Skip to main content

Decontamination of Hexavalent Chromium-Polluted Waters: Significance of Metallic Iron Technology

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants

Abstract

Chromium (Cr) is an important metal used in a variety of industrial applications, which significantly contribute to pollution of air, soil, and waters. In natural environments, chromium can exist mainly in two of its most stable oxidation states, (+III) and (+VI). Among them, Cr(VI) is the most hazardous due to its high mobility in the environment and severe harmful effects exerted on all living matters. Therefore, it should be removed from all contaminated waters. During the last 25 years, there has been great interest in using metallic iron (Fe0) for the abatement of Cr(VI) pollution. The first mechanism, known as the reductive-precipitation mechanism, was proposed at the beginning of the nineties, and attributed the efficiency of Fe0 in removing Cr(VI) mainly to the direct electron transfer from the Fe0 surface to Cr(VI), followed by precipitation of the resulted cations as simple hydroxides and/or mixed Fe(III)-Cr(III) (oxi)hydroxides. Recently, new perspectives were added to this early mechanism. A new concept, known as the adsorption-coprecipitation mechanism, suggests that direct reduction with Fe0, if applicable, is less important than had previously been assumed by the reductive-precipitation mechanism; accordingly, contaminants are quantitatively removed in Fe0/H2O systems principally by adsorption, coprecipitation, and size exclusion, while reduction, when possible, is mainly the result of indirect reducing agents produced by Fe0 corrosion. In spite of the substantial research work that has proven the capability of metallic iron as a reactive material to remove Cr(VI), there is no consensus at this time in what regards the mechanism of this process. Therefore, after providing an overview of chromium occurrence, chemistry, and toxicity, this work will critically review the existing knowledge on this subject, clearly demonstrating that mechanism of Cr(VI) removal with Fe0 is more complex than the simple reductive precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdo MSE, Sedahmed GH (1998) A new technique for removing hexavalent chromium from waste water and energy generation via galvanic reduction with scrap iron. Energy Convers Manag 39:943–951

    Article  CAS  Google Scholar 

  • Ahmad WA, Zakaria ZA, Khasim AR, Alias MA, Ismail SMHS (2010) Pilot-scale removal of chromium from industrial wastewater using the ChromeBac™ system. Bioresour Technol 101:4371–4378

    Article  CAS  Google Scholar 

  • Ai Z, Cheng Y, Zhang L, Qiu J (2008) Efficient removal of Cr(VI) from aqueous solution with Fe and Fe2O3 core-shell nanowires. Environ Sci Technol 42:6955–6960

    Article  CAS  Google Scholar 

  • Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270:105–110

    Article  CAS  Google Scholar 

  • Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26:S35–S41

    Article  CAS  Google Scholar 

  • Anderson RA (1998) Chromium, glucose intolerance and diabetes. J Am Coll Nutr 17:548–555

    Article  CAS  Google Scholar 

  • Aroua MK, Zuki FM, Sulaiman NM (2007) Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J Hazard Mater 147:752–758

    Article  CAS  Google Scholar 

  • Astrup T, Stipp SLS, Christensen TH (2000) Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zerovalent iron. Environ Sci Technol 34:163–168

    Article  CAS  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180:5–22

    Article  CAS  Google Scholar 

  • Baldea I, Nioc G (1970) Reaction between chromate and thiosulfate. II. Kinetics of tetrathionate formation. Inorg Chem 9:110–114

    Article  CAS  Google Scholar 

  • Barnes RJ, Van der Gast CJ, Riba O, Lehtovirta LE, Prosser JI, Dobson PJ, Thompson IP (2010) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184:73–80

    Article  CAS  Google Scholar 

  • Barnhart J (1997) Chromium chemistry and implications for environmental fate and transport. J Soil Contam 6:561–568

    Article  CAS  Google Scholar 

  • Barrera-Diaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12

    Article  CAS  Google Scholar 

  • Beaver LM, Stemmy EJ, Constant SL, Schwartz A, Little LG, Gigley JP, Chun G, Sugden KD, Ceryak SM, Patierno SR (2009) Lung injury, inflammation and Akt signaling following inhalation of particulate hexavalent chromium. Toxicol Appl Pharmacol 235:47–56

    Article  CAS  Google Scholar 

  • Bennett TA, Blowes DW, Puls RW, Gillham RW, Hanton-Fong CJ, Ptacek CJ (1997) A porous reactive wall for treatment of Cr(VI) and trichloroethylene in groundwater. In: Proceedings of the 213th ACS national meeting, April, San Francisco, pp 243–245

    Google Scholar 

  • Beukes JP, Pienaar JJ, Lachmann G (2000) The reduction of hexavalent chromium by sulphite in wastewater – an explanation of the observed reactivity pattern. Water SA 26:393–395

    CAS  Google Scholar 

  • Bhaumik M, Choi HJ, McCrindle RI, Maity A (2014) Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J Colloid Interface Sci 425:75–82

    Article  CAS  Google Scholar 

  • Bigg T, Judd SJ (2000) Zero-valent iron for water treatment. Environ Technol 21:661–670

    Article  CAS  Google Scholar 

  • Bilardi S, Calabro PS, Care S, Moraci N, Noubactep C (2013) Improving the sustainability of granular iron/pumice systems for water treatment. J Environ Manag 121:133–141

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ (1992) Geochemical remediation of groundwater by permeable reactive walls: removal of chromate by reaction with iron-bearing solids. In: Proceeding of the subsurface restoration conference, third international conference on groundwater quality research, June 21–24, Dallas, pp 214–216

    Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL (1997) In-situ remediation of chromate contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol 31:3348–3357

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Bener SG, McRae CWT Puls RW (1998) Treatment of dissolved metals using permeable reactive barriers. In: Proceedings of the groundwater quality: remediation and protection conference, September, Tubingen, Germany, IAHS Publication 250, pp 483–490

    Google Scholar 

  • Blowes DW, Gillham RW, Ptacek CJ, Puls RW, Bennett TA, O’Hannesin SF, Hanton-Fong CJ, Bain JG (1999) An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water, vol 1 Design and installation, EPA/600/R-99/095a. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Blowes DW, Ptacek CJ, Benner SG, McRae CWT, Bennett TA, Puls RW (2000) Treatment of inorganic contaminants using permeable reactive barriers. J Contam Hydrol 45:123–137

    Article  CAS  Google Scholar 

  • Borthiry GR, Antholine WE, Kalyanaraman B, Myers JM, Myers CR (2007) Reduction of hexavalent chromium by human cytochrome b5: generation of hydroxyl radical and superoxide. Free Radic Biol Med 42:738–755

