Skip to main content

Advertisement

Log in

Early microvascular reactions and blood–spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection

  • Basic Neurosciences, Genetics and Immunology - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a devastating disease that leads to permanent disability of victims for which no suitable therapeutic intervention has been achieved so far. Thus, exploration of novel therapeutic agents and nano-drug delivery to enhance neuroprotection after SCI is the need of the hour. Previous research on SCI is largely focused to improve neurological manifestations of the disease while ignoring spinal cord pathological changes. Recent studies from our laboratory have shown that pathological recovery of SCI appears to be well correlated with the improvement of sensory motor functions. Thus, efforts should be made to reduce or minimize spinal cord cell pathology to achieve functional and cellular recovery to enhance the quality of lives of the victims. While treating spinal cord disease, recovery of both neuronal and non-neuronal cells, e.g., endothelia and glial cells are also necessary to maintain a healthy spinal cord function after trauma. This review focuses effects of novel therapeutic strategies on the role of spinal cord microvascular reactions and endothelia cell functions, i.e., blood–spinal cord barrier (BSCB) in SCI and repair mechanisms. Thus, new therapeutic approach to minimize spinal cord pathology after trauma using antibodies to various neurotransmitters and/or drug delivery to the cord directly by topical application to maintain strong localized effects on the injured cells are discussed. In addition, the use of nanowired drugs to affect remote areas of the cord after their application on the injured spinal cord in thwarting the injury process rapidly and to enhance the neuroprotective effects of the parent compounds are also described in the light of current knowledge and our own investigations. It appears that local treatment with new therapeutic agents and nanowired drugs after SCI are needed to enhance neurorepair leading to improved spinal cord cellular functions and the sensory motor performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams F (1939) The genuine works of Hippocrates [translated from the Greek]. Williams & Wilkins, Baltimore, pp 231–242

    Google Scholar 

  • Albin MS, White RJ, Locke GE, Kretchmer HE (1966) Spinal cord hypothermia by localized perfusion cooling. Nature 210(5040):1059–1060

    Article  CAS  PubMed  Google Scholar 

  • Allen AR (1911) Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. Preliminary report. JAMA 57:878–880

    Google Scholar 

  • Balentine JD (1978) Pathology of experimental spinal cord trauma II. Ultrastructure of axons and myelin. Lab Invest 39:254–266

    CAS  PubMed  Google Scholar 

  • Balentine JD (1988) Spinal cord trauma: in search of the meaning of granular axoplasm and vesicular myelin. J Neuropathol Exp Neurol 47:77–92

    Article  CAS  PubMed  Google Scholar 

  • Beggs JL, Waggener JD (1975) Vasogenic edema in the injured spinal cord: a method of evaluating the extent of blood–brain barrier alteration to horseradish peroxidase. Exp Neurol 49(1 Pt 1):86–96

    Article  CAS  PubMed  Google Scholar 

  • Bikeles G (1895) Zur pathologischen Anatomie der Hirn- und Hirn- und Rückenmarkserschütterung. Neurol Centralbl 14:463–464

    Google Scholar 

  • Bingham WG, Goldman H, Friedman SJ, Murphy S, Yashon D, Hunt WE (1975) Blood flow in normal and injured monkey spinal cord. J Neurosurg 43(2):162–171

    Article  CAS  PubMed  Google Scholar 

  • Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4(2):197–250

    CAS  PubMed  Google Scholar 

  • Bracken MB (1993) Pharmacological treatment of acute spinal cord injury: current status and future projects. J Emerg Med 11(Suppl 1):43–48

    Google Scholar 

  • Bracken MB, Holford TR (1993) Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J Neurosurg 79:500–507

    Article  CAS  PubMed  Google Scholar 

  • Carroll DG (1970) History of treatment of spinal cord injuries. Md State Med J 19:109–112

    Google Scholar 

  • Chvatal SA, Kim YT, Bratt-Leal AM, Lee H, Bellamkonda RV (2008) Spatial distribution and acute anti-inflammatory effects of methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 29(12):1967–1975

    Article  CAS  PubMed  Google Scholar 

  • Collmann H, Wüllenweber R, Sprung C, Duisberg R (1978) Spinal cord blood flow after experimental trauma in the dog. II. Early changes of spinal cord blood flow in the surrounding area of a traumatic lesion. Adv Neurol 20:443–450

    CAS  PubMed  Google Scholar 

  • Crock HV, Yoshizawa H (1977) The blood supply of the vertebral column and spinal cord. Springer, New York

    Google Scholar 

  • Cserr HF, Ostrach LH (1975) Bulk flow of interstitial fluid after intracranial injection of Blue Dextran 2000. Exp Neurol 45:50–60

    Article  Google Scholar 

  • Curt A, Dietz V (1999) Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal Cord 37(3):157–165 (review)

    Article  CAS  PubMed  Google Scholar 

  • Demediuk P, Saunders RD, Anderson DK, Means ED, Horrocks LA (1985) Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc Natl Acad Sci USA 82(20):7071–7075

