Skip to main content

Nanostructure of Lignocellulose and Its Importance for Biomass Conversion into Chemicals and Biofuels

  • Chapter
  • First Online:
Advances of Basic Science for Second Generation Bioethanol from Sugarcane
  • 803 Accesses

Abstract

Lignocellulosic biomass is a vast renewable resource made by nature with a hierarchical structure going from entire plants down to simple molecules. Part of this structural hierarchy stands at the nanoscale, where cellulose crystals, crystal aggregates, and cell wall lamellas are distinguishable nanostructural elements. This chapter provides an overview of lignocellulose nanostructure, discussing the fundamentals, changes promoted by thermochemical treatments, relevance for enzymatic digestibility, and specificities of sugarcane. With proper consideration of nanostructural features, more rational and efficient deconstruction of lignocellulose can be devised for the purpose of conversion into chemicals and biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin DE (2008) Plant cell wall aromatics: influence on degradation of biomass. Biofuels Bioprod Biorefin 2:288–303. doi:10.1002/bbb

    Article  CAS  Google Scholar 

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls: from chemistry to biology. Garland Science, Taylor and Francis Group, LLC, New York

    Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T et al (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537. doi:10.1007/s10086-003-0518-x

    Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3. doi:10.1186/1754-6834-4-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  PubMed  Google Scholar 

  • Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19

    Article  CAS  PubMed  Google Scholar 

  • Beckham GT, Matthews JF, Peters B et al (2011) Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs. J Phys Chem B 115:4118–4127. doi:10.1021/jp1106394

    Article  CAS  PubMed  Google Scholar 

  • Bergenstråhle M, Wohlert J, Larsson PT et al (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112:2590–2595

    Article  PubMed  Google Scholar 

  • Brienzo M, Ferreira S, Vicentim MP et al (2014) Comparison study on the biomass recalcitrance of different tissue fractions of sugarcane culm. Bioenergy Res 7:1454–1465. doi:10.1007/s12155-014-9487-8

    Article  CAS  Google Scholar 

  • Buckeridge MS, dos Santos WD, Tiné MAS, De Souza AP (2016) The cell wall architecture of sugarcane and its implications to cell wall recalcitrance. In: Lam E, Carrer H, Silva JA, Kole C (eds) Compendium of bioenergy plants—sugarcane. CRC Press—Taylor & Francis Group, Boca Raton, FL, pp 31–50

    Google Scholar 

  • Burgert I, Fratzl P (2009) Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integr Comp Biol 49:69–79. doi:10.1093/icb/icp026

    Article  PubMed  Google Scholar 

  • Chundawat SPS, Bellesia G, Uppugundla N et al (2011) Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate. J Am Chem Soc 133:11163–11174. doi: 10.1021/ja2011115

    Google Scholar 

  • Ciesielski PN, Wang W, Chen X et al (2014) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 2: morphological and structural substrate analysis. Biotechnol Biofuels 7:47. doi: 10.1186/1754-6834-7-47

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861. doi:10.1038/nrm1746

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:1–6. doi:10.3389/fpls.2012.00204

    Article  Google Scholar 

  • Costa THF, Masarin F, TO B et al (2013) The enzymatic recalcitrance of inter-nodes of sugar cane hybrids with contrasting lignin contents. Ind Crop Prod 51:202–211. doi:10.1016/j.indcrop.2013.08.078

    Article  CAS  Google Scholar 

  • Daniel G (2009) Wood and fibre morphology. In: Ek M, Gellerstedt G, Henriksson G (eds) Wood chemistry and wood biotechnology (vol. 1). Walter de Gruyter, Berlin, pp 45–70

    Google Scholar 

  • De Souza AP, Leite DCC, Pattathil S et al (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579. doi:10.1007/s12155-012-9268-1

    Article  Google Scholar 

  • Debzi EM, Chanzy H, Sugiyama J et al (1991) The Iα→Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24:6816–6822

    Article  CAS  Google Scholar 

  • Delabona PS, Cota J, Hoffmam ZB et al (2013) Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-l-arabinofuranosidase. Bioresour Technol 131:500–507. doi:10.1016/j.biortech.2012.12.105

    Article  Google Scholar 

  • Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606. doi:10.1021/jf051851z

  • Ding S-Y, Liu Y-S, Zeng Y et al (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Ding S-Y, Zhao S, Zeng Y (2014) Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose 21:863–871. doi:10.1007/s10570-013-0147-5

    Article  CAS  Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry - an ultrastructural view. Phytochemistry 57:859–873.

    Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    Article  CAS  Google Scholar 

  • Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29:345–386

    Article  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP et al (2008) Visualizing lignin coalescence and mi-gration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925. doi:10.1002/bit.21959

    Article  CAS  PubMed  Google Scholar 

  • Driemeier C, Bragatto J (2013) Crystallite width determines monolayer hydration across a wide spectrum of celluloses isolated from plants. J Phys Chem B 117:415–421

    Article  CAS  PubMed  Google Scholar 

  • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192. doi:10.1107/S0021889810043955

    Article  CAS  Google Scholar 

  • Driemeier C, Francisco LH (2014) X-ray diffraction from faulted cellulose I constructed with mixed Iα–Iβ stacking. Cellulose 21(5):3161–3169. doi:10.1007/s10570-014-0390-4

    Article  CAS  Google Scholar 

  • Driemeier C, Pimenta MTB, Rocha GJM et al (2011) Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18:1509–1519. doi:10.1007/s10570-011-9592-1

    Article  CAS  Google Scholar 

  • Driemeier C, Santos WD, Buckeridge MS (2012) Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability. Cellulose 19:1507–1515. doi:10.1007/s10570-012-9743-z

    Article  CAS  Google Scholar 

  • Driemeier C, Mendes FM, Santucci BS, Pimenta MTB (2015) Cellulose co-crystallization and related phenomena occurring in hydrothermal treatment of sugarcane bagasse. Cellulose 22(4):2183–2195. doi:10.1007/s10570-015-0638-7

    Article  CAS  Google Scholar 

  • Driemeier C, Oliveira MM, Curvelo AAS (2016) Lignin contributions to the nanoscale porosity of raw and treated lignocelluloses as observed by calorimetric thermoporometry. Ind Crop Prod 82:114–117. doi:10.1016/j.indcrop.2015.11.084

    Article  CAS  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364. doi:10.1016/S0141-0229(02)00134-5

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4:339–345. doi:10.1055/s-2002-32341

    Article  Google Scholar 

  • Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  PubMed  Google Scholar 

  • Fernandes Diniz JMB, Gil MH, Castro JAAM (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494. doi:10.1007/s00226-003-0216-2

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203. doi:10.1073/pnas.1108942108

    Article  PubMed  PubMed Central  Google Scholar 

  • Fink H-P, Philipp B, Paul D et al (1987) The structure of amorphous cellulose as revealed by wide-angle X-ray scattering. Polymer (Guildf) 28:1265–1270. doi:10.1016/0032-3861(87)90435-6

    Article  CAS  Google Scholar 

  • Foston M, Ragauskas AJ (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass Bioenergy 34:1885–1895. doi:10.1016/j.biombioe.2010.07.023

    Article  CAS  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334. doi:10.1016/j.pmatsci.2007.06.001

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588. doi:10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  • Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3:155–160

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  CAS  PubMed  Google Scholar 

  • Henriksson G (2009) Lignin. In: Ek M, Gellerstedt G, Henriksson G (eds) Wood chemistry and wood biotechnology (vol. 1). Walter de Gruyter, Berlin, pp 121–145

    Google Scholar 

  • Hinkle JD, Ciesielski PN, Gruchalla K et al (2015) Biomass accessibility analysis using electron tomography. Biotechnol Biofuels 8:212. doi:10.1186/s13068-015-0395-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484. doi:10.1007/s10570-005-5967-5

    Article  CAS  Google Scholar 

  • Horii F, Yamamoto H, Kitamaru R et al (1987) Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20:2946–2949