    Article  CAS  Google Scholar 

  • Boruah PK, Borthakur P, Darabdhara G, Kamaja CK, Karbhal I, Shelke MV, Phukan P, Saikiad D, Da MR (2016) Sunlight assisted degradation of dye molecules and reduction of toxic Cr(VI) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite. RSC Adv 6:11049–11063

    Article  CAS  Google Scholar 

  • Bowers AR, Ortiz CA, Cardozo RJ (1986) Iron process for treatment of Cr(VI) wastewaters. In: Proceedings of the 41st industrial waste conference, May 13–15, Purdue University, West Lafayette, pp 465–473

    Google Scholar 

  • Calderon B, Fullana A (2015) Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Res 83:1–9

    Article  CAS  Google Scholar 

  • Cantrell KJ, Kaplan DI, Wietsma TW (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater 42:201–212

    Article  CAS  Google Scholar 

  • Case OP (1974) Metallic recovery from waste waters utilizing cementation. Edison Water Quality Research Laboratory, National Environmental Research Center, Edison, New Jersey, EPA-670/2-74-008

    Google Scholar 

  • Case OP, Jones RBL (1969) Treatment of brass mill effluents. Connecticut Research Commission RSA-68-34

    Google Scholar 

  • Chakrabarti S, Mitra P, Banerjee P, Sarkar D (2014) Reduction of hexavalent chromium present in wastewater by steel wool in a continuous flow system. APCBEE Procedia 10:59–63

    Article  CAS  Google Scholar 

  • Chang LY (2003) Alternative chromium reduction and heavy metal precipitation methods for industrial wastewater. Environ Prog 22:174–182

    Article  CAS  Google Scholar 

  • Cheballah K, Sahmoune A, Messaoudi K, Drouiche N, Lounici H (2015) Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation. Chem Eng Process 96:94–99

    Article  CAS  Google Scholar 

  • Chekli L, Bayatsarmadi B, Sekine R, Sarkar B, Maoz Shen A, Scheckel KG, Skinner W, Naidu R, Shon HK, Lombi E, Donner E (2016) Analytical characterisation of nanoscale zero-valent iron: a methodological review. Anal Chim Acta 903:13–35

    Article  CAS  Google Scholar 

  • Chen SS, Cheng CY, Li CW, Chai PH, Chang YM (2007) Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. J Hazard Mater 142:362–367

    Article  CAS  Google Scholar 

  • Chen SS, Hsu BC, Hung LW (2008) Chromate reduction by waste iron from electroplating wastewater using plug flow reactor. J Hazard Mater 152:1092–1097

    Article  CAS  Google Scholar 

  • Cheung KH, Gua JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Choppala G, Bolan N, Park JH (2013) Chromium contamination and its risk management in complex environmental settings. Adv Agron 120:129–172

    Article  CAS  Google Scholar 

  • Cieslak-Golonka M (1995) Toxic and mutagenic effects of chromium(VI). A review. Polyhedron 15:3667–3689

    Article  Google Scholar 

  • Clifford D, Subramanian S, Sorg TJ (1986) Water treatment processes. III. Removing dissolved inorganic contaminants from water. Environ Sci Technol 20:1072–1080

    Article  CAS  Google Scholar 

  • Cohen M (1959) The formation and properties of passive films on iron. Can J Chem 37:286–291

    Article  CAS  Google Scholar 

  • Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717–3726

    Article  CAS  Google Scholar 

  • Comba S, Di Molfetta A, Sethi R (2011) A comparison between field applications of nano-, micro-, and millimetric vero-valent vron for the remediation of contaminated aquifers. Water Air Soil Pollut 215:595–607

    Article  CAS  Google Scholar 

  • Costa M (1997) Toxicity and carcinogenity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27:431–442

    Article  CAS  Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromate in our drinking water. Toxicol Appl Pharmacol 188:1–5

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry. John Wiley & Sons, New York

    Google Scholar 

  • Crane RA, Noubactep C (2012) Elemental metals for environmental remediation: lessons from hydrometallurgy. Fresenius Environ Bull 21:1192–1196

    CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  CAS  Google Scholar 

  • Dai Y, Hu Y, Jiang B, Zou J, Tian G, Fu H (2016) Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. J Hazard Mater 309:249–258

    Article  CAS  Google Scholar 

  • Di Natale F, Erto A, Lancia A, Musmarra D (2015) Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon. J Hazard Mater 281:47–55

    Article  CAS  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    Article  CAS  Google Scholar 

  • Domga R, Togue-Kamga F, Noubactep C, Tchatchueng JB (2015) Discussing porosity loss of Fe0 packed water filters at ground level. Chem Eng J 263:127–134

    Article  CAS  Google Scholar 

  • Dong H, Ahmad K, Zeng G, Li Z, Chen G, He Q, Xie Y, Wu Y, Zhao F, Zeng Y (2016a) Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron. Environ Pollut 211:363–369

    Article  CAS  Google Scholar 

  • Dong H, Zhao F, Zeng G, Tang L, Fan C, Zhang L, Zeng Y, He Q, Xie Y, Wu Y (2016b) Aging study on carboxymethyl cellulose-coated zero-valent ironnanoparticles in water: chemical transformation and structural evolution. J Hazard Mater 312:234–242

    Article  CAS  Google Scholar 

  • Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y (2016c) The dual effects of carboxymethylcellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Chemosphere 144:1682–1689

    Google Scholar 

  • Dong H, He Q, Zeng G, Tang L, Zhang C, Xie Y, Zeng Y, Zhao F, Wu Y (2016d) Chromate removal by surface-modified nanoscale zero-valent iron: effect of different surface coatings and water chemistry. J Colloid Interface Sci 471:7–13

    Article  CAS  Google Scholar 

  • Dong H, Zeng Y, Zeng G, Huang D, Liang J, Zhao F, He Q, Xie Y, Wu Y (2016e) EDDS-assisted reduction of Cr(VI) by nanoscale zero-valent iron. Sep Purif Technol 165:86–91

    Article  CAS  Google Scholar 

  • Doyle CS, Kendelewicz T, Bostiki BC, Brown GE Jr (2004) Soft x-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(VI)-containing aqueous solutions. Geochim Cosmochim Acta 68:4287–4299

    Article  CAS  Google Scholar 

  • Dozzi MV, Saccomanni A, Selli E (2012) Cr(VI) photocatalytic reduction: effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2. J Hazard Mater 211–212:188–195

    Article  CAS  Google Scholar 

  • Dries J, Bastiaens L, Springael D, Agathos SN, Diels L (2005) Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environ Sci Technol 39:8460–8465

