Skip to main content

Advertisement

Log in

Blood–Brain Barrier Transport of Therapeutics via Receptor-Mediation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Drug delivery to the brain is hindered by the presence of the blood–brain barrier (BBB). Although the BBB restricts the passage of many substances, it is actually selectively permeable to nutrients necessary for healthy brain function. To accomplish the task of nutrient transport, the brain endothelium is endowed with a diverse collection of molecular transport systems. One such class of transport system, known as a receptor-mediated transcytosis (RMT), employs the vesicular trafficking machinery of the endothelium to transport substrates between blood and brain. If appropriately targeted, RMT systems can also be used to shuttle a wide range of therapeutics into the brain in a noninvasive manner. Over the last decade, there have been significant developments in the arena of RMT-based brain drug transport, and this review will focus on those approaches that have been validated in an in vivo setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADR:

adriamycin

AEM:

analytical electron microscopy

AUC:

area under the curve

Av:

avidin

AZT:

azidothymidine

BBB:

blood–brain barrier

BDNF:

brain-derived neurotrophic factor

bFGF:

basic fibroblast growth factor

DSPE:

distearoylphosphatidylethanolamine

EGFR:

human epidermal growth factor receptor

FGF-2:

fibroblast growth factor-2

GFAP:

glial fibrillary acidic protein

GUS:

β-glucuronidase

HB-EGF:

heparin binding epidermal growth factor-like growth factor

HCEC:

human cerebromicrovascular endothelial cells

HD:

Huntington’s disease

HIR:

human insulin receptor

HRP:

horseradish peroxidase

IGF-II:

insulin-like growth factor II

LDL:

low density lipoprotein

LRP1/2:

low density lipoprotein receptor-related protein 1/2

M6P:

mannose 6-phosphate

MAb:

monoclonal antibody

MCAO:

middle cerebral artery occlusion

NGF:

nerve growth factor

NHS:

N-hydroxysuccinimide

ODN:

oligonucleotides

PBCA:

poly(butyl cyanoacrylate)

PEG:

poly(ethylene glycol)

P-GUS:

phosphorylated β-glucuronidase

PNA:

peptide nucleic acid

RAP:

receptor-associated protein

RES:

reticuloendothelial system

RMT:

receptor-mediated transcytosis

rsCD4:

recombinant human soluble CD4

SA/B:

streptavidin/ biotin

SATA:

N-succinimidyl S-acetylthioacetate

scFv:

single-chain variable fragment

sdAb:

single-domain antibodies

SMCC:

Succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate

SV40:

simian virus 40

Tf:

transferrin

TfR:

transferrin receptor

TH:

tyrosine hydroxylase

tPA:

tissue-type plasminogen activator

VIP:

vasoactive intestinal peptide

References

  1. W. M. Pardridge. Molecular Trojan horses for blood–brain barrier drug delivery. Curr. Opin. Pharmacol. 6:494–500 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. W. M. Pardridge. Brain Drug Targeting; the Future of Brain Drug Development. Cambridge University Press, Cambridge, UK, 2001.

    Google Scholar 

  3. U. Bickel, T. Yoshikawa, and W. M. Pardridge. Delivery of peptides and proteins through the blood–brain barrier. Adv. Drug Delivery Rev. 46:247–279 (2001).

    Article  CAS  Google Scholar 

  4. W. A. Jefferies, M. R. Brandon, S. V. Hunt, A. F. Williams, K. C. Gatter, and D. Y. Mason. Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. K. R. Duffy and W. M. Pardridge. Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420:32–38 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. P. L. Golden, T. J. Maccagnan, and W. M. Pardridge. Human blood–brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J. Clin. Invest. 99:14–18 (1997).

    PubMed  CAS  Google Scholar 

  7. V. I. Brown and M. I. Greene. Molecular and cellular mechanisms of receptor-mediated endocytosis. DNA Cell Biol. 10:399–409 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. W. M. Pardridge. Peptide Drug Delivery to the Brain. Raven Press, New York, 1991.

    Google Scholar 

  9. H. J. Lee and W. M. Pardridge. Pharmacokinetics and delivery of tat and tat-protein conjugates to tissues in vivo. Bioconjug. Chem. 12:995–999 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. W. M. Pardridge. Vector-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 36:299–321 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70:1–20 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. J. M. Koziara, P. R. Lockman, D. D. Allen, and R. J. Mumper. The blood–brain barrier and brain drug delivery. J. Nanosci. Nanotechnol. 6:2712–2735 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. D. F. Wu and W. M. Pardridge. Central nervous system pharmacologic effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a blood–brain barrier drug delivery system. J. Pharmacol. Exp. Ther. 279:77–83 (1996).

