Skip to main content
Log in

Influences of Humic Acid on Cr(VI) Removal by Zero-Valent Iron From Groundwater with Various Constituents: Implication for Long-Term PRB Performance

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A 9-month-long continuous flow column study was carried out to investigate Cr(VI) removal by Fe0 with the presence of humic acid. The study focused on the influences of humic acid promoted dissolved iron release and humic acid aggregation in Fe0 columns receiving synthetic Cr(VI) contaminated groundwater containing various components such as bicarbonate and Ca. The effects of humic acid varied significantly depending on the presence of Ca. In Ca-free columns, the presence of humic acid promoted the release of dissolved iron in the forms of soluble Fe-humic acid complexes and stabilized fine Fe (hydr)oxide colloids. As a result, the precipitation of iron corrosion products was suppressed and the accumulation of secondary minerals on Fe0 surfaces was diminished, and a slight increase in Cr(VI) removal capacity by 18% was record compared with that of humic acid-free column. In contrast, in the presence of Ca, as evidenced by the SEM and FTIR results, humic acid greatly co-aggregated with Fe (hydr)oxides and deposited on Fe0 surfaces. This largely inhibited electron transfer from Fe0 surfaces to Cr(VI) and reduced the drainable porosity of the Fe0 matrix, resulting in a significant decrease in Cr(VI) removal capacity of Fe0. The Cr(VI) removal capacity was decreased by 24.4% and 42.7% in humic acid and Ca receiving columns, with and without bicarbonate respectively, compared with that of Ca and humic acid-free column. This study yields new considerations for the performance prediction and design of Fe0 PRBs in the environments rich in natural organic matter (NOM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blowes, D. W., Ptacek, C. J., & Jambor, J. L. (1997). In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environmental Science & Technology, 31, 3348–3357.

    Article  CAS  Google Scholar 

  • Cantrell, K. J., Kaplan, D. I., & Wietsma, T. W. (1995). Zero-valent iron for the in-situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 42, 201–212.

    Article  CAS  Google Scholar 

  • Castro, E. B., Vilche, J. R., & Arvia, A. J. (1991). Iron dissolution and passivation in K2CO3–KHCO3 solutions: Rotating ring disc electrode and xps studies. Corrosion Science, 32, 37–50.

    Article  CAS  Google Scholar 

  • Dries, J., Bastiaens, L., Springael, D., Kuypers, S., Agathos, S. N., & Diels, L. (2005). Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Research, 39, 3531–3540.

    Article  CAS  Google Scholar 

  • Duan, J., & Gregory, J. (2003). Coagulation by hydrolyzing metal salts. Advances In Colloid And Interface Science, 100–102, 475–502.

    Article  Google Scholar 

  • Eary, L. E., & Rai, D. (1988). Chromate removal from aqueous wastes by reduction with ferrous ion. Environmental Science & Technology, 22, 972–977.

    Article  CAS  Google Scholar 

  • Gillham, R. W., & O’ Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32, 958–967.

    Article  CAS  Google Scholar 

  • Gu, B., Schmitt, J., Chen, Z., Liang, L., & MaCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide mechanisms and models. Environmental Science & Technology, 28, 38–46.

    Article  CAS  Google Scholar 

  • Gu, B., Phelps, T. J., Liang, L., Dickey, M. J., Roh, Y., Kinsall, B. L., et al. (1999). Biogeochemical dynamics in zero-valent iron columns: Implications for permeable reactive barriers. Environmental Science & Technology, 33, 2170–2177.

    Article  CAS  Google Scholar 

  • Kamolpornwijit, W., Liang, L., West, O. R., Moline, G. R., & Sullivan, A. B. (2003). Preferential flow path development and its influence on long term PRB performance: Column study. Journal of Contaminant Hydrology, 66, 161–178.

    Article  CAS  Google Scholar 

  • Klausen, J., Vikesland, P. J., Kohn, T., Burris, D. R., Ball, W. P., & Roberts, A. L. (2003). Longevity of granular iron in groundwater treatment processes: Solution composition effects on reduction of organohalides and nitroaromatic compounds. Environmental Science & Technology, 37, 1208–1218.