    Article  CAS  Google Scholar 

  • El-Shazly AH, Mubarak AA, Konsowa AH (2005) Hexavalent chromium reduction using a fixed bed of scrap bearing iron spheres. Desalination 185:307–316

    Article  CAS  Google Scholar 

  • El-Taweel YA, Nassef EM, Elkheriany I, Sayed D (2015) Removal of Cr(VI) ions from waste water by electrocoagulation using iron electrode. Egypt J Pet 24:183–192

    Article  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82

    Article  CAS  Google Scholar 

  • Erdem M, Tumen F (2004) Cr(VI) removal from aqueous solution by the ferrite process. J Hazard Mater B109:71–77

    Article  CAS  Google Scholar 

  • Esfahani AR, Hojati S, Azimi A, Farzadian M, Khataee A (2015) Enhanced hexavalent chromium removal from aqueous solution using a sepiolite-stabilized zero-valent iron nanocomposite: impact of operational parameters and artificial neural network modeling. J Taiwan Inst Chem Eng 49:172–182

    Article  CAS  Google Scholar 

  • Farrell J, Kason M, Melitas N, Li T (2000) Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ Sci Technol 34:514–521

    Article  CAS  Google Scholar 

  • Fendorf SE (1995) Surface reactions of chromium in soil and waters. Geoderma 67:55–71

    Article  CAS  Google Scholar 

  • Fendorf S, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31(2):315–320

    Article  CAS  Google Scholar 

  • Fendorf SE, Wielinga B, Hansel C (2000) Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction. Int Geol Rev 42:691–701

    Article  Google Scholar 

  • Feng P, Guan X, Sun Y, Choi W, Qin H, Wang J, Qiao J, Li L (2015) Weak magnetic field accelerates chromate removal by zero-valent iron. J Environ Sci 31:175–183

    Article  Google Scholar 

  • Fernandez-Sanchez JM, Sawvel EJ, Alvarez PJJ (2004) Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes. Chemosphere 54:823–829

    Article  CAS  Google Scholar 

  • Fiuza A, Silva A, Carvalho G, Fuente AV, Delerue-Matos C (2010) Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron. J Hazard Mater 175:1042–1047

    Article  CAS  Google Scholar 

  • Flury B, Frommer J, Eggenberger U, Mader U, Nachtegaal M, Kretzschmar R (2009) Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ Sci Technol 43:6786–6792

    Article  CAS  Google Scholar 

  • Fu FL, Han WJ, Tang B, Hu M, Cheng ZH (2013) Insights into environmental remediation of heavy metal and organic pollutants: simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity. Chem Eng J 232:534–540

    Article  CAS  Google Scholar 

  • Fu R, Yang Y, Xu Z, Zhang X, Guo X, Bi D (2015a) The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere 138:726–734

    Article  CAS  Google Scholar 

  • Fu F, Cheng Z, Dionysiou DD, Tang B (2015b) Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: performance and mechanism. J Hazard Mater 298:261–269

    Article  CAS  Google Scholar 

  • Fu F, Hu M, Tang B, Han W, Cheng Z (2015c) Removal of Cr(VI) from wastewater using acid-washed zero-valent iron catalyzed by polyoxometalate under acid conditions: efficacy, reaction mechanism and influencing factors. J Taiwan Inst Chem Eng 47:177–181

    Article  CAS  Google Scholar 

  • Fuller SJ, Stewart DI, Burke IT (2013) Chromate reduction in highly alkaline groundwater by zerovalent iron: implications for its use in a permeable reactive barrier. Ind Eng Chem Res 52(13):4704–4714

    Article  CAS  Google Scholar 

  • Gandhi S, Oh BT, Schnoor JL, Alvarez PJJ (2002) Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions. Water Res 36:1973–1982

    Article  CAS  Google Scholar 

  • Gatcha-Bandjun N, Noubactep C, Loura Mbenguela B (2014) Water treatment with Fe0/H2O systems: learning from internal electrolysis. Fresenius Environ Bull 23:2663–2669

    CAS  Google Scholar 

  • Geen A, Robertson AP, Leckie JO (1994) Complexation of carbonate species at the goethite surface: implications for adsorption of metal ions in natural waters. Geochim Cosmochim Acta 58(9):2073–2086

    Article  Google Scholar 

  • Geng B, Jin Z, Li T, Qi X (2009) Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water. Sci Total Environ 407:4994–5000

    Article  CAS  Google Scholar 

  • Genovese M, Lian K (2015) Polyoxometalate modified inorganic–organic nanocomposite materials for energy storage applications: a review. Curr Opin Solid State Mater Sci 19:126–137

    Article  CAS  Google Scholar 

  • Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut 222(1–4):103–148

    Article  CAS  Google Scholar 

  • Gheju M, Balcu I (2010) Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: effect of scrap iron shape and size. J Hazard Mater 182:484–493

    Article  CAS  Google Scholar 

  • Gheju M, Balcu I (2011) Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J Hazard Mater 196:131–138

    Article  CAS  Google Scholar 

  • Gheju M, Iovi A (2006) Kinetics of hexavalent chromium reduction by scrap iron. J Hazard Mater B135:66–73

    Article  CAS  Google Scholar 

  • Gheju M, Iovi A, Balcu I (2008) Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 1: Effect of feed solution pH. J Hazard Mater 153:655–662

    Article  CAS  Google Scholar 

  • Gillham RW (2008) Development of the granular iron permeable reactive barrier technology (good science or good fortune). In: Yeung AT, Lo IMC (eds) Advances in environmental geotechnology and global sustainable development. Advanced Technovation Limited, Hong-Kong, pp 5–15

    Google Scholar 

  • Gillham RW, O’Hannesin SF (1991) Metal-catalysed abiotic degradation of halogenated organic compounds. Ground Water 29:752–761

    Google Scholar 

  • Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32:958–967

    Article  CAS  Google Scholar 

  • Gode F, Pehlivan E (2005) Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. J Hazard Mater 119:175–182

    Article  CAS  Google Scholar 

  • Gore CT, Omwoma S, Chen W, Song YF (2016) Interweaved LDH/PAN nanocomposite films: application in the design of effective hexavalent chromium adsorption technology. Chem Eng J 284:794–801

    Article  CAS  Google Scholar 

  • Gould JP (1982) The kinetics of hexavalent chromium reduction by metallic iron. Water Res 16:871–877

    Article  CAS  Google Scholar 

  • Gromboni CF, Donati GL, Matos WO, Neves EFA, Nogueira ARA, Nobrega JA (2010) Evaluation of metabisulfite and a commercial steel wool for removing chromium(VI) from wastewater. Environ Chem Lett 8:73–77

    Article  CAS  Google Scholar 

  • Grossl PR, Eick M, Sparks DL, Goldberg S, Ainsworth CC (1997) Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31:321–326