    Google Scholar 

  • Demediuk P, Saunders RD, Anderson DK, Means ED, Horrocks LA (1987) Early membrane lipid changes in laminectomized and traumatized cat spinal cord. Neurochem Pathol 7(1):79–89 (review)

    Article  CAS  PubMed  Google Scholar 

  • Denny-Brown D (1939) Selected writings of Sir Charles Sherrington. Hamish Hamilton, London, pp 120–154

    Google Scholar 

  • Dimitrijević MR (1988) Residual motor functions in spinal cord injury. Adv Neurol 47:138–155 (review)

    PubMed  Google Scholar 

  • Dohrmann GJ (1972) Experimental spinal cord trauma. A historical review. Arch Neurol 27(6):468–473

    CAS  PubMed  Google Scholar 

  • Dohrmann GJ, Wagner FC Jr, Wick KM, Bucy PC (1971) Fine structural alterations in transitory traumatic paraplegia. Proc Veterans Adm Spinal Cord Inj Conf 18:6–8

    Google Scholar 

  • Dohrmann GJ, Wick KM, Bucy PC (1973) Spinal cord blood flow patterns in experimental traumatic paraplegia. J Neurosurg 38(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Dommissie GF (1975) The arteries and veins of the human spinal cord from birth. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Ducker TB (1976) Experimental injury of the spinal cord. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 9. Elsevier, New York, pp 26–68

    Google Scholar 

  • Ducker TB, Brown RH (1989) Neurophysiology and standards of spinal cord monitoring. Elsevier, Amsterdam

    Google Scholar 

  • Ducker TB, Hamit HF (1969) Experimental treatments of acute spinal cord injury. J Neurosurg 30(6):693–697

    Article  CAS  PubMed  Google Scholar 

  • Ducker TB, Salcman M, Perot PL Jr, Ballantine D (1978) Experimental spinal cord trauma, I: correlation of blood flow, tissue oxygen and neurologic status in the dog. Surg Neurol 10(1):60–63

    Google Scholar 

  • Elsberg C (1931) The Edwin Smith surgical papyrus: the diagnosis and treatment of injuries to the skull and spine 5000 years ago. Ann Med History 271–279

  • Eltorai IM (2003) History of spinal cord medicine. In: Spinal cord medicine. Principles and practice, Lin Ed. Demos Medical Publishing, New York, pp 3–15

  • Fairholm DJ, Turnbull IM (1971) Microangiographic study of experimental spinal cord injuries. J Neurosurg 35:277–286

    Article  Google Scholar 

  • Freeman LW, Wright TW (1953) Experimental observations of concussion and contusion of the spinal cord. Ann Surg 137:433–443

    Article  CAS  PubMed  Google Scholar 

  • Fried LC, Goodkin R (1971) Microangiographic observations of the experimentally traumatized spinal cord. J Neurosurg 35(6):709–714

    Article  CAS  PubMed  Google Scholar 

  • Gledhill RF, Harrison BM, McDonald WI (1973) Demyelination and remyelination after acute spinal cord compression. Exp Neurol 38:472–487

    Article  CAS  PubMed  Google Scholar 

  • Goltz P (1874) Die Funktionen des Lendenmarkes des Hundes. Arch Ges Physiol 8:460

    Article  Google Scholar 

  • Gordh T, Chu H, Sharma HS (2006) Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat. Pain 124(1–2):211–221

    Google Scholar 

  • Gotch F, Horsley V (1891) On the mammalian nervous system, its functions, and their localization determined by an electrical method. Philos Trans B 182:267–526

    Article  Google Scholar 

  • Griffiths IR (1975) Vasogenic edema following acute and chronic spinal cord compression in the dog. J Neurosurg 42(2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Griffiths IR (1976) Spinal cord blood flow after acute experimental cord injury in dogs. J Neurol Sci 27(2):247–259

    Article  CAS  PubMed  Google Scholar 

  • Griffiths IR (1978) Spinal cord injuries: a pathological study of naturally occurring lesions in the dog and cat. J Comp Pathol 88(2):303–315

    Article  CAS  PubMed  Google Scholar 

  • Griffiths IR (1980) Trauma of the spinal cord. Vet Clin North Am Small Anim Pract 10(1):131–146

    CAS  PubMed  Google Scholar 

  • Griffiths IR, McCulloch MC (1983) Nerve fibres in spinal cord impact injuries. Part 1. Changes in the myelin sheath during the initial 5 weeks. J Neurol Sci 58(3):335–349

    Article  CAS  PubMed  Google Scholar 

  • Griffiths IR, Miller R (1974) Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. J Neurol Sci 22:291–304

    Article  CAS  PubMed  Google Scholar 

  • Griffiths IR, McCulloch M, Crawford RA (1978) Ultrastructural appearances of the spinal microvasculature between 12 hours and 5 days after impact injury. Acta Neuropathol (Berl) 43(3):205–211