    Article  CAS  Google Scholar 

  • Lai, K. C. K., & Lo, I. M. C. (2008). Removal of chromium(VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environmental Science & Technology, 42, 1238–1244.

    Article  CAS  Google Scholar 

  • Legrand, L., Figuigui, A. E., Mercier, F., & Chausse, A. (2004). Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: Kineic and mechanistic studies. Environmental Science & Technology, 38, 4587–4595.

    Article  CAS  Google Scholar 

  • Liu, T., Tsang, D. C. W., & Lo, I. M. C. (2008). Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: Iron dissolution and humic acid adsorption. Environmental Science & Technology, 42, 2092–2098.

    Article  CAS  Google Scholar 

  • Lo, I. M. C., Lam, C. S. C., & Lai, K. C. K. (2006). Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal. Water Research, 40, 595–605.

    Article  CAS  Google Scholar 

  • Powell, R. M., Puls, R. W., Hightower, S. K., & Sabatini, D. A. (1995). Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environmental Science & Technology, 29, 1913–1922.

    Article  CAS  Google Scholar 

  • Pratt, A. R., Blowes, D. W., & Ptacek, C. J. (1997). Products of chromate reduction on proposed subsurface remediation material. Environmental Science & Technology, 31, 2492–2498.

    Article  CAS  Google Scholar 

  • Roh, Y., Lee, S. Y., & Elless, M. P. (2000). Characterization of corrosion products in the permeable reactive barriers. Environ Geo, 40, 184–194.

    Article  CAS  Google Scholar 

  • Saito, T., Koopal, L. K., van Riemsdijk, W. H., Nagasaki, S., & Tanaka, S. (2004). Adsorption of humic acid on goethite: Isotherms, charge adjustments, and potential profiles. Langmuir, 20, 689–700.

    Article  CAS  Google Scholar 

  • Snoeyink, V. L., & Jenkins, D. (1980). Water chemistry. New York: Wiley.

    Google Scholar 

  • Thurman, E. M. (1985). Organic geochemistry of natural waters. Dordrecht: Martnus Nijhoff/Junk.

    Google Scholar 

  • Tipping, E. (2002). Cation binding by humic substances. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tratnyek, P. G., Scherer, M. M., Deng, B., & Hu, S. (2001). Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Research, 35, 4435–4443.

    Article  CAS  Google Scholar 

  • USEPA. (1998). Permeable Reactive Barrier Technologies for Contaminant Remediation. EPA/600/R-98/125.

  • VanGulck, J. F., & Rowe, R. K. (2004). Evolution of clog formation with time in columns permeated with synthetic landfill leachate. Journal of Contaminant Hydrology, 75, 115–139.

    Article  CAS  Google Scholar 

  • von der Kumpulainen, S., Kammer, F., & Hofmann, T. (2008). Humic acid adsorption and surface charge effects on schwertmanite and goethite in acid sulphate waters. Water Research, 42, 2051–2060.

    Article  CAS  Google Scholar 

  • Weng, L. P., Koopal, L. K., Hiemstra, T., Meeussen, J. C. L., & van Riemsdijk, W. H. (2005). Interactions of calcium and fulvic acid at the goethite-water interface. Geochimica et Cosmochimica Acta, 69, 325–339.

    Article  CAS  Google Scholar 

  • Wilkin, R. T., Su, C., Ford, R. G., & Paul, C. J. (2005). Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environmental Science & Technology, 39, 4599–4605.

    Article  CAS  Google Scholar 

  • Williams, A. G. B., & Scherer, M. M. (2001). Kinetic of Cr(VI) reduction by carbonate green rust. Environmental Science & Technology, 35, 3488–3494.

    Article  CAS  Google Scholar 

  • Xie, L., & Shang, C. (2005). Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environmental Science & Technology, 39, 1092–1100.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Hong Kong Research Grants Council under grant HKUST RGC 617006.

Supporting Information

Additional one table, nine figures and information of two supplementary experiments are available online.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene M. C. Lo.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Lo, I.M.C. Influences of Humic Acid on Cr(VI) Removal by Zero-Valent Iron From Groundwater with Various Constituents: Implication for Long-Term PRB Performance. Water Air Soil Pollut 216, 473–483 (2011). https://doi.org/10.1007/s11270-010-0546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0546-2

Keywords

Navigation