    Article  CAS  Google Scholar 

  • Gu H, Rapole SB, Sharma J, Huang Y, Cao D, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Walters B, Wei S, Guo Z (2012) Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Adv 2:11007–11018

    Article  CAS  Google Scholar 

  • Guertin J, Jacobs JA, Avakian CP (2005) Chromium(VI) handbook. CRC Press, Boca Raton

    Google Scholar 

  • Han W, Fu F, Cheng Z, Tang B, Wua S (2016) Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. J Hazard Mater 302:437–446

    Article  CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92:2355–2388

    Article  CAS  Google Scholar 

  • He H, Wu D, Wang Q, Luo C, Duan N (2016) Sequestration of hexavalent chromium by Fe(II)/Fe(III) hydroxides: structural Fe(II) reactivity and PO4 3− effect. Chem Eng J 283:948–955

    Article  CAS  Google Scholar 

  • Henderson AD, Demond AH (2007) Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ Eng Sci 24:401–424

    Article  CAS  Google Scholar 

  • Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42:2600–2605

    Article  CAS  Google Scholar 

  • Hoover CR, Masselli JW (1941) Disposal of waste liquors from chromium plating. Ind Eng Chem 33:131–134

    Article  CAS  Google Scholar 

  • Hu CY, Lo SL, Liou YH, Hsu YW, Shih K, Lin CJ (2010) Hexavalent chromium removal from near natural water by copper-iron bimetallic particles. Water Res 44:3101–3108

    Article  CAS  Google Scholar 

  • Isaacs HS, Virtanen S, Ryan MP, Schmuki P, Oblonski LJ (2002) Incorporation of Cr in the passive film on Fe from chromate solutions. Electrochim Acta 47:3127–3130

    Article  CAS  Google Scholar 

  • Jabeen H, Chandra V, Jung S, Lee JW, Kim KS, Kim SB (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585

    Article  CAS  Google Scholar 

  • Jeen SW, Blowes DW, Gillham RW (2008) Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions. J Contam Hydrol 95:76–91

    Article  CAS  Google Scholar 

  • Jia CG, Zhang YP, Wang H, Ou GN, Liu QM, Lin JM (2014) Rapid biosorption and reduction removal of Cr(VI) from aqueous solution by dried seaweeds. J Cent South Univ 21(7):2801–2809

    Article  CAS  Google Scholar 

  • Junyapoon S, Weerapong S (2006) Removal of hexavalent chromium from aqueous solutions by scrap iron fillings. KMITL Sci Technol J 6:1–12

    Google Scholar 

  • Kadu BS, Chikate RC (2013) nZVI based nanocomposites: role of noble metal and clay support on chemisorptive removal of Cr(VI). J Environ Chem Eng 1:320–327

    Article  CAS  Google Scholar 

  • Kadu BS, Sathe YD, Ingle AB, Chikate RC, Patil KR, Rode CV (2011) Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl Catal B Environ 104:407–414

    Article  CAS  Google Scholar 

  • Kalidhasan S, Kumar ASK, Rajesh V, Rajesh N (2016) The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives – a perspective. Coord Chem Rev 317:157–166

    Article  CAS  Google Scholar 

  • Kaplan DI, Gilmore TJ (2004) Zerovalent iron removal rates of aqueous Cr(VI) measured under flow conditions. Water Air Soil Pollut 155:21–33

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1832–1831

    Article  Google Scholar 

  • Kim SD, Park KS, Gu MB (2002) Toxicity of hexavalent chromium to Daphnia magna: influence of reduction reaction by ferrous iron. J Hazard Mater A93:155–164

    Article  Google Scholar 

  • Kim C, Lan Y, Deng B (2007) Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction. Geochem J 41:397–405

    Article  CAS  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46

    Article  CAS  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley EG, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480

    Article  CAS  Google Scholar 

  • Kjeldsen P, Locht T (2002) Removal of chromate in a permeable reactive barrier using zero-valent iron. In: Proceedings of the groundwater quality conference: natural and enhanced restoration of groundwater pollution, June 2001, Sheffield, IAHS Publication 275, pp 409–414

    Google Scholar 

  • Kohn T, Livi KJT, Roberts AL, Vikesland PJ (2005) Longevity of granular iron in groundwater treatment processes: corrosion product development. Environ Sci Technol 39:2867–2879

    Article  CAS  Google Scholar 

  • Kong X, Han Z, Zhang W, Song L, Li H (2016) Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+ and Cd2+ from aqueous solution. J Environ Manag 169:84–90

    Article  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  CAS  Google Scholar 

  • Kumar RV, Basumatary AK, Ghoshal AK, Pugazhenthi G (2015) Performance assessment of an analcime-C zeolite-ceramic composite membrane by removal of Cr(VI) from aqueous solution. RSC Adv 5(9):6246–6254

    Article  CAS  Google Scholar 

  • Lai KCK, Lo IM (2008) Removal of chromium(VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environ Sci Technol 42:1238–1244

    Article  CAS  Google Scholar 

  • Lan YQ, Yang JX, Deng B (2006) Catalysis of dissolved and adsorbed iron in soil suspension for chromium(VI) reduction by sulfide. Pedosphere 16:572–578

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nano-scale particles on Escherichia coli. Environ Sci Technol 42:4927–4933

    Article  CAS  Google Scholar 

  • Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. http://dx.doi.org/10.1016/j.scitotenv.2016.02.003

    Google Scholar 

  • Li Z, Jones HK, Bowman RS, Helferich R (1999) Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zero valent iron. Environ Sci Technol 33:4326–4330

    Article  CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mat Sci 31:111–122

    Article  CAS  Google Scholar 

  • Li Z, Jones HK, Zhang P, Bowman RS (2007) Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets. Chemosphere 68:1861–1866

    Article  CAS  Google Scholar 

  • Li XQ, Cao J, Zhang WX (2008) Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-Ray Photoelectron Spectroscopy (HR-XPS). Ind Eng Chem Res 47:2131–2139

    Article  CAS  Google Scholar 

  • Li Z, Greden K, Alvarez P, Gregory K, Lowry G (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zero-valent iron (nZVI) to E. coli. Environ Sci Technol 44:3462–3467

    Article  CAS  Google Scholar 

  • Li Y, Jin Z, Li T (2012) A novel and simple method to synthesize SiO2-coated Fe nanocomposites with enhanced Cr (VI) removal under various experimental conditions. Desalination 288:118–125

    Article  CAS  Google Scholar 

  • Lin CJ (2002) The chemical transformations of chromium in natural waters – a model study. Water Air Soil Pollut 139:137–158