    CAS  Google Scholar 

  • Guha A, Tator CH (1988) Acute cardiovascular effects of experimental spinal cord injury. J Trauma 28(4):481–490

    Article  CAS  PubMed  Google Scholar 

  • Guha A, Tator CH, Rochon J (1989) Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke 20(3):372–377

    CAS  PubMed  Google Scholar 

  • Haas LF (1991) Claudius Galen 131–201 AD. J Neurol Neurosurg Psychiatry 54(4):287

    Article  CAS  PubMed  Google Scholar 

  • Hartzog JI, Fischer RG, Snow C (1969) Spinal cord trauma: effects of hyperbaric oxygenation. Proc Ann Clin Spinal Cord Injury Conf 17:70–71

    Google Scholar 

  • Hsu CY, Hogan EL, Gadsen RH, Spicer KM, Shi MP, Cox RD (1985) Vascular permeability in experimental spinal cord injury. J Neurol Sci 70:275–282

    Article  CAS  PubMed  Google Scholar 

  • Ikata T, Iwasa K, Morimoto K, Tonai T, Taoka Y (1989) Clinical considerations and biochemical basis of prognosis of cervical spinal cord injury. Spine 14:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Kakulas BA (1984) Pathology of spinal injuries. Cent Nerv Syst Trauma 1:117–129

    CAS  PubMed  Google Scholar 

  • Kakulas BA, Taylor JR (1991) Pathology of injuries to the vertebral column and the spinal cord. In: Vinken PJ et al (eds) Handbook of clinical neurology, vol 61 (revised series 17). Spinal Cord Trauma (HL Frankel). Elsevier, Amsterdam, pp 21–51

  • Kao CC (1974) Comparison of healing process in transected spinal cords grated with autogenous brain tissue, sciatic nerve and nodose ganglion. Exp Neurol 44:424–439

    Article  CAS  PubMed  Google Scholar 

  • Kao CC, Chang LW (1977) The mechanism of spinal cord cavitation following spinal cord transection. Part I. A correlated histochemical study. J Neurosurg 46:179–209

    Google Scholar 

  • Kao CC, Chang LW, Bloodworth JMB Jr (1977) The mechanism of spinal cord cavitation following spinal cord transection. Part II. Electronmicroscopic observations. J Neurosurg 46:745–756

    Article  CAS  PubMed  Google Scholar 

  • Kaviraj KLB (1911) Sushutra Samhita, vol II:100 Calcutta, pp 284–285

  • Last RJ (1972) Anatomy regional and applied. Williams & Wilkins, Baltimore

    Google Scholar 

  • Lewin MG, Hansebout RR, Pappius MM (1974) Chemical characteristics of spinal cord edema in cats: effects of steroids on potassium depletion. J Neurosurg 40:65–75

    Article  CAS  PubMed  Google Scholar 

  • Lifshutz J, Colohan A (2004) A brief history of therapy for traumatic spinal cord injury. Neurosurg Focus 16(1):E5

    PubMed  Google Scholar 

  • Majno A (1975) The healing hand—man and wound in the Ancient World. Harvard University Press, Cambridge

    Google Scholar 

  • Nelson E, Gertz SD, Rennels ML, Ducker TB, Blaumanis OR (1977) Spinal cord injury. The role of vascular damage in the pathogenesis of central hemorrhagic necrosis. Arch Neurol 34(6):332–333

    CAS  PubMed  Google Scholar 

  • Nemecek S (1978) Morphological evidence of microcirculatory disturbances in experimental spinal cord trauma. Adv Neurol 20:395–405

    CAS  PubMed  Google Scholar 

  • Nemecek S, Petr R, Suba P, Rozsival V (1975) Attempt to influence pharmacologically spinal cord tissue changes after an experimental injury. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove 18(4–5):439–448

    CAS  PubMed  Google Scholar 

  • Noble LJ, Wrathall JR (1987) The blood–spinal cord barrier after injury: pattern of vascular events proximal and distal to a transection in the rat. Brain Res 424(1):177–188

    Article  CAS  PubMed  Google Scholar 

  • Noble LJ, Wrathall JR (1988) Blood–spinal cord barrier disruption proximal to a spinal cord transection in the rat: time course and pathways associated with protein leakage. Exp Neurol 99(3):567–578

    Article  CAS  PubMed  Google Scholar 

  • Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 22(17):7526–7535

    CAS  PubMed  Google Scholar 

  • Nolan RT (1969) Traumatic oedema of the spinal cord. Br Med J 1:710

    Article  CAS  PubMed  Google Scholar 

  • Ohry A, Ohry-Kossoy K (1989) Spinal cord injuries in the nineteenth century. A monograph published as a supplement in paraplegia 1–39

  • Olsson Y, Sharma HS, Pettersson CA (1990) Effects of p-chlorophenylalanine on microvascular permeability changes in spinal cord trauma. An experimental study in the rat using 131I-sodium and lanthanum tracers. Acta Neuropathol 79(6):595–603