    PubMed  CAS  Google Scholar 

  14. W. M. Pardridge, D. F. Wu, and T. Sakane. Combined use of carboxyl-directed protein pegylation and vector-mediated blood–brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm. Res. 15:576–582 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Zhang, F. Schlachetzki, and W. M. Pardridge. Global non-viral gene transfer to the primate brain following intravenous administration. Mol. Ther. 7:11–18 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. A. Cerletti, J. Drewe, G. Fricker, A. N. Eberle, and J. Huwyler. Endocytosis and transcytosis of an immunoliposome-based brain drug delivery system. J. Drug Target. 8:435–436 (2000).

    PubMed  CAS  Google Scholar 

  17. N. Shi, R. J. Boado, and W. M. Pardridge. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm. Res. 18:1091–1095 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. U. S. A. 88:11460–11464 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. U. Schroder and B. A. Sabel. Nanoparticles, a drug carrier system to pass the blood–brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Res. 710:121–124 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. A. E. Gulyaev, S. E. Gelperina, I. N. Skidan, A. S. Antropov, G. Y. Kivman, and J. Kreuter. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res. 16:1564–1569 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. S. C. J. Steiniger, J. Kreuter, A. S. Khalansky, I. N. Skidan, A. I. Bobruskin, Z. S. Smirnova, S. E. Severin, R. Uhi, M. Kock, K. D. Geiger, and S. E. Gelperina. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer 109:759–767 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. A. Ambruosi, H. Yamamoto, and J. Kreuter. Body distribution of polysorbate-80 and doxorubicin-loaded [C-14]poly(butyl cyanoacrylate) nanoparticles after i.v. administration in rats. J. Drug Target. 13:535–542 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. A. Ambruosi, A. S. Khalansky, H. Yamamoto, S. E. Gelperina, D. J. Begley, and J. Kreuter. Biodistribution of polysorbate 80-coated doxorubicin-loaded [C-14]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J. Drug Target. 14:97–105 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. R. N. Alyautdin, V. E. Petrov, K. Langer, A. Berthold, D. A. Kharkevich, and J. Kreuter. Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res. 14:325–328 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. K. Gao and X. Jiang. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 310:213–219 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. J. Kreuter, D. Shamenkov, V. Petrov, P. Ramge, K. Cychutek, C. Koch-Brandt, and R. Alyautdin. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target. 10:317–325 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. W. M. Pardridge, J. Eisenberg, and J. Yang. Human blood–brain barrier transferrin receptor. Metabolism 36:892–895 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. T. Moos and E. H. Morgan. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol. Neurobiol. 20:77–95 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. Z. M. Qian, H. Y. Li, H. Z. Sun, and K. Ho. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54:561–587 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. E. M. Taylor and E. H. Morgan. Developmental changes in transferrin and iron uptake by the brain in the rat. Brain Res. Dev. Brain Res. 55:35–42 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. A. Crowe and E. H. Morgan. Iron and transferrin uptake by brain and cerebrospinal fluid in the rat. Brain Res. 592:8–16 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. E. H. Morgan and T. Moos. Mechanism and developmental changes in iron transport across the blood–brain barrier. Dev. Neurosci. 24:106–113 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. S. U. Shin, P. Friden, M. Moran, T. Olson, Y. S. Kang, W. M. Pardridge, and S. L. Morrison. Transferrin-antibody fusion proteins are effective in brain targeting. Proc. Natl. Acad. Sci. U. S. A. 92:2820–2924 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. V. Mishra, S. Mahor, A. Rawat, P. N. Gupta, P. Dubey, K. Khatri, and S. P. Vyas. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J. Drug Target. 14:45–53 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. H. J. Lee, B. Engelhardt, J. Lesley, U. Bickel, and W. M. Pardridge. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood–brain barrier in mouse. J. Pharmacol. Exp. Ther. 292:1048–1052 (2000).