    Article  CAS  Google Scholar 

  • Lin YH, Tseng HH, Wey MY, Lin MD (2010) Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci Total Environ 408:2260–2267

    Article  CAS  Google Scholar 

  • Linos A, Petralias A, Christophi CA, Christoforidou E, Kouroutou P, Stoltidis M, Veloudaki A, Tzala E, Makris KC, Karagas MR (2011) Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece – an ecological study. Environ Health 10:50–57

    Article  CAS  Google Scholar 

  • Liu T, Lo IMC (2011) Influences of humic acid on Cr(VI) removal by zero-valent iron from groundwater with various constituents: implication for long-term PRB performance. Water Air Soil Pollut 216:473–483

    Article  CAS  Google Scholar 

  • Liu J, Liu H, Wang C, Li X, Tong Y, Xuan X, Cui G (2008a) Synthesis, characterization and re-activation of a Fe0/Ti system for the reduction of aqueous Cr(VI). J Hazard Mater 151:761–769

    Article  CAS  Google Scholar 

  • Liu T, Tsang DCW, Lo IMC (2008b) Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environ Sci Technol 42:2092–2098

    Article  CAS  Google Scholar 

  • Liu J, Wang C, Shi J, Liu H, Tong Y (2009) Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters. J Hazard Mater 163:370–375

    Article  CAS  Google Scholar 

  • Liu L, Wei S, Liu Y, Shao Z (2012a) Influence of photoirradation on reduction of hexavalent chromium by zero-valent iron in the presence of organic acids. Desalination 285:271–276

    Article  CAS  Google Scholar 

  • Liu T, Wang ZL, Zhao L, Yang X (2012b) Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater. Chem Eng J 189–190:196–202

    Article  CAS  Google Scholar 

  • Liu T, Wang ZL, Sun Y (2015) Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chem Eng J 263:55–61

    Article  CAS  Google Scholar 

  • Liu A, Liu J, Han J, Zhang WX (2016) Evolution of nanoscale zero-valent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J Hazard Mater. doi:10.1016/j.jhazmat.2015.12.070

  • Lo IMC, Lam CSC, Lai KCK (2006) Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal. Water Res 40:595–605

    Article  CAS  Google Scholar 

  • Lopez-Tellez G, Barrera-Diaz CE, Balderas-Hernandez P, Roa-Morales G, Bilyeu B (2011) Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J 173:480–485

    Article  CAS  Google Scholar 

  • Lu X, Li M, Tang C, Feng C, Liu X (2012) Electrochemical depassivation for recovering Fe0 reactivity by Cr(VI) removal with a permeable reactive barrier system. J Hazard Mater 213–214:355–360

    Article  CAS  Google Scholar 

  • Lugo-Lugo V, Barrera-Diaz C, Bilyeu B, Balderas-Hernandez P, Urena-Nunez F, Sanchez-Mendieta V (2010) Cr(VI) reduction in wastewater using a bimetallic galvanic reactor. J Hazard Mater 176:418–425

    Article  CAS  Google Scholar 

  • Lugo-Lugo V, Bernal-Martinez LA, Urena-Nunez F, Linares-Hernandez I, Almazan-Sanchez PT, Vazquez-Santillan PJB (2014) Treatment of Cr(VI) present in plating wastewater using a Cu/Fe galvanic reactor. Fuel 158:203–214

    Article  CAS  Google Scholar 

  • Luo F, Chen Z, Megharaj M, Naidu R (2016) Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel. Chem Eng J 294:290–297

    Article  CAS  Google Scholar 

  • Lv X, Xu J, Jiang G, Xu X (2011) Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85:1204–1209

    Article  CAS  Google Scholar 

  • Madhavi V, Prasad TNVKV, Reddy AVB, Reddy BR, Madhavi G (2013) Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim Acta A Mol Biomol Spectrosc 116:17–25

    Article  CAS  Google Scholar 

  • Mak MSH, Lo IMC (2011) Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron. Chemosphere 84:234–240

    Article  CAS  Google Scholar 

  • Malaviya P, Singh A (2011) Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Crit Rev Environ Sci Technol 41:1111–1172

    Article  CAS  Google Scholar 

  • Mamais D, Noutsopoulos C, Kavallari I, Nyktari E, Kaldis A, Panousi E, Nikitopoulos G, Antoniou K, Nasioka M (2016) Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. Chemosphere 152:238–244

    Article  CAS  Google Scholar 

  • Marsh TL, McInerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl Environ Microbiol 67:1517–1521

    Article  CAS  Google Scholar 

  • McCafferty E, Bernett MK, Murday JS (1988) An XPS study of passive film formation on iron in chromate solutions. Corros Sci 28:559–576

    Article  CAS  Google Scholar 

  • McMurty DC, Elton RO (1985) New approach to in-situ treatment of contaminated groundwaters. Environ Prog 4(3):168–170

    Article  Google Scholar 

  • Mitra P, Sarkar D, Chakrabarti S, Dutta BK (2011) Reduction of hexa-valent chromium with zero-valent iron: batch kinetic studies and rate model. Chem Eng J 171:54–60

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137:762–811

    Article  CAS  Google Scholar 

  • Montesinos VN, Quici N, Litter MI (2014) Visible light enhanced Cr(VI) removal from aqueous solution by nanoparticulated zerovalent iron. Catal Commun 46:57–60

    Article  CAS  Google Scholar 

  • Muthukrishnan M, Guha BK (2008) Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination 219:171–178

    Article  CAS  Google Scholar 

  • Mwakabona HT, Ndé-Tchoupé AI, Njau KN, Noubactep C, Wydra KD (2017) Metallic iron for safe drinking water provision: Considering a lost knowledge. Water Res http://dx.doi.org/10.1016/j.watres.2017.03.001

  • Mystrioti C, Sparis D, Papasiopi N, Xenidis A, Dermatas D, Chrysochoou M (2015) Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters. Bull Environ Contam Toxicol 94:302–307

    Article  CAS  Google Scholar 

  • Mystrioti C, Xanthopoulou TD, Papassiopi N, Xenidis A (2016) Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction. Sci Total Environ 539:105–113

    Article  CAS  Google Scholar 

  • Naimi-Joubani M, Shirzad-Siboni M, Yang JK, Gholami M, Farzadkia M (2015) Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. J Ind Eng Chem 22:317–323

    Article  CAS  Google Scholar 

  • Němeček J, Pokorný P, Lacinová L, Černík M, Masopustová Z, Lhotský O, Filipová A (2015a) Cajthaml T, Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test. J Hazard Mater 300:670–679

    Article  CAS  Google Scholar 

  • Němeček J, Pokorný P, Lhotský O, Knytl V, Najmanová P, Steinová J, Černík M, Filipová A, Filip J, Cajthaml T (2015b) Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ. doi:10.1016/j.scitotenv.2016.01.019