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36. doi:10.1186/1754-6834-4-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Ioelovitch M (1992) Zur übermolekularen Struktur von nativen und isolierten Cellulosen. Acta Polym 43:110–113

    Article  CAS  Google Scholar 

  • Jarvis M (2003) Cellulose stacks up. Nature 426:611–612

    Article  CAS  PubMed  Google Scholar 

  • Jung HG, Casler MD (2006) Maize stem tissues: impact of development on cell wall degradability. Crop Sci 46:1801–1809. doi:10.2135/cropsci2006.02-0086

    Article  CAS  Google Scholar 

  • Keckes J, Burgert I, Frühmann K et al (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810–814. doi:10.1038/nmat1019

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kobayashi K, Kimura S, Kim U-J et al (2012) Enzymatic hydrolysis of cellulose hydrates. Cellulose 19:967–974. doi:10.1007/s10570-012-9696-2

    Article  CAS  Google Scholar 

  • Kocherbitov V, Ulvenlund S, Kober M et al (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112:3728–3734

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213. doi:10.1016/j.biortech.2008.11.057

    Article  CAS  PubMed  Google Scholar 

  • Lanfang H, Terashima N (1991) Formation and structure of lignin in monocotyledons. IV. Deposition process and structural diversity of the lignin in the cell wall of sugarcane and rice plant studied by ultraviolet microscopic spectroscopy. Holzforschung 45:191–198

    Article  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  PubMed  Google Scholar 

  • Langan P, Petridis L, O’Neill HM et al (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63. doi:10.1039/c3gc41962b

    Article  CAS  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M et al (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci U S A 100:484–489. doi:10.1073/pnas.212651999

    Article  PubMed  PubMed Central  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M et al (2009) Structure of cellulose and microcrystal-line cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015. doi:10.1007/s10570-009-9298-9

    Article  Google Scholar 

  • Leu S-Y, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6:405–415. doi:10.1007/s12155-012-9276-1

    Article  CAS  Google Scholar 

  • Lima EA, Machado CB, Zanphorlin LM et al (2016) GH53 endo-beta-1,4-galactanase from a newly isolated Bacillus licheniformis CBMAI 1609 as an enzymatic cocktail supplement for biomass saccharification. Appl Biochem Biotechnol. doi:10.1007/s12010-016-2003-1

    Google Scholar 

  • Lou H, Zhu JY, Lan TQ et al (2013) pH-Induced lignin surface modification to reduce non-specific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 6:919–927. doi:10.1002/cssc.201200859

    Article  CAS  PubMed  Google Scholar 

  • Maloney TC, Paulapuro H (1999) The formation of pores in the cell wall. J Pulp Pap Sci 25:430–436

    CAS  Google Scholar 

  • Mazeau K (2011) On the external morphology of native cellulose microfibrils. Carbohydr Polym 84:524–532

    Article  CAS  Google Scholar 

  • Maziero P, Jong J, Mendes FM et al (2013) Tissue-specific cell wall hydration in sugarcane stalks. J Agric Food Chem 61:5841–5847. doi:10.1021/jf401243c

    Article  CAS  PubMed  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. doi:10.1023/B:CELL.0000014768.28924.0c

    Article  CAS  Google Scholar 

  • Newman RH, Hemmingson JA (1995) Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2:95–110

    Article  CAS  Google Scholar 

  • Newman RH, Hill SJ, Harris PJ (2013) Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567. doi:10.1104/pp.113.228262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249. doi:10.1007/s10086-009-1029-1

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja037055w

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003a) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. doi:10.1021/ja037055w

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Kim U-J, Kim D-Y et al (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Langan P, O’Neill H et al (2014) Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-rays and neutrons on oriented specimens. Cellulose 21:1015–1024. doi:10.1007/s10570-013-0069-2

    Article  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246

    CAS  Google Scholar 

  • Park J, Jones B, Koo B et al (2016) Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass. Bioresour Technol 199:59–67. doi:10.1016/j.biortech.2015.08.059

