Skip to main content
Log in

The turgor pressure of growing lily pollen tubes

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The turgor pressure of growing pollen tubes of the lily (Lilium longiflorum Thunb.) has been recorded using a turgor pressure probe. Insertion of the probe's micropipette was routinely accomplished, providing recording periods of 20 to 30 min. Probe insertion did not affect tube growth. The stable turgor values ranged between 0.1 and 0.4 MPa, the mean value being 0.209 ± 0.064 MPa (n=106). A brief increase in turgor, generated by injection of oil through the pressure probe, caused the tube to burst at its tip. Burst pressures ranged between 0.19 and 0.58 MPa, that is, individual lily pollen tubes do not withstand turgor pressure approaching twice their regular turgor pressure. In contrast, parallel experiments using the incipient plasmolysis technique yielded a mean putative turgor pressure of 0.79 MPa either using sucrose (n=24) or mannitol (n=25). Surprisingly, turgor pressure was not significantly correlated with tube growth rate which ranged from zero to 13 μm/min. Nor did it correlate with tube length over the tested range of 100 to 1600 μm. In addition the influence of the medium's osmolality was surprisingly low: raising the external osmotic pressure from 0.36 to 1.08 MPa, with sucrose or mannitol, only caused mean turgor pressure to decline from 0.27 to 0.18 MPa. We conclude that growing lily pollen regulates its turgor pressure remarkably well despite substantial variation in tube growth rate, tube length, and osmotic milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adebayo AA, Harris RF, Gardner WR (1971) Turgor pressure of fungal mycelia. Trans Br Mycol Soc 57: 145–151

    Google Scholar 

  • Amir R, Levanon D, Hadar Y, Chet I (1992) Formation of sclerotia byMorchella esculenta: relationship between media composition and turgor potential in the mycelium. Mycol Res 96: 943–948

    Google Scholar 

  • —, Steudle E, Levanon D, Hadar Y, Chet I (1995) Turgor changes inMorchella esculenta during translocation and sclerotial formation. Exp Mycol 19: 129–136

    Google Scholar 

  • Battey NH, Blackbourn HD (1993) The control of exocytosis in plants. New Phytol 125: 307–338

    Google Scholar 

  • Blatt MR (1991) Ion channel gating in plants: physiological implications and integration for stomatal function. J Membr Biol 124: 95–112

    PubMed  Google Scholar 

  • Cai G, Moscatelli A, Del Casino C, Cresti M (1996) Cytoplasmic motors and pollen tube growth. Sex Plant Reprod 9: 59–64

    Google Scholar 

  • Chibi F, Matilla AJ, Angosto T, Garrido D (1994) Changes in polyamine synthesis during anther development and pollen germination in tobacco (Nicotiana tabacum). Physiol Plant 92: 61–68

    Google Scholar 

  • Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124: 1–23

    PubMed  Google Scholar 

  • —, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells ofVicia faba L. Planta 186: 143–153

    PubMed  Google Scholar 

  • Derksen J (1996) Pollen tubes: a model system for plant cell growth. Bot Acta 109: 341–345

    Google Scholar 

  • Eamus D, Jennings DH (1986) Water, turgor and osmotic potentials of fungi. In: Ayres PG, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 27–48

    Google Scholar 

  • Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187: 155–167

    Google Scholar 

  • Garill A, Lew RR, Heath IB (1992) Stretch-activated Ca2+ and Ca2+- activated K+ channels in the hyphal tip plasma membrane of the oomyceteSaprolegnia ferax. J Cell Sci 101: 721–730

    Google Scholar 

  • Geitmann A, Wojciechowicz K, Cresti M (1996) Inhibition of intracellular pectin transport in pollen tubes by monensin, brefeldin A and cytochalasin D. Bot Acta 109: 373–381

    Google Scholar 

  • Harold FM, Harold RL, Money NP (1995) What forces drive cell wall expansion. Can J Bot 73 Suppl: S379-S383

    Google Scholar 

  • Harold RL, Money NP, Harold FM (1996) Growth and morphogenesis inSaprolegnia ferax: is turgor required? Protoplasma 191: 105–114

    Google Scholar 

  • Heath IB (1995) Integration and regulation of hyphal tip growth. Can J Bot 73 Suppl: S131-S139

    Google Scholar 

  • Hedrich R (1994) Voltage-dependent Cl channels in plant cells: identification, characterization, and regulation of a guard cell anion channel. Curr Top Membr 42: 1–33

    Google Scholar 

  • Heidemann SR (1996) Cytoplasmic mechanisms of axonal and dendritic growth in neurons. Int Rev Cytol 165: 235–296