  • Noubactep C (2007) Processes of contaminant removal in “Fe0-H2O” systems revisited: the importance of co-precipitation. Open Environ J 1:9–13

    Article  CAS  Google Scholar 

  • Noubactep C (2009a) An analysis of the evolution of reactive species in Fe0/H2O systems. J Hazard Mater 168:1626–1631

    Article  CAS  Google Scholar 

  • Noubactep C (2009b) On the operating mode of bimetallic systems for environmental remediation. J Hazard Mater 164:394–395

    Article  CAS  Google Scholar 

  • Noubactep C (2010a) Elemental metals for environmental remediation: learning from cementation process. J Hazard Mater 181:1170–1174

    Article  CAS  Google Scholar 

  • Noubactep C (2010b) Metallic iron for safe drinking water worldwide. Chem Eng J 165:740–749

    Article  CAS  Google Scholar 

  • Noubactep C (2015) Metallic iron for environmental remediation: a review of reviews. Water Res 85:114–123

    Article  CAS  Google Scholar 

  • Noubactep C, Care S (2010a) On nanoscale metallic iron for groundwater remediation. J Hazard Mater 182:923–927

    Article  CAS  Google Scholar 

  • Noubactep C, Care C (2010b) Dimensioning metallic iron beds for efficient contaminant removal. Chem Eng J 163:454–460

    Article  CAS  Google Scholar 

  • Noubactep C, Schoner A (2010) Metallic iron for environmental remediation: learning from electrocoagulation. J Hazard Mater 175:1075–1080

    Article  CAS  Google Scholar 

  • Noubactep C, Care S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut 223:1363–1382

    Article  CAS  Google Scholar 

  • O’Hannesin SF, Gillham RW (1993) In situ degradation of halogenated organics by permeable reaction wall. Ground Water Currents, EPA/542/N-93/003

    Google Scholar 

  • Odziemkowski MS, Simpraga RP (2004) Distribution of oxides on iron materials used for remediation of organic groundwater contaminants: implication for hydrogen evolution reactions. Can J Chem 82:1–12

    Article  Google Scholar 

  • Oh BT, Lee JY, Yoon J (2007a) Removal of contaminants in leachate from landfill by waste steel scrap and converter slag. Environ Geochem Health 29:331–336

    Article  CAS  Google Scholar 

  • Oh YJ, Song H, Shin WS, Choi SJ, Kim YH (2007b) Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Chemosphere 66:858–865

    Article  CAS  Google Scholar 

  • Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77

    Article  CAS  Google Scholar 

  • Ozer A, Altundogan HS, Erdem M, Tumen F (1997) A study on the Cr(VI) removal from aqueous soluţions by steel wool. Environ Pollut 97:107–112

    Article  CAS  Google Scholar 

  • Palmer CD, Puls RW (1994) Natural attenuation of hexavalent chromium in groundwater and soils, Office of Research and Development, EPA/540/5-94/505. Office of Research and Development, Washington, DC

    Google Scholar 

  • Palmer CD, Wittbrodt PR (1991) Processes affecting the remediation of chromium-contaminated sites. Environ Health Perspect 92:25–40

    Article  CAS  Google Scholar 

  • Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med 52:1–18

    CAS  Google Scholar 

  • Perez E, Ayele L, Getachew G, Fetter G, Bosch P, Mayoral A, Diaz I (2015) Removal of chromium(VI) using nano-hydrotalcite/SiO2 composite. J Environ Chem Eng 3:1555–1561

    Article  CAS  Google Scholar 

  • Petala E, Dimos K, Douvalis A, Bakas T, Tucek J, Zboril R, Karakassides MA (2013) Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. J Hazard Mater 261:295–306

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  • Poguberovic SS, Krcmara DM, Maletica SP, Konya Z, Tomasevic Pilipovic DD, Kerkez DV, Roncevic SD (2016) Removal of As(III) and Cr(VI) from aqueous solutions using “green”zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng 90:42–49

    Article  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Powell RM, Puls RW (1997) Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron. Environ Sci Technol 31:2244–2251

    Article  CAS  Google Scholar 

  • Powell RM, Puls RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922

    Article  CAS  Google Scholar 

  • Prasad PVVV, Das C, Golder AK (2011) Reduction of Cr(VI) to Cr(III) and removal of total chromium from wastewater using scrap iron in the form of zerovalent iron(ZVI): batch and column studies. Can J Chem Eng 89(6):1575–1582

    Article  CAS  Google Scholar 

  • Pratt AR, Blowes DW, Ptacek CJ (1997) Products of chromate reduction on proposed subsurface remediation material. Environ Sci Technol 31:2492–2498

    Article  CAS  Google Scholar 

  • Puls RW, Blowes DW, Gillham RW (1999a) Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. J Hazard Mater 68:109–124

    Article  CAS  Google Scholar 

  • Puls RW, Paul CJ, Powell RM (1999b) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl Geochem 14:989–1000

    Article  CAS  Google Scholar 

  • Qian H, Wu Y, Liu Y, Xu X (2008) Kinetics of hexavalent chromium reduction by iron metal. Front Environ Sci Eng China 2:51–56

    Article  Google Scholar 

  • Qiu SR, Lai HF, Roberson MJ, Hunt ML, Amrhein C, Giancarlo LC, Flynn GW, Yarmoff JA (2000) Removal of contaminants from aqueous solution by reaction with iron surfaces. Langmuir 16:2230–2236

    Article  CAS  Google Scholar 

  • Qiu X, Fang Z, Yan X, Gu F, Jiang F (2012) Emergency remediation of simulated chromium (VI)-polluted river by nanoscale zero-valent iron: laboratory study and numerical simulation. Chem Eng J 193–194:358–365

    Article  CAS  Google Scholar 

  • Rai D, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349

    Article  CAS  Google Scholar 

  • Rai D, Eary LE, Zacara LM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23

    Article  CAS  Google Scholar 

  • Reardon EJ (2005) Zerovalent irons: styles of corrosion and inorganic control on hydrogen pressure buildup. Environ Sci Technol 39:7311–7317

    Article  CAS  Google Scholar 

  • Reynolds GW, Hoff JT, Gillham RW (1990) Sampling bias caused by materials used to monitor halocarbons in groundwater. Environ Sci Technol 24:135–142

    Article  CAS  Google Scholar 

  • Ritter K, Odziemkowski MS, Gillham RW (2002) An in situ study of the role of surface films on granular iron in the permeable iron wall technology. J Contam Hydrol 55:87–111