    Google Scholar 

  • Olsson Y, Sharma HS, Pettersson Å, Cervós-Navarro J (1992) Endogenous Release of Neurochemicals may increase Vascular Permeability, induce Edema and Influence on Cell Changes in Trauma to the Spinal Cord. Prog Brain Res 91:197–203

    Article  CAS  PubMed  Google Scholar 

  • Olsson Y, Sharma HS, Nyberg F, Westman J (1995) The opioid receptor antagonist naloxone influences the pathophysiology of spinal cord injury. In: Nyberg F, Sharma HS, Wissenfeld-Halin Z (eds) Progress in brain research, vol 104. Elsevier, Amsterdam, pp 381–399

  • Osterholm JL, Mathews GJ (1972) Altered norepinephrine metabolism following experimental spinal cord injury. Part 2: protection against traumatic spinal cord hemorrhagic necrosis by norepinephrine synthesis blockade with alpha methyl tyrosine. J Neurosurg 36:395–401

    Article  CAS  PubMed  Google Scholar 

  • Osterholm JL, Alderman JL, Northrup BE (1987) Acute experimental spinal cord injury. In: Ghista DN, Frankel HL (eds) Spinal cord injury medical engineering. Charles C Thomas, Springfield, pp 5–46i

  • Popovich PG, Horner PJ, Mullin BB, Stokes BT (1996) A quantitative spatial analysis of the blood–spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp Neurol 142(2):258–275

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system, vol 2. In: May RM (ed). Oxford University Press, London, pp 397–769

  • Reulen HJ (1977) Vasogenic brain oedema. New aspects in its formation, resolution and therapy. Br J Anaesth 48(8):741–752

    Article  Google Scholar 

  • Reulen HJ, Graham R, Spatz M, Klatzo I (1977) Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 46(1):24–35

    Article  CAS  PubMed  Google Scholar 

  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29(5):1020–1030

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 29(10):2189–2195

    CAS  PubMed  Google Scholar 

  • Schmaus H (1890) Beitraege zur pathologischen Anatomie der Rueckenmarkserschuetterung. Virchows Archiv fur Pathologische Anatomie und Physiologie 122:470–495

    Article  Google Scholar 

  • Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Phys Rev 76:319–370

    CAS  Google Scholar 

  • Shapiro K, Shulman K, Marmarou A, Poll W (1977) Tissue pressure gradients in spinal cord injury. Surg Neurol 7(5):275–279

    CAS  PubMed  Google Scholar 

  • Sharma HS (2000a) Degeneration and regeneration in the CNS. New roles of heat shock proteins, nitric oxide and carbon monoxide, editorial. AminoAcids 19:335–337

    CAS  Google Scholar 

  • Sharma HS (2000b) A bradykinin BK2 receptor antagonist HOE-140 attenuates blood–spinal cord barrier permeability following a focal trauma to the rat spinal cord. An experimental study using Evans blue, [131]I-sodium and lanthanum tracers. Acta Neurochir Suppl 76:159–163

    CAS  PubMed  Google Scholar 

  • Sharma HS (2002) Neurobiology of the CNS injury and repair: new roles of amino acids, growth factors and neuropeptides, editorial. AminoAcids 23:217–219

    CAS  Google Scholar 

  • Sharma HS (2003) Neurotrophic factors attenuate microvascular permeability disturbances and axonal injury following trauma to the rat spinal cord. Acta Neurochir Suppl 86:383–388

    CAS  PubMed  Google Scholar 

  • Sharma HS (2004a) Pathophysiology of the blood–spinal cord barrier in traumatic injury. In: Sharma HS, Westman J (eds) The blood–spinal cord and brain barriers in health and disease. Elsevier Academic Press, San Diego, pp 437–518

    Chapter  Google Scholar 

  • Sharma HS (2004b) Blood–brain and spinal cord barriers in stress. In: Sharma HS, Westman J (eds) The blood–spinal cord and brain barriers in health and disease. Elsevier Academic Press, San Diego, pp 231–298

    Chapter  Google Scholar 

  • Sharma HS (2005a) Pathophysiology of blood–spinal cord barrier in traumatic injury and repair. Curr Pharm Des 11(11):1353–1389 (review)

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2005b) Neuroprotective effects of neurotrophins and melanocortins in spinal cord injury: an experimental study in the rat using pharmacological and morphological approaches. Ann N Y Acad Sci 1053:407–421

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2006) Post-traumatic application of brain-derived neurotrophic factor and glia-derived neurotrophic factor on the rat spinal cord enhances neuroprotection and improves motor function. Acta Neurochir Suppl 96:329–334

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2007a) Neurotrophic factors in combination: a possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms. Curr Pharm Des 13(18):1841–1874 (review)

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2007b) A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury. Ann N Y Acad Sci 1122:95–111

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2007c) Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection. Nanomedicine 2(6):753–758 Review

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2008) New perspectives for the treatment options in spinal cord injury. Expert Opin Pharmacother 9(16):2773–2800 (review)