    PubMed  CAS  Google Scholar 

  36. Y. Zhang and W. M. Pardridge. Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res. 1111:227–229 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. M. K. Lyons, R. E. Anderson, and F. B. Meyer. Basic fibroblast growth factor promotes in vivo cerebral angiogenesis in chronic forebrain ischemia. Brain Res. 558:315–320 (1991).

    Article  PubMed  CAS  Google Scholar 

  38. B. W. Song, H. V. Vinters, D. F. Wu, and W. M. Pardridge. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood–brain barrier delivery vector. J. Pharmacol. Exp. Ther. 301:605–610 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. J. H. Kordower, V. Charles, R. Bayer, R. T. Bartus, S. Putney, L. R. Walus, and P. M. Friden. Intravenous administration of a transferrin receptor antibody nerve growth-factor conjugate prevents the degeneration of cholinergic striatal neurons in a model of Huntington disease. Proc. Natl. Acad. Sci. U. S. A. 91:9077–9080 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. J. Huwyler, D. F. Wu, and W. M. Pardridge. Brain drug delivery of small molecules using immunoliposomes. Proc. Natl. Acad. Sci. U. S. A. 93:14164–14169 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. J. Huwyler, J. Yang, and W. M. Pardridge. Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J. Pharmacol. Exp. Ther. 282:1541–1546 (1997).

    PubMed  CAS  Google Scholar 

  42. R. J. Boado, H. Tsukamoto, and W. M. Pardridge. Drug delivery of antisense molecules to the brain for treatment of Alzheimer’s disease and cerebral AIDS. J. Pharm. Sci. 87:1308–1315 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. N. Shi, R. J. Boado, and W. M. Pardridge. Antisense imaging of gene expression in the brain in vivo. Proc. Natl. Acad. Sci. U. S. A. 97:14709–14714 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. T. Suzuki, D. F. Wu, F. Schlachetzki, J. Y. Li, R. J. Boado, and W. M. Pardridge. Imaging endogenous gene expression in brain cancer in vivo with In-111-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J. Nucl. Med. 45:1766–1775 (2004).

    PubMed  CAS  Google Scholar 

  45. M. L. Penichet, Y. S. Kang, W. M. Pardridge, S. L. Morrison, and S. U. Shin. An antibody-avidin fusion protein specific for the transferrin receptor serves as a delivery vehicle for effective brain targeting: Initial applications in anti-HIV antisense drug delivery to the brain. J. Immunol. 163:4421–4426 (1999).

    PubMed  CAS  Google Scholar 

  46. N. Y. Shi, Y. Zhang, C. N. Zhu, R. J. Boado, and W. M. Pardridge. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci. U. S. A. 98:12754–12759 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. Y. Zhang and W. M. Pardridge. Delivery of beta-galactosidase to mouse brain via the blood–brain barrier transferrin receptor. J. Pharmacol. Exp. Ther. 313:1075–1081 (2005).

    Article  PubMed  CAS  Google Scholar 

  48. H. J. Lee, R. J. Boado, D. A. Braasch, D. R. Corey, and W. M. Pardridge. Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington’s disease with an antisense radiopharmaceutical and drug-targeting technology. J. Nucl. Med. 43:948–956 (2002).

    PubMed  CAS  Google Scholar 

  49. H. J. Lee, Y. Zhang, C. N. Zhu, K. Duff, and W. M. Pardridge. Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an A beta peptide radiopharmaceutical. J. Cereb. Blood Flow Metab. 22:223–231 (2002).

    Article  PubMed  CAS  Google Scholar 

  50. P. M. Friden, L. R. Walus, G. F. Musso, M. A. Taylor, B. Malfroy, and R. M. Starzyk. Antitransferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier. Proc. Natl. Acad. Sci. U. S. A. 88:4771–4775 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. P. M. Friden, T. S. Olson, R. Obar, L. R. Walus, and S. D. Putney. Characterization, receptor mapping and blood–brain barrier transcytosis of antibodies to the human transferrin receptor. J. Pharmacol. Exp. Ther. 278:1491–1498 (1996).

    PubMed  CAS  Google Scholar 

  52. J. Havrankova, M. Brownstein, and J. Roth. Insulin and insulin receptors in rodent brain. Diabetologia 20:268–273 (1981).

