordani S. Carbon nanomaterials interfacing with neurons: an in vivo perspective. Front Neurosci. 2016;10(June):1–27. doi:10.3389/fnins.2016.00250.

    Google Scholar 

  123. John AA, Subramanian AP, Vellayappan MV, Balaji A, Mohandas H, Jaganathan SK. Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. Int J Nanomedicine. 2015;10:4267–77. doi:10.2147/IJN.S83777.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Roman JA, Niedzielko TL, Haddon RC, Parpura V, Floyd CL. Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury. J Neurotrauma. 2011;28(11):2349–62.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Carbon nanotube–anandamide complex exhibits sustained protective effects in an in vitro model of stroke. Physiol Pharmacol. 2016;20:12–23.

    Google Scholar 

  126. Xue X, Wang LR, Sato Y, et al. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of alzheimers disease. Nano Lett. 2014;14(9):5110–7. doi:10.1021/nl501839q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moon SU, Kim J, Bokara KK, et al. Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine. 2012;7:2751–65. doi:10.2147/IJN.S30273.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Dong J, Ma Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 2015;00(00):1–19. doi:10.3109/17435390.2015.1009187.

    Google Scholar 

  129. Liu X, Zhang Y, Li J, et al. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid. Int J Nanomedicine. 2014;9(1):823–39. doi:10.2147/IJN.S56339.

    PubMed  PubMed Central  Google Scholar 

  130. Dal Bosco L, Weber GE, Parfitt GM, et al. Biopersistence of PEGylated carbon nanotubes promotes a delayed antioxidant response after infusion into the rat hippocampus. PLoS One. 2015;10(6):e0129156. doi:10.1371/journal.pone.0129156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chu KS, Schorzman AN, Finniss MC, et al. Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials. 2013;34(33):8424–9. doi:10.1016/j.biomaterials.2013.07.038.

    Article  CAS  PubMed  Google Scholar 

  132. Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24(9):1759–71. doi:10.1007/s11095-007-9379-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mohanraj VJ, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(June):561–73. doi:10.4314/tjpr.v5i1.14634.

    Google Scholar 

  134. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems—a review (Part 2). Trop J Pharm Res. 2013;12(2):265–73. doi:10.4314/tjpr.v12i2.19.

    Google Scholar 

  135. Mukherjee B, Dey NS, Maji R, Bhowmik P, Das PJ, Paul P. Current status and future scope for nanomaterials in drug delivery. Appl Nanotechnol Drug Deliv. 2014;2014:525–44.

    Google Scholar 

  136. Costantino L, Boraschi D. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today. 2012;17(7–8):367–78. doi:10.1016/j.drudis.2011.10.028.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Sharma M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ozkizilcik, A., Davidson, P., Turgut, H., Sharma, H.S., Sharma, A., Tian, Z.R. (2017). Nanocarriers as CNS Drug Delivery Systems for Enhanced Neuroprotection. In: Sharma, H., Muresanu, D., Sharma, A. (eds) Drug and Gene Delivery to the Central Nervous System for Neuroprotection. Springer, Cham. https://doi.org/10.1007/978-3-319-57696-1_2

Download citation

Publish with us

Policies and ethics