    PubMed  Google Scholar 

  • Kaminskyj SGW, Garill A, Heath IB (1992) The relation between turgor and tip growth inSaprolegnia ferax: turgor is necessary, but not sufficient to explain apical extension rates. Exp Mycol 16: 64–75

    Google Scholar 

  • Lancelle SA, Hepler PK (1991) Association of actin with cortical microtubules revealed by immunogold localization inNicotiana pollen tubes. Protoplasma 165: 167–172

    Google Scholar 

  • Luard EJ, Griffin DM (1981) Effect of water potential on fungal growth and turgor. Trans Br Mycol Soc 76: 33–40

    Google Scholar 

  • Malhó R, Read ND, Trewavas AI, Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7: 1173–1184

    PubMed  Google Scholar 

  • Miki-Hiroshige H, Nakamura S (1982) Process of metabolism during pollen tube wall formation. J Electron Microsc 31: 51–62

    Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler PK (1992) Free Ca2+ gradient in growing pollen tubes ofLilium. J Cell Sci 101: 7–12

    Google Scholar 

  • Mohr H, Schopfer P (1992) Pflanzenphysiologie, 4th edn. Springer Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Money NP (1990) Measurement of hyphal turgor. Exp Mycol 14: 416–425

    Google Scholar 

  • —, Harold FM (1992) Extension growth of the water moldAchyla: interplay of turgor and wall strength. Proc Natl Acad Sci USA 89: 4245–4249

    PubMed  Google Scholar 

  • — — (1993) Two water molds can grow without measurable turgor pressure. Planta 190: 426–430

    Google Scholar 

  • Nobiling R, Reiss H-D (1987) Quantitative analysis of calcium gradients and activity in growing pollen tubes ofLilium longiflorum. Protoplasma 139: 20–24

    Google Scholar 

  • Obermeyer G, Bentrup F-W (1996) Regulation of polar growth and morphogenesis. Prog Bot 57: 54–67

    Google Scholar 

  • —, Weisenseel MH (1991) Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56: 319–327

    PubMed  Google Scholar 

  • —, Lützelschwab M, Heumann HG, Weisenseel MH (1992) Immunolocalization of H+-ATPases in the plasma membrane of pollen grains and pollen tubes ofLilium longiflorum. Protoplasma 171: 55–63

    Google Scholar 

  • Oparka KJ, Murphy R, Derrick PM, Prior DAM, Smith JAC (1991) Modification of the pressure probe technique permits controlled intracellular microinjection of fluorescent probes. J Cell Sci 98: 539–544

    Google Scholar 

  • Pierson E, Cresti M (1992) Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int Rev Cytol 140: 73–128

    Google Scholar 

  • —, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174: 160–173

    PubMed  Google Scholar 

  • Rutten TLM, Knuiman B (1993) Brefeldin A effects on tobacco pollen tubes. Eur J Cell Biol 61: 247–255

    PubMed  Google Scholar 

  • Schnepf E (1993) Spitzenwachstum: Moosprotonemen als Modell für die Bildung von Zellwänden. Naturwissenschaften 80: 302–313

    Google Scholar 

  • Tang X, Lancelle SA, Hepler PK (1989) Fluorescence microscopic localization of actin in pollen tubes: comparison of actin antibody and phalloidin staining. Cell Motil Cytoskeleton 12: 216–224

    PubMed  Google Scholar 

  • Thiel G, Homann U, Gradmann D (1993) Microscopic elements of electrical excitation in Chara: transient activity of Cl channels in the plasma membrane. J Membr Biol 134: 53–66

    PubMed  Google Scholar 

  • Tomos AD (1988) Cellular water relations of plants. In: Franks F (ed) Water science reviews, vol 3. Cambridge University Press, Cambridge, pp 186–277

    Google Scholar 

  • Wang C-S, Walling LL, Gu YQ, Ware CF, Lord EM (1994) Two classes of proteins and mRNAs inLilium longiflorum identified by human vitronectin probes. Plant Physiol 104: 711–717

    PubMed  Google Scholar 

  • Woods DM, Duniway JM (1986) Some effects of water potential on growth, turgor and respiration ofPhytophthora cryptogena andFusarium moniliforme. Phytopathology 76: 1248–1254

    Google Scholar 

  • Zimmermann U, Steudle E (1978) Physical aspects of water relations of plant cells. Adv Bot Res 6: 45–117

    Google Scholar 

  • —, Raede H, Steudle E (1969) Kontinuierliche Druckmessung in Pflanzenzellen. Naturwissenschaften 56: 634

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkert, R., Obermeyer, G. & Bentrup, FW. The turgor pressure of growing lily pollen tubes. Protoplasma 198, 1–8 (1997). https://doi.org/10.1007/BF01282125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282125

Keywords

Navigation