    Article  PubMed  CAS  Google Scholar 

  53. M. W. Smith and M. Gumbleton. Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies. J. Drug Target. 14:191–214 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. P. J. Gaillard, C. C. Visser, and A. G. de Boer. Targeted delivery across the blood–brain barrier. Expert Opin. Drug Deliv. 2:299–309 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. A. Ullrich, J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzzelli, T. J. Dull, A. Gray, L. Coussens, Y. C. Liao, and M. Tsubokawa. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761 (1985).

    Article  PubMed  CAS  Google Scholar 

  56. W. M. Pardridge, Y. S. Kang, J. L. Buciak, and J. Yang. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transctosis through the blood–brain barrier. Pharm. Res. 12:807–816 (1995).

    Article  PubMed  CAS  Google Scholar 

  57. M. J. Coloma, H. J. Lee, A. Kurihara, E. M. Landaw, R. J. Boado, S. L. Morrison, and W. M. Pardridge. Transport across the primate blood–brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm. Res. 17:266–274 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. R. J. Boado, Y. F. Zhang, Y. Zhang, and W. M. Pardridge. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol. Bioeng. 96:381–391 (2007).

    Article  PubMed  CAS  Google Scholar 

  59. S. L. Morrison, M. J. Johnson, L. A. Herzenberg, and V. T. Oi. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. U. S. A. 81:6851–6855 (1984).

    Article  PubMed  CAS  Google Scholar 

  60. W. Y. Hwang and J. Foote. Immunogenicity of engineered antibodies. Methods 36:3–10 (2005).

    Article  PubMed  CAS  Google Scholar 

  61. D. Wu, J. Yang, and W. M. Pardridge. Drug targeting of a peptide radiopharmaceutical through the primate blood–brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J. Clin. Invest. 100:1804–1812 (1997).

    Article  PubMed  CAS  Google Scholar 

  62. Y. Zhang, F. Schlachetzki, J. Y. Li, R. J. Boado, and W. M. Pardridge. Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol. Vis. 9:465–472 (2003).

    PubMed  CAS  Google Scholar 

  63. R. J. Boado, Y. Zhang, and W. M. Pardridge. Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular Trojan horse for delivery across the human blood–brain barrier. Biotechnol. Bioeng. 97:1376–1386 (2007).

    Google Scholar 

  64. A. Urayama, J. H. Grubb, W. S. Sly, and W. A. Banks. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood–brain barrier. Proc. Natl. Acad. Sci. U. S. A. 101:12658–12663 (2004).

    Article  PubMed  CAS  Google Scholar 

  65. C. Vogler, B. Levy, N. J. Galvin, C. Thorpe, M. S. Sands, J. E. Barker, J. Baty, E. H. Birkenmeier, and W. S. Sly. Enzyme replacement in murine mucopolysaccharidosis type VII: neuronal and glial response to beta-glucuronidase requires early initiation of enzyme replacement therapy. Pediatr. Res. 45:838–844 (1999).

    Article  PubMed  CAS  Google Scholar 

  66. M. Demeule, J. Poirier, J. Jodoin, Y. Bertrand, R. R. Desrosiers, C. Dagenais, T. Nguyen, J. Lanthier, R. Gabathuler, M. Kennard, W. A. Jefferies, D. Karkan, S. Tsai, L. Fenart, R. Cecchelli, and R. Beliveau. High transcytosis of melanotransferrin (P97) across the blood brain barrier. J. Neurochem. 83:924–933 (2002).

    Article  PubMed  CAS  Google Scholar 

  67. R. Gabathuler, G. Arthur, M. Kennard, Q. Chen, S. Tsai, J. Yang, W. Schoorl, T. Z. Vitalis, and W. A. Jeffereies. Development of a potential protein vector (NeuroTrans) to deliver drugs across to the blood–brain barrier. Int. Congres Series 1277:171–184 (2005).

    Article  CAS  Google Scholar 

  68. W. H. Pan, A. J. Kastin, T. C. Zankel, P. van Kerkhof, T. Terasaki, and G. J. Bu. Efficient transfer of receptor-associated protein (RAP) across the blood–brain barrier. J. Cell Sci. 117:5071–5078 (2004).

    Article  PubMed  CAS  Google Scholar 

  69. W. Sun, H. Wang, C. Xie, Y. Hu, X. Yang, and H. Xu. An attempt to directly trace polymeric nanoparticles in vivo with electron microscopy. J. Control. Release 115:259–265 (2006).

