Skip to main content

Water Transport in Pollen

  • Chapter
  • First Online:
Pollen Tip Growth

Abstract

Pollen is the male gametophyte of plants, and its major function is to deliver sperm cells to the ovules to ensure a successful fertilisation. Sperm cells are carried inside the pollen tube, a growth extension of the vegetative cell of pollen that grows through the stigma and style tissue. The elongation/growth of pollen tubes is a highly regulated biological process, and the uptake of water is thought to account for the enormous increase in cell volume. Water transport into the pollen grain initiates the transition from the quiescent mature to the active, rehydrated pollen grain and subsequently allows the large increase in volume during tube growth. To maintain the water uptake, internal pollen water potential has to be lower than the external water potential which can be achieved by lowering the turgor pressure, by increasing the internal osmotic pressure or by decreasing the external osmotic pressure. Uptake or synthesis of osmotic active compounds may be necessary to adapt the internal osmotic pressure due to changes in osmotic conditions during the tube's journey through the stigma tissue. Especially in periods of severe drought stress, the water potential of the stigma cells may drop, and thus water uptake into the pollen tube is distorted. The ability to sense and to adapt to osmotic conditions is therefore an important feature of the pollen to warrant a successful fertilisation and in consequence to ensure high crop yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP:

Aquaporin

LP :

Hydraulic conductivity

MIP:

Major intrinsic protein

PIP:

Plasma membrane intrinsic protein

PM:

Plasma membrane

Pos :

Osmotic permeability

References

  • Alqudah AM, Samarah NH, Mullen RE (2011) Drought stress effect on crop pollination, seed set, yield and quality. Sustain Agric Rev 6:193–213. doi:10.1007/978-94-007-0186-1_6

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Beauzamy L, Nakayama N, Boudaoud A (2014) Flowers under pressure: ins and outs of turgor regulation in development. Ann Bot 114:1517–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo J (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characterictics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benkert R, Obermeyer G, Bentrup F-W (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8

    Article  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaption: metabolic adjustment and regulation of gene expression. Plant Breed 132:21–32

    Article  CAS  Google Scholar 

  • Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijo J, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani C (2005) PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot 56:113–121

    CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1995) Measuring the water status of plants and soils. Academic Press, San Diego

    Book  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe JA, Hoekstra FA, Crowe LM (1989) Membrane phase transitions are responsible for imbibitional change in dry pollen. Proc Natl Acad Sci USA 86:520–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dainty J (1963) Water relations of plants. Adv Bot Res 1:279–326

    Article  CAS  Google Scholar 

  • Dearnaley JDW, Levina NN, Lew RR, Heath IB, Goring DR (1997) Interrelationships between cytoplasmic Ca2+ peaks, pollen hydration and plasma membrane conductances during compatible and incompatible pollinations of Brassica napus papillae. Plant Cell Physiol 38:985–999

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Rizzo C, Nasrallah ME, Nasrallah JB (2001) The Brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis. Plant Mol Biol 45:51–62

    Article  CAS  PubMed  Google Scholar 

  • Elleman CJ, Dickinson HG (1986) Pollen-stigma interactions in Brassica. IV. Structural organization in the pollen grains during hydration. J Cell Sci 80:141–157

    CAS  PubMed  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Turner NC, Yan G, Li F, Siddique KHM (2010) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought stress. J Exp Bot 61:335–345

    Article  CAS  PubMed  Google Scholar 

  • Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187:155–167

    Article  Google Scholar 

  • Feijó JA, Sainhas J, Holdaway-Clarke T, Cordeiro S, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23(1):86–94

    Article  PubMed  Google Scholar 

  • Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109:1201–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Dassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N (2012) Water under pressure. Nature 483:256–257

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1984) Lamellar-to-hexagonal II phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration. Proc Natl Acad Sci USA 81:6373–6377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison J (1979) An interpretation of the hydrodynamics of pollen. Am J Bot 66:737–743

    Article  Google Scholar 

  • Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Membr Biol 197:1–32

    Article  CAS  PubMed  Google Scholar 

  • Hill AE, Shachar-Hill B, Skepper JN, Powell J, Shachar-Hill Y (2012) An osmotic model of the growing pollen tube. PLoS One 7:e36585. doi:10.1371/journal.pone.0036585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano Y, Okimoto N, Kadohira I, Suematsu M, Yasuoka K, Yasui M (2010) Molecular mechanisms of how mercury inhibits water permeation through aquaporin-1: understanding by molecular dynamics simulation. Biophys J 98:1512–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekstra FA, Crowe JH, Crowe LM (1991) Effect of sucrose on phase behaviour of membranes in intact pollen of Typha latifolia L., as measured with Fourier transform infrared spectroscopy. Plant Physiol 97:1073–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüsken D, Steudle E, Zimmermann U (1978) Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol 61:158–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820