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2009a) Blood–Central nervous system barriers: the gateway to neurodegeneration, neuroprotection and neuroregeneration. In: Lajtha A, Banik N, Ray SK (eds) Handbook of neurochemistry and molecular neurobiology: brain and spinal cord trauma. Springer, Berlin, pp 363–457

    Chapter  Google Scholar 

  • Sharma HS (2009) Birth of a new journal (editorial). J Nanoneuroscience 1:1–2

    Google Scholar 

  • Sharma HS (2009c) A special section on nanoneuroscience: nanoneurotoxicity and nanoneuroprotection. J Nanosci Nanotechnol 9(8):4992–4995

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2010a) A combination of tumor necrosis factor-alpha and neuronal nitric oxide synthase antibodies applied topically over the traumatized spinal cord enhances neuroprotection and functional recovery in the rat. Ann N Y Acad Sci 1199:175–185

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2010b) Selected combination of neurotrophins potentiate neuroprotection and functional recovery following spinal cord injury in the rat. Acta Neurochir Suppl 106:295–300

    Article  PubMed  Google Scholar 

  • Sharma HS, Alm P (2004) Role of nitric oxide on the blood–brain and the spinal cord barriers. In: Sharma HS, Westman J (eds) The blood–spinal cord and brain barriers in health and disease. Elsevier Academic Press, San Diego, pp 191–230

    Chapter  Google Scholar 

  • Sharma HS, Johanson CE (2007) Intracerebroventricularly administered neurotrophins attenuate blood cerebrospinal fluid barrier breakdown and brain pathology following whole-body hyperthermia: an experimental study in the rat using biochemical and morphological approaches. Ann N Y Acad Sci 1122:112–129

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Olsson Y (1990) Edema formation and cellular alteration in spinal cord injury in the rat and their modification with p-chlorophenylalanine. Acta Neuropathol (Berl) 79:604–610

    Article  CAS  Google Scholar 

  • Sharma HS, Sharma A (2007) Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273 (review)

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Sharma A (2008) Antibodies as promising novel neuroprotective agents in the central nervous system injuries. Central nervous system agents in medicinal chemistry, vol 8, no. 3, pp. 143–169(27)

  • Sharma HS, Sharma A (2010) Breakdown of the blood–brain barrier in stress alters cognitive dysfunction and induces brain pathology. New perspective for neuroprotective strategies. In: Ritsner M (ed) Brain protection in schizophrenia, mood and cognitive disorders. Springer, Berlin, pp 243–304

    Chapter  Google Scholar 

  • Sharma HS, Westman J (2004) The blood–spinal cord and brain barriers in health and disease. Academic Press, San Diego, pp 1–617 (release date: Nov. 9, 2003)

    Google Scholar 

  • Sharma HS, Winkler T (2002) Assessment of spinal cord pathology following trauma using early changes in the spinal cord evoked potentials: a pharmacological and morphological study in the rat. Muscle Nerve 11(Suppl):S83–S91

    Google Scholar 

  • Sharma HS, Olsson Y, Dey PK (1990) Early accumulation of serotonin in rat spinal cord subjected to traumatic injury. Relation to edema and blood flow changes. Neuroscience 36:725–730

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Winkler T, Stålberg E, Olsson Y, Dey PK (1991) Evaluation of traumatic spinal cord edema using evoked potentials recorded from the spinal epidural space. An experimental study in the rat. J Neurol Sci 102:150–162

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Nyberg F, Olsson Y (1992) Dynorphin A content in the rat brain and spinal cord after a localized trauma to the spinal cord and its modification with p-chlorophenylalanine. An experimental study using radioimmunoassay technique. Neurosci Res 14(3):195–203

    Google Scholar 

  • Sharma HS, Olsson Y, Cervós-Navarro J (1993a) Early perifocal cell changes and edema in traumatic injury of the spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis. Acta Neuropathologica (Berlin) 85:145–153

    Article  CAS  Google Scholar 

  • Sharma HS, Olsson Y, Nyberg F, Dey PK (1993b) Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury. An experimental study in the rat. Neuroscience 57:443–449

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Olsson Y, Cervós-Navarro J (1993c) p-Chlorophenylalanine, a serotonin synthesis inhibitor, reduces the response of glial fibrillary acidic protein induced by trauma to the spinal cord. An immunohistochemical investigation in the rat. Acta Neuropathol 86(5):422–427

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Nyberg F, Thörnwall M, Olsson Y (1993d) Met-enkephalin-Arg6-Phe7 in spinal cord and brain following traumatic injury to the spinal cord: influence of p-chlorophenylalanine. An experimental study in the rat using radioimmunoassay technique. Neuropharmacology 32(7):711–717

    Google Scholar 

  • Sharma HS, Olsson Y, Pearsson S, Nyberg F (1995a) Trauma induced opening of the blood–spinal cord barrier is reduced by indomethacin, an inhibitor of prostaglandin synthesis. Experimental observations in the rat using 131I-sodium, Evans blue and lanthanum as tracers. Restor Neurol Neurosci 7:207–215