    Article  PubMed  CAS  Google Scholar 

  70. J. C. Olivier. Drug transport to brain with targeted nanoparticles. NeuroRx 2:108–119 (2005).

    Article  PubMed  Google Scholar 

  71. P. Gaillard, A. Brink, and A. G. de Boer. Diphtheria toxin receptor-targeted brain drug delivery. Int. Congres Series 1277:185–198 (2005).

    Article  CAS  Google Scholar 

  72. P. Anderson, M. E. Pichichero, and R. A. Insel. Immunogens consisting of oligosaccharides from the capsule of Haemophilusinfluenzae type-b coupled to diphtheria toxoid or the toxin protein CRM197. J. Clin. Invest. 76:52–59 (1985).

    PubMed  CAS  Google Scholar 

  73. S. Buzzi, D. Rubboli, G. Buzzi, A. M. Buzzi, C. Morisi, and F. Pironi. CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients. Cancer Immunol. Immunother. 53:1041–1048 (2004).

    Article  PubMed  CAS  Google Scholar 

  74. Y. S. Kang, U. Bickel, and W. M. Pardridge. Pharmacokinetics and saturable blood–brain barrier transport of biotin bound to a conjugate of avidin and a monoclonal antibody to the transferrin receptor. Drug Metab. Dispos. 22:99–105 (1994).

    PubMed  CAS  Google Scholar 

  75. N. Pissarra. Changes in the business of culture. Nat. Biotechnol. 22:1355–1356 (2004).

    Article  CAS  Google Scholar 

  76. A. Muruganandam, J. Tanha, S. Narang, and D. Stanimirovic. Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J. 16:240–242 (2002).

    PubMed  CAS  Google Scholar 

  77. A. Abulrob, H. Sprong, P. Henegouwen, and D. Stanimirovic. The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J. Neurochem. 95:1201–1214 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. V. Cortez-Retamozo, N. Backmann, P. D. Senter, U. Wernery, P. De Baetselier, S. Muyldermans, and H. Revets. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 64:2853–2857 (2004).

    Article  PubMed  CAS  Google Scholar 

  79. P. Holliger and P. J. Hudson. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23:1126–1136 (2005).

    Article  PubMed  CAS  Google Scholar 

  80. X. X. Wang, Y. K. Cho, and E. V. Shusta. Mining a yeast library for brain endothelial cell-binding antibodies. Nat. Methods 4:143–145 (2007).

    Article  PubMed  CAS  Google Scholar 

  81. B. Giometto, F. Bozza, V. Argentiero, P. Gallo, S. Pagni, M. G. Piccinno, and B. Tavolato. Transferrin receptors in rat central nervous system. An immunocytochemical study. J. Neurol. Sci. 98:81–90 (1990).

    Article  PubMed  CAS  Google Scholar 

  82. D. C. Mash, J. Pablo, B. E. Buck, J. Sanchezramos, and W. J. Weiner. Distribution and number of transferrin receptors in Parkinson’s disease and in MPTP-treated mice. Exp. Neurol. 114:73–81 (1991).

    Article  PubMed  CAS  Google Scholar 

  83. F. Kratz and U. Beyer. Serum proteins as drug carriers of anticancer agents: a review. Drug Deliv. 5:281–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Y. Zhang, F. Calon, C. N. Zhu, R. J. Boado, and W. M. Pardridge. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental Parkinsonism. Hum. Gene Ther. 14:1–12 (2003).

    Article  PubMed  Google Scholar 

  85. Y. Zhang, F. Schlachetzki, Y. F. Zhang, R. J. Boado, and W. M. Pardridge. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental Parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum. Gene Ther. 15:339–350 (2004).

    Article  PubMed  CAS  Google Scholar 

  86. J. Haavik and K. Toska. Tyrosine hydroxylase and Parkinson’s disease. Mol. Neurobiol. 16:285–309 (1998).

    PubMed  CAS  Google Scholar 

  87. Y. Zhang, C. N. Zhu, and W. M. Pardridge. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol. Ther. 6:67–72 (2002).

    Article  PubMed  CAS  Google Scholar 

  88. Y. Zhang, Y. F. Zhang, J. Bryant, A. Charles, R. J. Boado, and W. M. Pardridge. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10:3667–3677 (2004).

    Article  PubMed  CAS  Google Scholar 

  89. R. J. Boado, Y. Zhang, C. F. Xia, and W. M. Pardridge. Fusion antibody for Alzheimer’s disease with bidirectional transport across the blood–brain barrier and abeta fibril disaggregation. Bioconjug. Chem. 18:447–455 (2007).