    Article  CAS  PubMed  Google Scholar 

  • Jäger K, Fabian A, Barnabas B (2008) Effect of water deficit and elevated temperature on pollen development of drought sensitive and tolerant winter wheat (Triticum aestivum L.) genotypes. Acta Biol Szeged 52:67–71

    Google Scholar 

  • Jouhet J (2013) Importance of the hexagonal lipid phase in biological membrane organization. Front Plant Sci 4. doi:10.3389/fpls.2013.00494

  • Katifori E, Alben S, Cerda E, Nelson DR, Dumais J (2010) Foldable structures and the natural design of pollen grains. Proc Natl Acad Sci USA 197:7635–7639

    Article  Google Scholar 

  • Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  CAS  PubMed  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations in plants and soil. Academic Press, San Diego

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang V, Usadel B, Obermeyer G (2014) De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species. Plant Mol Biol 87:69–80

    Article  PubMed  CAS  Google Scholar 

  • Linthilhac PM, Wei C, Tanguay JJ, Outwater JO (2000) Ball tonometry: a rapid, nondestructive method for measuring cell turgor pressure in thin-walled plant cells. J Plant Growth Regul 19:90–97

    Article  Google Scholar 

  • Loraine AE, McCormick S, Estrada A, Patel K, Qin P (2013) RNA-Seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol 162:1092–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludewig U, Dynowski M (2009) Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet. Cell Mol Life Sci 66:3161–3175

    Article  CAS  PubMed  Google Scholar 

  • Lush WM, Grieser F, Wolters-Arts M (1998) Directional guidance of Nicotiana alata pollen tubes in vitro and on the stigma. Plant Physiol 118:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J-F, Liu Z-H, Chu C-P, Hu Z-Y, Wang X-L, Zhang XS (2012) Different regulatory processes control pollen hydration and germination in Arabidopsis. Sex Plant Reprod 25:77–82

    Article  CAS  PubMed  Google Scholar 

  • Malhó R, Pais MSS (1992) Kinetics and hydrodynamics of Agapanthus umbellatus pollen tube growth: a structural and stereological study. Sex Plant Reprod 5:163–168

    Google Scholar 

  • Manjarrez-Sandoval P, Gonzalez-Hernandez VA, Mendoza-Onofre LE, Engelman EM (1989) Drought stress effects on the grain yield and panicle development of sorghum. Can J Plant Sci 69:631–641

    Article  Google Scholar 

  • Marin-Olivier M, Chevalier T, Fobis-Loisy I, Dumas C, Gaude T (2000) Aquaporin PIP genes are not expressed in the stigma papillae in Brassica napus. Plant J 24:231–240

    Article  CAS  PubMed  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Omasa K, Horie T (2000) Rapid swelling of pollen grains in the dehiscing anther of two-rowed barley (Hordeum distichum L. emed. LAM.) Ann Bot 85:345–350

    Article  Google Scholar 

  • Maurel C, Boursiac Y, Luu D-T, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:3121–1358

    Article  CAS  Google Scholar 

  • Mayfield JA, Preuss D (2000) Rapid initiation of Arabidopsis pollination requires the oleosin domain protein GRP17. Nat Cell Biol 2:128–130

    Article  CAS  PubMed  Google Scholar 

  • Messerli M, Robinson KR (2003) Ionic and osmotic disruption of the lily pollen tube oscillator: testing proposed models. Planta 217:147–157

    CAS  PubMed  Google Scholar 

  • Miermont A, Uhlendorf J, McClean M, Hersen P (2011) The dynamic systems properties of the HOG signaling cascade. J Signal Transduct. doi:10.1155/2011/930940

    PubMed  PubMed Central  Google Scholar 

  • Milani P, Braybrook SA, Boudaoud A (2013) Shrinking the hammer: micromechanical approaches to morphogenesis. J Exp Bot 64:4651–4662

    Article  CAS  PubMed  Google Scholar 

  • Mizuta Y, Higashijima T (2014) Antisense gene inhibition by phosphorothioate antisense oligonucleotide in Arabidopsis pollen tubes. Plant J 78:516–528