    Google Scholar 

  • Sharma HS, Olsson Y, Nyberg F (1995a) Influence of dynorphin-A antibodies on the formation of edema and cell changes in spinal cord trauma. In: Nyberg F, Sharma HS (eds) Progress in brain research, vol 104, Z Wissenfeld-Halin. Elsevier, Amsterdam, pp 401–416

  • Sharma HS, Westman J, Olsson Y, Alm P (1996) Involvement of nitric oxide in acute spinal cord injury: an immunohistochemical study using light and electron microscopy in the rat. Neurosci Res 24:373–384

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Westman J, Nyberg F (1997a) Topical application of 5-HT antibodies reduces edema and cell changes following trauma to the rat spinal cord. Acta Neurochir (Wien) Suppl 70:155–158

    CAS  Google Scholar 

  • Sharma HS, Nyberg F, Gordh T, Alm P, Westman J (1997b) Topical application of insulin like growth factor-1 reduces edema and upregulation of neuronal nitric oxide synthase following trauma to the rat spinal cord. Acta Neurochir (Wien), Suppl 70:130–133

    CAS  Google Scholar 

  • Sharma HS, Nyberg F, Gordh T, Alm P, Westman J (1998a) Neurotrophic factors attenuate neuronal nitric oxide synthase upregulation, microvascular permeability disturbances, edema formation and cell injury in the spinal cord following trauma. In: Stålberg E, Sharma HS, Olsson Y (eds) Spinal cord monitoring. Basic principles. Regeneration, pathophysiology and clinical aspects. Springer, Wien, pp 181–210

    Google Scholar 

  • Sharma HS, Nyberg F, Westman J, Alm P, Gordh T, Lindholm D (1998b) Brain derived neurotrophic factor and insulin like growth factor-1 attenuate upregulation of nitric oxide synthase and cell injury following trauma to the spinal cord. An immunohistochemical study in the rat. Amino Acids 14(1–3):121–129

    Article  PubMed  Google Scholar 

  • Sharma HS, Westman J, Nyberg F (1998c) Pathophysiology of brain edema and cell changes following hyperthermic brain injury. In: Sharma HS, Westman J (eds) Brain functions in hot environment, progress in brain research, vol 115. Elsevier, Amsterdam, pp 351–412

  • Sharma HS, Alm P, Westman J (1998d) Nitric oxide and carbon monoxide in the pathophysiology of brain functions in heat stress. In: Sharma HS, Westman J (eds) Brain functions in hot environment. Prog Brain Res 115:297–333

  • Sharma HS, Nyberg F, Gordh T, Alm P, Westman J (2000a) Neurotrophic factors influence upregulation of constitutive isoform of heme oxygenase and cellular stress response in the spinal cord following trauma. An experimental study using immunohistochemistry in the rat. Amino Acids 19(1):351–361

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Westman J, Gordh T, Alm P (2000b) Topical application of brain derived neurotrophic factor influences upregulation of constitutive isoform of heme oxygenase in the spinal cord following trauma an experimental study using immunohistochemistry in the rat. Acta Neurochir Suppl 76:365–369

    CAS  PubMed  Google Scholar 

  • Sharma HS, Sjöquist P-O, Westman J (2001) Pathophysiology of the blood-spinal cord barrier in spinal cord injury. Influence of a new antioxidant compound H-290/51. In: Kobiler D, Lustig S, Shapra S (eds) Blood-brain barrier. Drug delivery and brain pathology. Kluwer Academic/Plenum Publishers, New York, pp 401–416

  • Sharma HS, Winkler T, Stålberg E, Gordh T, Alm P, Westman J (2003a) Topical application of TNF-alpha antiserum attenuates spinal cord trauma induced edema formation, microvascular permeability disturbances and cell injury in the rat. Acta Neurochir Suppl 86:407–413

    CAS  PubMed  Google Scholar 

  • Sharma HS, Lundstedt T, Flärdh M, Westman J, Post C, Skottner A (2003b) Low molecular weight compounds with affinity to melanocortin receptors exert neuroprotection in spinal cord injury—an experimental study in the rat. Acta Neurochir Suppl 86:399–405

    CAS  PubMed  Google Scholar 

  • Sharma HS, Badgaiyan RD, Alm P, Mohanty S, Wiklund L (2005) Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injury-induced pathophysiology and motor functions: an experimental study in the rat. Ann N Y Acad Sci 1053:422–434

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Vannemreddy P, Patnaik R, Patnaik S, Mohanty S (2006a) Histamine receptors influence blood–spinal cord barrier permeability, edema formation, and spinal cord blood flow following trauma to the rat spinal cord. Acta Neurochir Suppl 96:316–321

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Nyberg F, Gordh T, Alm P (2006b) Topical application of dynorphin A (1–17) antibodies attenuates neuronal nitric oxide synthase up-regulation, edema formation, and cell injury following focal trauma to the rat spinal cord. Acta Neurochir Suppl 96:309–315