    Article  PubMed  CAS  Google Scholar 

  90. Y. Miyajima, H. Nakamura, Y. Kuwata, J. D. Lee, S. Masunaga, K. Ono, and K. Maruyama. Transferrin-loaded nido-carborane liposomes: tumor-targeting boron delivery system for neutron capture therapy. Bioconjug. Chem. 17:1314–1320 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. L. R. Walus, W. M. Pardridge, R. M. Starzyk, and P. M. Friden. Enhanced uptake of rsCD4 across the rodent and primate blood–brain barrier after conjugation to anti-transferrin receptor antibodies. J. Pharmacol. Exp. Ther. 277:1067–1075 (1996).

    PubMed  CAS  Google Scholar 

  92. U. Bickel, T. Yoshikawa, E. M. Landaw, K. F. Faull, and W. M. Pardridge. Pharmacological effects in vivo in brain by vector-mediated peptide drug delivery. Proc. Natl. Acad. Sci. U. S. A. 90:2618–2622 (1993).

    Article  PubMed  CAS  Google Scholar 

  93. Y. Saito, J. Buciak, J. Yang, and W. M. Pardridge. Vector-mediated delivery of I-125 labeled beta-amyloid peptide A-beta(1–40) through the blood–brain barrier and binding to Alzheimer Disease amyloid of the A-beta(1–40)/vector complex. Proc. Natl. Acad. Sci. U. S. A. 92:10227–10231 (1995).

    Article  PubMed  CAS  Google Scholar 

  94. Y. Zhang and W. M. Pardridge. Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood–brain barrier drug targeting system. Stroke 32:1378–1383 (2001).

    PubMed  CAS  Google Scholar 

  95. A. Kurihara, Y. Deguchi, and W. M. Pardridge. Epidermal growth factor radiopharmaceuticals: In-111 chelation, conjugation to a blood–brain barrier delivery vector via a biotin-polyethylene linker, pharacokinetics, and in vivo imaging of experimental brain tumors. Bioconjug. Chem. 10:502–511 (1999).

    Article  PubMed  CAS  Google Scholar 

  96. D. F. Wu, B. W. Song, H. V. Vinters, and W. M. Pardridge. Pharmacokinetics and brain uptake of biotinylated basic fibroblast growth factor conjugated to a blood–brain barrier drug delivery system. J. Drug Target. 10:239–245 (2002).

    Article  PubMed  CAS  Google Scholar 

  97. J. Kreuter, P. Ramge, V. Petrov, S. Hamm, S. E. Gelperina, B. Engelhardt, R. Alyautdin, H. von Briesen, and D. J. Begley. Direct evidence that polysorbate-80-coated poly( butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res. 20:409–416 (2003).

    Article  PubMed  CAS  Google Scholar 

  98. J. Kreuter, R. N. Alyautdin, D. A. Kharkevich, and A. A. Ivanov. Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674:171–174 (1995).

    Article  PubMed  CAS  Google Scholar 

  99. S. Soni, A. K. Babbar, R. K. Sharma, and A. Maitra. Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J. Drug Target. 14:87–95 (2006).

    Article  PubMed  CAS  Google Scholar 

  100. K. Michaelis, M. M. Hoffmann, S. Dreis, E. Herbert, R. N. Alyautdin, M. Michaelis, J. Kreuter, and K. Langer. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J. Pharmacol. Exp. Ther. 317:1246–1253 (2006).

    Article  PubMed  CAS  Google Scholar 

  101. K. Benchenane, V. Berezowski, C. Ali, M. Fernandez-Monreal, J. P. Lopez-Atalaya, J. Brillault, J. Chuquet, A. Nouvelot, E. T. MacKenzie, G. J. Bu, R. Cecchelli, O. Touzani, and D. Vivien. Tissue-type plasminogen activator crosses the intact blood–brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation 111:2241–2249 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part funded by National Institutes of Health Grant NS052649. A.R.J. is the recipient of a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric V. Shusta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A.R., Shusta, E.V. Blood–Brain Barrier Transport of Therapeutics via Receptor-Mediation. Pharm Res 24, 1759–1771 (2007). https://doi.org/10.1007/s11095-007-9379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9379-0

Key words

Navigation