    Article  CAS  PubMed  Google Scholar 

  • Petridis L, Pingali SV, Urban V et al (2011) Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys Rev E 83:061911. doi:10.1103/PhysRevE.83.061911

    Article  Google Scholar 

  • Salmén L (2014) Wood morphology and properties from molecular perspectives. Ann Forest Sci. doi:10.1007/s13595-014-0403-3

    Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. doi:10.1146/annurev-arplant-042809-112315

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textil Res J 29:786–794

    Article  CAS  Google Scholar 

  • Silveira RL, Stoyanov SR, Gusarov S et al (2013) Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength. J Am Chem Soc 135(51):19048–19051. doi:10.1021/ja405634k

    Article  CAS  PubMed  Google Scholar 

  • Silveira RL, Stoyanov SR, Kovalenko A, Skaf MS (2016) Cellulose Aggregation under Hydrothermal Pretreatment Conditions. Biomacromolecules acs.biomac.6b00603. doi:10.1021/acs.biomac.6b00603

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78. doi:10.1146/annurev.cellbio.22.022206.160206

    Article  CAS  PubMed  Google Scholar 

  • Sousa LC, Jin M, Chundawat SPS et al (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energ Environ Sci. doi:10.1039/C5EE03051J

    Google Scholar 

  • Stone JE, Scallan AM (1968) A structural model for the cell wall of water-swollen wood pulp fibres based on their accessibility to macromolecules. Cellulose Chem Technol 2:343–358

    CAS  Google Scholar 

  • Sun Q, Foston M, Sawada D et al (2014) Comparison of changes in cellulose ultrastructure during different pretreatments of poplar. Cellulose 21:2419–2431. doi:10.1007/s10570-014-0303-6

    Article  CAS  Google Scholar 

  • Vermaas J V., Petridis L, Qi X et al (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels :1–16. doi: 10.1186/s13068-015-0379-8

  • Viëtor RJ, Newman RH, Ha M-A et al (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731

    Article  PubMed  Google Scholar 

  • Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci B 40:1095–1102. doi:10.1002/polb.10166

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004a) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555. doi:10.1021/ma0485585

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004b) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5:1385–1391. doi:10.1021/bm0345357

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromolecules 39:2947–2952. doi:10.1021/ma060228s

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Nishiyama Y, Langan P (2009) X-ray crystallographic, scanning micro-probe X-ray diffraction, and cross-polarized/magic angle spinning 13C NMR studies of the structure of cellulose IIIII. Biomacromolecules 10:302–309. doi:10.1021/bm8010227

  • Wang W, Chen X, Donohoe BS et al (2014) Effect of mechanical disruption on the effec-tiveness of three reactors used for dilute acid pretreatment of corn stover part 1: chemical and physical substrate analysis. Biotechnol Biofuels 7:57. doi:10.1186/1754-6834-7-57

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. doi:10.1016/j.biortech.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Anderson CT (2013) Roles of pectin in biomass yield and processing for biofuels. Front Plant Sci 4:67. doi:10.3389/fpls.2013.00067

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng M, Ximenes E, Ladisch MR et al (2012) Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1). Biotechnol Bioeng 109:390–397. doi:10.1002/bit.23337

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21:853–862. doi:10.1007/s10570-013-9996-110.1021/bm040068x

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to express his great gratitude to Dr. Rodrigo Silveira, Prof. Valdeir Arantes, Prof. Antônio Aprígio Curvelo, and Dr. Alfred French, who dedicated part of their valuable time to read and comment earlier versions of this chapter. The thoughtful editorial review by Dr. Amanda Souza and Prof. Marcos Buckeridge is also acknowledged. The received comments were at several points decisive for the clarity, precision, and coverage of this published chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Driemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Driemeier, C. (2017). Nanostructure of Lignocellulose and Its Importance for Biomass Conversion into Chemicals and Biofuels. In: Buckeridge, M., De Souza, A. (eds) Advances of Basic Science for Second Generation Bioethanol from Sugarcane. Springer, Cham. https://doi.org/10.1007/978-3-319-49826-3_3

Download citation

Publish with us

Policies and ethics