    Article  CAS  Google Scholar 

  • Rivero-Huguet M, Marshall WD (2009) Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles. J Hazard Mater 169:1081–1087

    Article  CAS  Google Scholar 

  • Rusevova K, Kopinke FD, Georgi A (2012) Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions – influence of Fe(II)/Fe(III) ratio on catalytic performance. J Hazard Mater 241–242:433–440

    Article  CAS  Google Scholar 

  • Scherer MMS, Richter S, Valentine RL, Alvarez PJJ (2000) Chemistry and microbiology of reactive barriers for in situ groundwater cleanup. Crit Rev Environ Sci Technol 30:363–411

    Article  CAS  Google Scholar 

  • Senzaki T, Kumagai Y (1988) Removal of chlorinated organic compounds from wastewater by reduction process: treatment of 1,1,2,2-tetrachloroethane with iron powder. Kogyo Yosui 357:2–7

    Google Scholar 

  • Senzaki T, Kumagai Y (1989) Removal of chlorinated organic compounds from wastewater by reduction process: II. treatment of trichloroethylene with iron powder. Kogyo Yosui 369:19–25

    Google Scholar 

  • Sharma AK, Kumar R, Mittal S, Hussain S, Arora M, Sharma RC, Babu JN (2015) In situ reductive regeneration of zerovalent iron nanoparticles immobilized on cellulose for atom efficient Cr(VI) adsorption. RSC Adv 5:89441–89446

    Article  CAS  Google Scholar 

  • Sheng G, Hu J, Li H, Li J, Huang Y (2016) Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Chemosphere 148:227–232

    Article  CAS  Google Scholar 

  • Shi T, Wang Z, Liu Y, Jia S, Changming D (2009) Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J Hazard Mater 161:900–906

    Article  CAS  Google Scholar 

  • Shi L, Zhang X, Chen Z (2011) Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  CAS  Google Scholar 

  • Shi GM, Zhang B, Xu XX, Fu YH (2015) Graphene oxide coated coordination polymer nanobelt composite material: a new type of visible light active and highly efficient photocatalyst for Cr(VI) reduction. Dalton Trans 44:11155–11164

    Article  CAS  Google Scholar 

  • Shih YJ, Chen CW, Hsia KF, Dong CD (2015) Granulation for extended-release of nanoscale zero-valent iron exemplified by hexavalent chromium reduction in aqueous solution. Sep Purif Technol 156:1073–1081

    Article  CAS  Google Scholar 

  • Shupack SI (1991) The chemistry of chromium and some resulting analytical problems. Environ Health Perspect 92:7–11

    Article  CAS  Google Scholar 

  • Simeonidis K, Mourdikoudis S, Kaprara E, Mitrakasd M, Polavarapu L (2016) Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ Sci Water Res Technol 2:43–70

    Article  Google Scholar 

  • Singh KP, Singh AK, Gupta S, Sinha S (2011) Optimization of Cr(VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach. Desalination 270:275–284

    Article  CAS  Google Scholar 

  • Singh R, Bishnoi NR, Kirrolia A, Kumar R (2013) Synergism of Pseudomonas aeruginosa and Fe0 for treatment of heavy metal contaminated effluents using small scale laboratory reactor. Bioresour Technol 127:49–58

    Article  CAS  Google Scholar 

  • Song DI, Kim YH, Shin WS (2005) A simple mathematical analysis on the effect of sand in Cr(VI) reduction using zero valent iron. Korean J Chem Eng 22:67–69

    Article  CAS  Google Scholar 

  • Stern AH (2010) A quantitative assessment of the carcinogenicity of hexavalent chromium by the oral route and its relevance to human exposure. Environ Res 110:798–807

    Article  CAS  Google Scholar 

  • Stout MD, Herbert RA, Kissling GE, Collins BJ, Travlos GS, Witt KL, Melnick RL, Abdo KM, Malarkey DE, Hooth MJ (2009) Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environ Health Perspect 117:716–722

    Article  CAS  Google Scholar 

  • Stratmann M, Müller J (1994) The mechanism of the oxygen reduction on rust covered metal substrates. Corros Sci 36:327–359

    Article  CAS  Google Scholar 

  • Stumm W (1990) Aquatic chemical kinetics. John Wiley and Sons, Chichester

    Google Scholar 

  • Su H, Fang Z, Tsang PE, Fang J, Zhao D (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100

    Article  CAS  Google Scholar 

  • Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interf Sci 120:47–56

    Article  CAS  Google Scholar 

  • Sun TR, Pamukcu S, Ottosen LM, Wang F (2015) Electrochemically enhanced reduction of hexavalent chromium in contaminated clay: kinetics, energy consumption, and application of pulse current. Chem Eng J 262:1099–1107

    Article  CAS  Google Scholar 

  • Sweeney KH (1981a) The reductive treatment of industrial wastewaters: I. Process description. American Institute of Chemical Engineers, Symposium Series, Water-1980 209(77):67–71

    Google Scholar 

  • Sweeney KH (1981b) The reductive treatment of industrial wastewaters: II. Process applications. American Institute of Chemical Engineers, Symposium Series, Water-1980 209(77):72–78

    Google Scholar 

  • Sweeney KH, Fischer JR (1972) Reductive degradation of halogenated pesticides. U.S.A. Patent, 3,640,821

    Google Scholar 

  • Tang J, Hu Y, Baig SA, Sheng T, Xu X (2014) Hexavalent chromium reduction by Escherichia coli in the presence of ferric iron. Desalin Water Treat 52:22–24

    CAS  Google Scholar 

  • Thacher R, Hsu L, Ravindran V, Nealson KH, Pirbazari M (2015) Modeling the transport and bioreduction of hexavalent chromium in aquifers: Influence of natural organic matter. Chem Eng Sci 138:552–565

    Article  CAS  Google Scholar 

  • Toli A, Chalastara K, Mystrioti C, Xenidis A, Papassiopi N (2016) Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Environ Pollut 214:419–429

    Article  CAS  Google Scholar 

  • Vazquez-Morillas A, Vaca-Mier M, Alvarez PJ (2006) Biological activation of hydrous ferric oxide for reduction of hexavalent chromium in the presence of different anions. Eur J Soil Biol 42:99–106

    Article  CAS  Google Scholar 

  • Vega A, Fiuza A, Guimaraes F (2010) Insight into the phenomenology of the Cr(VI) reduction by metallic iron using an electron probe microanalyzer. Langmuir 26:11980–11986

    Article  CAS  Google Scholar 

  • Villacis-Garcia M, Villalobosa M, Gutierrez-Ruizca M (2015) Optimizing the use of natural and synthetic magnetites with very small amounts of coarse Fe(0) particles for reduction of aqueous Cr(VI). J Hazard Mater 281:77–86