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Gordh T, Wiklund L, Mohanty S, Sjöquist PO (2006c) Spinal cord injury induced heat shock protein expression is reduced by an antioxidant compound H-290/51. An experimental study using light and electron microscopy in the rat. J Neural Transm 113(4):521–536

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Skottner A, Lundstedt T, Flärdh M, Wiklund L (2006d) Neuroprotective effects of melanocortins in experimental spinal cord injury. An experimental study in the rat using topical application of compounds with varying affinity to melanocortin receptors. J Neural Transm 113(4):463–476

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Lundstedt T, Flärdh M, Skottner A, Wiklund L (2007a) Neuroprotective effects of melanocortins in CNS injury. Curr Pharm Des 13(19):1929–1941 (review)

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Ali SF, Dong W, Tian ZR, Patnaik R, Patnaik S, Sharma A, Boman A, Lek P, Seifert E, Lundstedt T (2007b) Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann N Y Acad Sci 1122:197–218

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Muresanu DF, Sharma A, Patnaik R, Lafuente JV (2009a) Chapter 9 - Nanoparticles influence pathophysiology of spinal cord injury and repair. Prog Brain Res 180:154–180 (Epub 2009 Dec 8. Review)

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Ali SF, Tian ZR, Hussain SM, Schlager JJ, Sjöquist PO, Sharma A, Muresanu DF (2009b) Chronic treatment with nanoparticles exacerbate hyperthermia induced blood–brain barrier breakdown, cognitive dysfunction and brain pathology in the rat. Neuroprotective effects of nanowired-antioxidant compound H-290/51. J Nanosci Nanotechnol 9(8):5073–5090

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Ali S, Tian ZR, Patnaik R, Patnaik S, Lek P, Sharma A, Lundstedt T (2009c) Nano-drug delivery and neuroprotection in spinal cord injury. J Nanosci Nanotechnol 9(8):5014–5037

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Patnaik R, Sharma A, Sjöquist PO, Lafuente JV (2009d) Silicon dioxide nanoparticles (SiO2, 40–50 nm) exacerbate pathophysiology of traumatic spinal cord injury and deteriorate functional outcome in the rat. An experimental study using pharmacological and morphological approaches. J Nanosci Nanotechnol 9(8):4970–4980

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Zimmermann-Meinzingen S, Johanson CE (2010a) Cerebrolysin reduces blood–cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann N Y Acad Sci 1199:125–137

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Ali SF, Tian ZR, Patnaik R, Patnaik S, Sharma A, Boman A, Lek P, Seifert E, Lundstedt T (2010b) Nanowired-drug delivery enhances neuroprotective efficacy of compounds and reduces spinal cord edema formation and improves functional outcome following spinal cord injury in the rat. Acta Neurochir Suppl 106:343–350

    Article  PubMed  Google Scholar 

  • Stålberg E, Sharma HS, Olsson Y (1998) Spinal cord monitoring. basic principles, regeneration, pathophysiology and clinical aspects. Springer, Wien, pp 1–527

    Google Scholar 

  • Suh TH, Alexander L (1939) Vascular system of the human spinal cord. Arch Neurol Psychol 41:659–677

    Google Scholar 

  • Sypert GW (1990) Stabilization and management of cervical injuries. In: Pitt LH, Wagner FC (eds) Craniospinal trauma. Thieme, New York, pp 363–370

    Google Scholar 

  • Tarlov IM (1957) Spinal cord compression: mechanism of paralysis and treatment, Charles C. Thomas, Springfield

  • Tator CH (1972) Acute spinal cord injury: a review of recent studies of treatment and pathophysiology. Can Med Assoc J 107(2):143–145

    CAS  PubMed  Google Scholar 

  • Tator CH (1998) Biology of neurological recovery and functional restoration after spinal cord injury. Neurosurgery 42(4):696–707 (discussion 707–708. Review)

    Article  CAS  PubMed  Google Scholar 

  • Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26

    Article  CAS  PubMed  Google Scholar 

  • Tomasula JJ, De Crescito V, Goodkin R et al (1969) A survey of the management of experimental spinal cord trauma. Proceedings of 17th VA spinal cord injury conference, pp 12–16

  • Turnbull IM (1971) Microvasculature of the human spinal cord. J Neurosurg 35(2):141–147

    Article  CAS  PubMed  Google Scholar 

  • Wagner FC Jr, Stewart WB (1981) Effect of trauma dose on spinal cord edema. J Neurosurg 54:802–806

    Article  PubMed  Google Scholar 

  • Wallace MC, Tator CH, Frazee P (1986) Relationship between posttraumatic ischemia and hemorrhage in the injured rat spinal cord as shown by colloidal carbon angiography. Neurosurgery 18(4):433–439

