Skip to main content
Log in

The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Pollination in species with dry stigmas begins with the hydration of desiccated pollen grains on the stigma, a highly regulated process involving the proteins and lipids of the pollen coat and stigma cuticle. Self-incompatible species of the Brassicaceae block pollen hydration, and while the early signaling steps of the self-incompatibility response are well studied, the precise mechanisms controlling pollen hydration are poorly understood. Both lipids and proteins are important for hydration; loss of pollen coat lipids and proteins results in defective or delayed hydration on the stigma surface. Here, we examine the role of the pollen coat protein extracellular lipase 4 (EXL4), in the initial steps of pollination, namely hydration on the stigma. We identify a mutant allele, exl4-1, that shows a reduced rate of pollen hydration. exl4-1 pollen is normal with respect to pollen morphology and the downstream steps in pollination, including pollen tube germination, growth, and fertilization of ovules. However, owing to the delay in hydration, exl4-1 pollen is at a disadvantage when competed with wild-type pollen. EXL4 also functions in combination with GRP17 to promote the initiation of hydration. EXL4 is similar to GDSL lipases, and we show that it functions in hydrolyzing ester bonds. We report a previously unknown function for EXL4, an abundant pollen coat protein, in promoting pollen hydration on the stigma. Our results indicate that changes in lipid composition at the pollen–stigma interface, possibly mediated by EXLs, are required for efficient pollination in species with dry stigmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akoh CC, Lee G, Liaw Y, Huang T, Shaw J (2004) GDLS family of serine esterases/lipases. Prog Lipid Res 43:534–552

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Brick DJ, Brumlik MJ, Buckley JT, Cao J, Davies PC, Misra S, Tranbarger TJ, Upton C (1995) A new family of lipolytic plant enzymes with members in rice, Arabidopsis, and maize. FEBS Lett 377:475–480

    Article  PubMed  CAS  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, Columbia

    Google Scholar 

  • Davies T (1998) The new automated mass spectrometry deconvolution and identification system (AMDIS). Spectroscopy (Europe) 10:24–27

    CAS  Google Scholar 

  • Dickinson H (1995) Dry stigmas, water and self-incompatibility in Brassica. Sex Plant Reprod 8:1–10

    Article  Google Scholar 

  • Dixit R, Rizzo C, Nasrallah M, Nasrallah J (2001) The Brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis. Plant Mol Biol 45:51–62

    Article  PubMed  CAS  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–S97

    Article  PubMed  CAS  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Fiebig A, Kimport R, Preuss D (2004) Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci USA 101:3286–3291

    Article  PubMed  CAS  Google Scholar 

  • Helsop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Google Scholar 

  • Hicks GR, Rojo E, Hong S, Carter DG, Raikhel NV (2004) Germinating pollen has tubular vacuoles, displays highly dynamic vacuole biogenesis, and requires VACUOLESS1 for proper function. Plant Physiol 134:1227–1239

    Article  PubMed  CAS  Google Scholar 

  • Hiscock SJ, McInnis SM (2003) Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci 8:606–613

    Article  PubMed  CAS  Google Scholar 

  • Hiscock SJ, Brown D, Gurr SJ, Dickinson HG (2004) Serine esterases are required for pollen tube penetration of the stigma in Brassica. Sex Plant Reprod 15:65–74

    Article  Google Scholar 

  • Hülskamp M, Kopczak SD, Horejsi TF, Kihl BK, Pruitt RE (1995) Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J 8:703–714

    Article  PubMed  Google Scholar 

  • Kemp BP, Doughty J (2003) Just how complex is the Brassica S-receptor complex? J Exp Bot 54:157–168

    Article  PubMed  CAS  Google Scholar 

  • Lee YL, Chen JC, Shaw JF (1997) The thioesterase I of Escherichia coli has arylesterase activity and shows stereospecificity for protease substrates. Biochem Biophys Res Comm 231:452–456

    Article  PubMed  CAS  Google Scholar 

  • Lolle SJ, Hsu W, Pruitt RE (1998) Genetic analysis of organ fusion in Arabidopsis thaliana. Genetics 149:607–619

    PubMed  CAS  Google Scholar 

  • Mayfield JA, Preuss D (2000) Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nat Cell Biol 2:128–130

    Article  PubMed  CAS  Google Scholar 

  • Mayfield JA, Fiebig A, Johnstone SE, Preuss D (2001) Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292:2482–2485

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah ME, Liu P, Nasrallah JB (2002) Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 297:247–249

    Article  PubMed  CAS  Google Scholar 

  • NIST/EPA/NIH Mass Spectral Library (2005) National Institute of Standards and Technology, Gaithersburg, MD

  • Preuss D, Lemieux B, Yen G, Davis RW (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–985

    Article  PubMed  CAS  Google Scholar 

  • Pruitt RE, Vielle-Calzada J-P, Ploense SE, Grossniklaus U, Lolle SJ (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA 97:1311–1316

    Article  PubMed  CAS  Google Scholar 

  • Sarker RH, Elleman CJ, Dickinson HG (1988) Control of pollen hydration in Brassica requires continued protein-synthesis, and glycosylation is necessary for intraspecific incompatibility. Proc Natl Acad Sci USA 85:4340–4344

    Article  PubMed  CAS  Google Scholar 

  • Swanson R, Edlund AF, Preuss D (2004) Species specificity in pollen-pistil interactions. Ann Rev Genet 38:793–818

    Article  PubMed  CAS  Google Scholar 

  • Swanson R, Clark T, Preuss D (2005) Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sex Plant Reprod 18:163–171

    Article  CAS  Google Scholar 

  • Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20:178–179

    Article  PubMed  CAS  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  Google Scholar 

Download references

Acknowledgments

We thank Beverly Chamberlain for assistance with GC-MS and Yimei Chen for assistance with electron microscopy. John Zdenek, Judy Coswell, and Sandra Suwanski provided greenhouse support. Aretha Fiebig, Elizabeth Bray, and Anna Dobritsa gave helpful comments on the manuscript. This study was supported by the University of Chicago Materials Research Science and Engineering Center and The Department of Energy (DP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne Preuss.

Additional information

Communicated by Hugh Dickinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Updegraff, E.P., Zhao, F. & Preuss, D. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod 22, 197–204 (2009). https://doi.org/10.1007/s00497-009-0104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-009-0104-5

Keywords

Navigation