    Article  CAS  PubMed  Google Scholar 

  • Moshelion M, Moran N, Chaumont F (2004) Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiol 135:2301–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutinho A, Camacho L, Haley A, Salomé-Pais M, Trewavas A, Malhó R (2001) Antisense perturbation of protein function in living pollen tubes. Sex Plant Reprod 14:101–104

    Article  CAS  Google Scholar 

  • Murai-Hatano M, Kuwagata T (2007) Osmotic water permeability of plasma and vacuolar membrane in protoplasts. I. High osmotic water permeability in radish (Raphanus sativus) root cells as measured by a new method. J Plant Res 120:175–189

    Article  PubMed  Google Scholar 

  • Murphy R, Smith JAC (1998) Determination of cell water-relation parameters using the pressure probe: extended theory and practice of the pressure-clamp technique. Plant Cell Environ 21:637–657

    Article  Google Scholar 

  • Muzzey D, Gomez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaption in yeast osmoregulation. Cell 138:160–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nezhad AS, Naghavi M, Packirisamy M, Bhata R, Geitmann A (2013) Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 13:2599–2608

    Article  CAS  PubMed  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Academic Press, Oxford

    Google Scholar 

  • Obermeyer G, Fragner L, Lang V, Weckwerth W (2013) Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the lectron transport chain. Plant Physiol 162:1822–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okono A, Monneveux P, Ribaut J-M (2013) Facing the challenges of global agriculture today: what can we do about drought? Front Physiol 4. doi:10.3389/fphys.2013.00289

  • Onsager L (1931) Reciprocal relations in irreversible processes. Phys Rev 37:405–426

    Article  CAS  Google Scholar 

  • Patil BS, Ravikumar RL (2011) Osmotic adjustment in pollen grains: measure of drought adaptation in sorghum? Curr Sci 100:377–382

    Google Scholar 

  • Pertl H, Schulze WX, Obermeyer G (2009) The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen. J Proteome Res 8:5142–5152

    Article  CAS  PubMed  Google Scholar 

  • Pertl H, Poeckl M, Blaschke C, Obermeyer G (2010) Osmoregulation in Lilium pollen grains occurs via modulation of the plasma membrane H+ ATPase activity by 14-3-3 proteins. Plant Physiol 154:1921–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertl-Obermeyer H, Schulze WX, Obermeyer G (2014) In vivo cross-linking combined with mass spectrometry analysis reveals receptor-like kinases and Ca2+ signalling proteins as putative interaction partners of pollen plasma membrane H+ ATPases. J Proteomics 108:17–29

    Article  CAS  PubMed  Google Scholar 

  • Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007) Reactive oxigen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5. doi:10.1371/journal.pgen.1000621

  • Ramahaleo T, Morillon R, Alexandre J, Lassalles J-P (1999) Osmotic water permeability of isolated protoplasts. Modifications during development. Plant Physiol 119:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman S, Yun SJ (2006) Developmental regulation of K accumulation in pollen, anthers, and papillae: are anther dehiscence, papillae hydration, and pollen swelling leading to pollination and fertilization in barley (Hordeum vulgare L.) regulated by changes in K concentration? J Exp Bot 57:1315–1321

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Rha ES, Ashraf M, Lee KJ, Yun SJ, Kwak YG, Yoo NH, Kim J-K (2004) Does barley (Hordeum vulgaris L.) pollen swell in fractions of a second? Plant Sci 167:137–142

    Article  CAS  Google Scholar 

  • Reinhard H, Hachez C, Bienert MD, Beebo A, Swarup K, Voß U, Bouhidel K, Frigerio L, Schjoerring JK, Bennett MJ, Chaumont F (2016) Tonoplast aquaporins facilitate lateral root emergence. Plant Physiol 170:1640–1654

    Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Routier-Kierzkowska A-L, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C, Smith RS (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiter RK, van Eldik GJ, van Herpen RMA, Schrauwen JAM, Wullems GJ (1997) Characterization of oleosins in the pollen coat of Brassica oleracea. Plant Cell 9:1621–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saragih AA, Puteh AB, Ismail MR, Mondal MMA (2013) Pollen quality traits of ciltivated (Oryza sativa L. ssp. indica) and weedy (Oryza sativa L. ssp. nivara) rice to water stress at reproductive stage. Aust J Crop Sci 7:1106–1112