    Article  CAS  PubMed  Google Scholar 

  • Willis WD Jr (1984) Evoked spinal cord potentials in the cat and monkey: use in the analysis of spinal cord function. In: Homma S, Tamaki T (eds) Fundamentals and clinical applications of spinal cord monitoring. Saikon Publishing Co, Tokyo, pp 3–20

  • Windle WF (1962) Regeneration of the central nervous system. In: French JD (ed) Basic research in paraplegia. Charles C. Thomas, Springfield, pp 3–8

  • Windle WF (1980a) The spinal cord and its reaction to traumatic injury. Anatomy–physiology–pharmacology–therapeutics, modern pharmacology-toxicology, vol 18. Marcel Dekker, New York

    Google Scholar 

  • Windle WF (1980b) Inhibition of regeneration of severed axons in the spinal cord. Exp Neurol 69(1):209–211

    Article  CAS  PubMed  Google Scholar 

  • Windle WF (1980c) The spinal cord and its reaction to traumatic injury. Anatomy–physiology–pharmacology–therapeutics, modern pharmacology–toxicology, vol 18. Marcel Dekker, New York

    Google Scholar 

  • Windle WF (1981) Recollections of research in spinal cord regeneration. Exp Neurol 71(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y (1993) Indomethacin, an inhibitor of prostaglandin synthesis attenuates alteration in spinal cord evoked potentials and edema formation after trauma to the spinal cord. An experimental study in the rat. Neuroscience 52:1057–1067

    Article  CAS  PubMed  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y, Nyberg F (1994) Opioid receptors influence spinal cord electrical activity and edema formation following spinal cord injury. Experimental observations using naloxone in the rat. Neurosci Res 21:91–101

    Article  CAS  PubMed  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y, Nyberg F (1995) Role of histamine in spinal cord evoked potentials and edema following spinal cord injury Experimental observations in the rat. Inflamm Res 44(Suppl 1):S44–S45

    Article  CAS  PubMed  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Westman E (1997) Benzodiazepine receptors influence spinal cord evoked potentials and edema following trauma to the rat spinal cord. Acta Neurochir (Wien) Suppl 70:216–219

    CAS  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Westman J (1998) Spinal cord bioelectrical activity, edema and cell injury following a focal trauma to the spinal cord. An experimental study using pharmacological and morphological approach. In: Stålberg E, Sharma HS, Olsson Y (eds) Spinal Cord monitoring. basic principles, regeneration, pathophysiology and clinical aspects. Springer, Wien, pp 283–363

  • Winkler T, Sharma HS, Stålberg E, Badgaiyan RD, Westman J, Nyberg F (2000) Growth hormone attenuates alterations in spinal cord evoked potentials and cell injury following trauma to the rat spinal cord. An experimental study using topical application of rat growth hormone. Amino Acids 19(1):363–371

    Article  CAS  PubMed  Google Scholar 

  • Winkler T, Sharma HS, Gordh T, Badgaiyan RD, Stålberg E, Westman J (2002) Topical application of dynorphin A (1–17) antiserum attenuates trauma induced alterations in spinal cord evoked potentials, microvascular permeability disturbances, edema formation and cell injury: an experimental study in the rat using electrophysiological and morphological approaches. Amino Acids 23(1–3):273–281

    Article  CAS  PubMed  Google Scholar 

  • Yashon D, Bingham WG Jr, Faddoul EM, Hunt WE (1973) Edema of the spinal cord following experimental impact trauma. J Neurosurg 38(6):693–697

    Google Scholar 

  • Young VW, Power G, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation is partially supported by the Air Force Office of Scientific Research (London), Air Force Material Command, USAF, under Grant Number FA8655-05-1-3065. The US Government is authorized to reproduce and distribute reprints for Government purpose notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the US Government. Financial research on SCI is supported by grants from Swedish Medical research Council nr 2710, Göran Gustafsson Foundation, Stockholm, Sweden, Astra-Zeneca, Mölndal, Sweden, Acure Pharma, Uppsala, Sweden; Alexander von Humboldt Foundation, Bonn, Germany, IPSEN Beufour, Paris, France; Department of Science and Technology, Govt. of India, University Grants Commission, New Delhi, India and Indian Medical Research Council, New Delhi, India. I am indebted to Professor Erik V Stålberg, Dr Tomas Winkler, Department of Clinical Neurophysiology, Uppsala University Hospital; Professor R D Badgaiyan, Massachusetts General Hospital, Harvard University, Boston, MA, USA; Dr Syed F Ali, Division of Neurotoxicology, National Centre for Toxicological research, Food and Drug Administration, US/FDA, Jefferson, USA and Professor Byron Kakulas, University of Western Perth, Queen Elizabeth Hospital, Perth, Western Australia for providing me important advice and suggestion throughout this work and critically reading the manuscript. Secretarial assistance of Aruna Sharma and Angela Ludwig is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Shanker Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, H.S. Early microvascular reactions and blood–spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm 118, 155–176 (2011). https://doi.org/10.1007/s00702-010-0514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0514-4

Keywords

Navigation