    Article  CAS  Google Scholar 

  • Wang Q, Cissoko N, Zhou M, Xu X (2011) Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles. Phys Chem Earth 36:442–446

    Article  Google Scholar 

  • Wang Y, Wang X, Wang X, Liu M, Xia S, Yin D, Zhang Y, Zhao J (2012) Reduction of hexavalent chromium with scrap iron in a fixed bed reactor. Front Environ Sci Eng 6(6):761–769

    Article  CAS  Google Scholar 

  • Wang N, Zheng T, Zhang G, Wang P (2016a) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4:762–787

    Article  CAS  Google Scholar 

  • Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D (2016b) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345

    Article  CAS  Google Scholar 

  • White AF, Paterson ML (1996) Reduction of aqueous transition metal species on the surface of Fe(II)-containing oxides. Geochim Cosmochim Acta 60:3799–3814

    Article  CAS  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organisation, Geneva

    Google Scholar 

  • Wilkin RT, Puls RW, Sewell GW (2003) Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects. Ground Water 41(4):493–503

    Article  CAS  Google Scholar 

  • Wilkin RT, Su C, Ford RG, Paul CJ (2005) Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environ Sci Technol 39(12):4599–4605

    Article  CAS  Google Scholar 

  • Wilkin RT, Acree SD, Ross RR, Puls RW, Lee TR, Woods LL (2014) Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater. Sci Total Environ 468–469:186–194

    Article  CAS  Google Scholar 

  • Williams AGB, Scherer MM (2001) Kinetics of Cr(VI) reduction by carbonate green rust. Environ Sci Technol 35:3488–3494

    Article  CAS  Google Scholar 

  • Wise JP, Wise SS, Little JE (2002) The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res 517:221–229

    Article  CAS  Google Scholar 

  • Wise SS, Holmes AL, Wise JP (2006) Particulate and soluble hexavalent chromium are cytotoxic and genotoxic to human lung epithelial cells. Mutat Res 610:2–7

    Article  CAS  Google Scholar 

  • Wu P, Li S, Ju L, Zhu N, Wu J, Li P, Dang Z (2012) Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles. J Hazard Mater 219–220:283–288

    Article  CAS  Google Scholar 

  • Wu L, Liao L, Lv G, Qin F, He Y, Wang X (2013) Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon. J Hazard Mater 254–255:277–283

    Article  CAS  Google Scholar 

  • Wu L, Liao L, Lv G, Qin F (2015) Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. J Contam Hydrol 179:1–9

    Article  CAS  Google Scholar 

  • Xing Y, Chen X, Wang D (2007) Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater. Environ Sci Technol 41:1439–1443

    Article  CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    Article  CAS  Google Scholar 

  • Xu HM, Wei JF, Wang XL (2014) Nanofiltration hollow fiber membranes with high charge density prepared by simultaneous electron beam radiation-induced graft polymerization for removal of Cr(VI). Desalination 346:122–130

    Article  CAS  Google Scholar 

  • Yang Y (2006) Reduction of TCE and chromate by granular iron in the presence of dissolved CaCO3. Master of Science Thesis, University of Waterloo

    Google Scholar 

  • Yang JE, Kim JS, Ok YS, Yoo KR (2007) Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons. Water Sci Technol 55:197–202

    Article  CAS  Google Scholar 

  • Yin X, Liu W, Ni J (2014) Removal of coexisting Cr(VI) and 4-chlorophenol through reduction and Fenton reaction in a single system. Chem Eng J 248:89–97

    Article  CAS  Google Scholar 

  • Yirsaw BD, Megharaj M, Chen Z, Naidu R (2016) Environmental application and ecological significance of nano-zero valent iron. J Environ Sci 44:88–98

    Google Scholar 

  • Yoon IH, Bang S, Chang JS, Kim MG, Kim KW (2011) Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems. J Hazard Mater 186:855–862

    Article  CAS  Google Scholar 

  • Yuan TH, Lian IB, Tsai KY, Chang TK, Chiang CT, Su CC, Hwang YH (2011) Possible association between nickel and chromium and oral cancer: a case-control study in central Taiwan. Sci Total Environ 406:1046–1052

    Article  CAS  Google Scholar 

  • Zafarani HR, Bahrololoom ME, Javidi M, Shariat MH, Tashkhourian J (2014) Removal of chromate ion from aqueous solutions by sponge iron. Desalin Water Treat 52:7154–7162

    Article  CAS  Google Scholar 

  • Zazo JA, Paull JS, Jaffe PR (2008) Influence of plants on the reduction of hexavalent chromium in wetland sediments. Environ Pollut 156:29–35

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang R, Sun H, Yin J (2008) Arsenic and chromate removal from water by iron chips -effects of anions. Front Environ Sci Eng China 2:203–208

    Article  Google Scholar 

  • Zhang XH, Zhang X, Wang XC, Jin LF, Yang ZP, Jiang CX, Chen Q, Ren XB, Cao JX, Wang Q, Zhu YM (2011) Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers. Public Health 11:224–231

    Google Scholar 

  • Zhang J, Zhang G, Wang M, Zheng K, Cai D, Wu Z (2013) Reduction of aqueous CrVI using nanoscale zero-valent iron dispersed by high energy electron beam irradiation. Nanoscale 5:9917–9923

    Article  CAS  Google Scholar 

  • Zhao Y, Qi W, Chen G, Ji M, Zhang Z (2015) Behavior of Cr(VI) removal from wastewater by adsorption onto HCl activated Akadama clay. J Taiwan Inst Chem Eng 50:190–197

    Article  CAS  Google Scholar 

  • Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24:1617–1629

    Article  CAS  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542

    Article  CAS  Google Scholar 

  • Zhou X, Lv B, Zhou Z, Li W, Jing G (2015) Evaluation of highly active nanoscale zero-valent iron coupled with ultrasound for chromium(VI) removal. Chem Eng J 281:155–163

    Article  CAS  Google Scholar 

  • Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46:977–985

    Article  CAS  Google Scholar 

  • Zhuang L, Li Q, Chen J, Ma B, Chen S (2014) Carbothermal preparation of porous carbon-encapsulated iron composite for the removal of trace hexavalent chromium. Chem Eng J 253:24–33

    Article  CAS  Google Scholar 

  • Zink S, Schoenberg R, Staubwasser M (2010) Isotopic fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media. Geochim Cosmochim Acta 74:5729–5745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-0508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Gheju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gheju, M. (2017). Decontamination of Hexavalent Chromium-Polluted Waters: Significance of Metallic Iron Technology. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55423-5_7

Download citation

Publish with us

Policies and ethics