    Google Scholar 

  • Sarker RH, Elleman CJ, Dickinson HG (1988) Control of pollen hydration in Brassica requires continued protein synthesis, and gylcosylation is necessary for intraspecific incompatibility. Proc Natl Acad Sci USA 85:4340–4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schütz K, Tyerman SD (1997) Water channels in Chara corallina. J Exp Bot 48:1511–1518

    Article  Google Scholar 

  • Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shachar-Hill B, Hill AE, Powell J, Skepper JN, Shachar-Hill Y (2013) Mercury-sensitive water channels as possible sensors of water potentials in pollen. J Exp Bot 64:5195–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer A, Mahlknecht G, Obermeyer G (2007) Measuring the osmotic water permeability of the plant protoplast plasma membrane: implications of the non-osmotic volume. J Membr Biol 215:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer A, Geist B, Da Ines O, Gehwolf R, Schäffner AR, Obermeyer G (2008) Ectopic expression of Arabidopsis thaliana plasma membrane intrinsic protein 2 aquaporins in lily pollen increases the plasma membrane water permeability of grain but not of tube protoplasts. New Phytol 180:787–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto G, Alleva K, Mazella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (1989) Water flow in plants and its coupling to other processes: an overview. Methods Enzymol 174:183–225

    Article  CAS  Google Scholar 

  • Steudle E (1993) Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell, tissue, and organ level. In: Smith JAC, Griffiths H (eds) Water deficits: plant responses from cell to community. Bios Scientific, Oxford, pp 5–36

    Google Scholar 

  • Steudle E, Tyerman SD (1983) Determination of permeability coefficients, reflection coefficients, and hydraulic conductivity of Chara corallina using the pressure probe: effects of solute concentration. J Mol Biol 75:85–96

    CAS  Google Scholar 

  • Tiwari SC, Polito VS, Webster BD (1990) In dry peer (Pyrus communis) pollen, membranes assume a tighly packed multilamellate aspect that disappears rapidly upon hydration. Protoplasma 153:157–168

    Article  Google Scholar 

  • Tomos AD, Leigh RA (1999) The pressure probe: a versatile tool in plant cell physiology. Annu Rev Plant Physiol Plant Mol Biol 50:447–472

    Article  CAS  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161:1010–1020

    Article  CAS  PubMed  Google Scholar 

  • Updegraff EP, Zhao F, Preuss D (2009) The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod 22:197–204

    Article  CAS  PubMed  Google Scholar 

  • Vogler H, Draeger C, Weber A, Felekis D, Eichenberger C, Routier-Kierzkowska A-L, Boisson-Dernier A, Ringli C, Nelson BJ, Smith RS, Grossniklaus U (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627

    Article  CAS  PubMed  Google Scholar 

  • Wegner LH (2015) A thermodynamic analysis of the feasibility of water secretion into xylem vessels against a water potential gradient. Funct Plant Biol 42:828–835

    Article  Google Scholar 

  • Wilson C, Voronin V, Touraev A, Vicente O, Heberle-Bors E (1997) A developmental regulated MAP kinase activated by hydration in tobacco pollen. Plant Cell 9:2093–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2011) Pollen tubes and the physical world. Trends Plant Sci 16:353–355

    Article  CAS  PubMed  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen tube growth. Nature 392:818–821

    Article  CAS  PubMed  Google Scholar 

  • Wu XN, Sanchez Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX (2013) Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 12:2856–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wudick MM, Luu D-T, Tournaire-Roux C, Sakamoto W, Maurel C (2014) Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction. Plant Physiol 164:1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    Article  CAS  PubMed  Google Scholar 

  • Zeuthen T (1995) Molecular mechanisms for passive and active transport of water. Int Rev Cytol 160:99–161

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U (1989) Water relations of plant cells: pressure probe technnique. Methods Enzymol 174:338–366

    Article  CAS  Google Scholar 

  • Zonia L, Munnik T (2004) Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol 134:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonia L, Munnik T (2007) Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci 12:90–97

    Article  CAS  PubMed  Google Scholar 

  • Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14:318–327

    Article  CAS  PubMed  Google Scholar 

  • Zonia L, Müller M, Munnik T (2006) Hydrodynamics and cell volume oscillations in the pollen tube apical region are integral components of the biomechanics of Nicotiana tabacum pollen tube growth. Cell Biochem Biophys 46:209–232

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Obermeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Obermeyer, G. (2017). Water Transport in Pollen. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_2

Download citation

Publish with us

Policies and ethics