Skip to main content

Bioremediation of Salt-Affected Soils: Challenges and Opportunities

  • Chapter
  • First Online:
Bioremediation of Salt Affected Soils: An Indian Perspective

Abstract

A lot of work has been done on improving practices for remediation of coastal and inland salt-affected soils. This has resulted in improving crop yields in these degraded lands and thereby improving the socioeconomic status of the resource-poor farmers. Keeping in view the limited availability of good quality waters for flushing out salts and scarce mineral gypsum availability for reclaiming sodic soils, vegetative and microbial bioremediation of salt-affected soils has emerged as a promising technique. Cultivation of economically useful halophytes, salt-tolerant plants, and crop varieties capable of growing under salt-stress environments has enabled conversion of saline and sodic wastelands. The high potential for bioremediation of salt-affected soils using applications of halophilic bacteria has been reported by some researchers. The applications of halophilic bacteria include recovery of saline soil by directly supporting the growth and stress tolerance of vegetation, thus indirectly increasing crop yields in saline soil. The biotic approach “plant-microbe interaction” to overcome salinity problems has received considerable attention from many workers throughout the world recently. Plant-microbe interactions are beneficial associations between plants and microorganisms and also a more efficient method for reclamation of salt-affected soils. However, there are many challenges to overcome for widespread adoption of these techniques and opportunities for the future to reclaim salt-affected soils through bioremediation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achouak, W., & Haichar, F. Z. (2013). Shaping of microbial community structure and function in the rhizosphere by four diverse plant species. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 161–167). Hoboken, NJ: Wiley Blackwell.

    Chapter  Google Scholar 

  • Adhikary, S. P., & Sahu, J. K. (2000). Studies on the establishment and nitrogenase activity of inoculated cyanobacteria on the field and their effect on yield of rice. Oryza, 37, 39–43.

    Google Scholar 

  • Ahmad, N., Qureshi, R. H., & Qadir, M. (1990). Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degradation and Rehabilitation, 2(4), 277–284.

    Article  Google Scholar 

  • Akhter, J., Mahmood, K., Malik, K. A., Ahmed, S., & Murray, R. (2003). Amelioration of a saline sodic soil through cultivation of a salt tolerant grass Leptochloa fusca. Environmental Conservation, 30(2), 168–174.

    Article  CAS  Google Scholar 

  • Al-Abed, N., Amayreh, J., & Al-Hiyari, A. (2004). Bioremediation of a Jordanian saline soil: A laboratory study. Communications in Soil Science and Plant Analysis, 35(9 and 10), 1457–1467.

    Google Scholar 

  • Al-Nasir, F. (2009). Bioreclamation of a saline sodic soil in a semi arid region/Jordan. American Eurasian Journal Agricultural and Environmental Science, 5(5), 701–706.

    CAS  Google Scholar 

  • Alvarez, M. I., Sueldo, R. J., & Barassi, C. A. (1996). Effect of Azospirillum on coleoptiles growth in wheat seedlings under water stress. Cereal Research Communications, 24, 101–107.

    Google Scholar 

  • Anjum, N. A., Ahmad, I., Valega, M., Mohmood, I., Gill, S. S., Tuteja, N., et al. (2014). Salt marsh halophyte services to metal-metalloid remediation: assessment of the processes and underlying mechanisms. Critical Reviews in Environmental Science and Technology, 44, 2038–2106.

    Article  CAS  Google Scholar 

  • Antoun, H., & Prevost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–39). The Netherlands: Springer.

    Google Scholar 

  • Arora, N. K., Tewari, S., Singh, S., Lal, N., & Maheshwari, D. K. (2012). PGPR for protection of plant health under saline conditions. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management. Berlin/Heidelberg: Springer. doi:10.1007/978-3-642-23465-1_12.

    Google Scholar 

  • Arora, S., Trivedi, R., & Rao, G. G. (2012). Bioremediation of coastal and inland salt affected soils using halophilic soil microbes. Salinity News, 18(2), 3.

    Google Scholar 

  • Arora, S., Trivedi, R., & Rao, G. G. (2013). Bioremediation of coastal and inland salt affected soils using halophyte plants and halophilic soil microbes (CSSRI Annual Report 2012–13, pp. 94–100). Karnal: CSSRI.

    Google Scholar 

  • Arora, S., Patel, P., Vanza, M., & Rao, G. G. (2014). Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from Coastal Gujarat. African Journal of Microbiology Research, 8(17), 1779–1788.

    Article  Google Scholar 

  • Arora, S., Vanza, M., Mehta, R., Bhuva, C., & Patel, P. (2014). Halophilic microbes for bio-remediation of salt affected soils. African Journal of Microbiology Research, 8(33), 3070–3078.

    Article  CAS  Google Scholar 

  • Arshad, M., Saleem, M., & Hussain, S. (2007). Perspectives of bacterial ACC-deaminase in phyto-remediation. Trends in Biotechnology, 25, 356–362.

    Article  CAS  Google Scholar 

  • Ashraf, M. Y., Ashraf, M., Mahmood, K., Akhter, J., Hussain, F., & Arshad, M. (2010). Phytoremediation of saline soils for sustainable agricultural productivity. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 335–355). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32, 1559–1570.

    Article  CAS  Google Scholar 

  • Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360, 1–13.

    Article  CAS  Google Scholar 

  • Barea, J. M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. Journal of Soil Science and Plant Nutrition, 15(2), 261–282.

    Google Scholar 

  • Barea, J. M., Pozo, M. J., López-Ráez, J. A., Aroca, R., Ruíz-Lozano, J. M., Ferrol, N., et al. (2013). Arbuscular Mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses In B. Rodelas, & J. González-López (Eds.), Beneficial Plant-microbial interactions: Ecology and applications (pp. 353–387). USA: CRC Press.

    Google Scholar 

  • Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil, 378, 1–33.

    Google Scholar 

  • Becerra-Castro, C., Kidd, P. S., Rodríguez-Garrido, B., Monterroso, C., Santos-Ucha, P., & Prieto-Fernández, Á. (2013). Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environmental Pollution, 178, 202–210.

    Article  CAS  Google Scholar 

  • Bell, T. H., Joly, S., Pitre, F. E., & Yergeau, E. (2014). Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends in Biotechnology, 32, 271–280.

    Article  CAS  Google Scholar 

  • Boyko, H. (1966). Basic ecological principles of plant growing by irrigation with high saline seawater. In H. Boyko (Ed.), Salinity and aridity. The Hauge: D.W. Junk Publisher.

    Chapter  Google Scholar 

  • Chaudhry, M. R., & Abaidullah, M. (1988). Economics and effectiveness of biological and chemical methods in soil reclamation. Pakistan Journal of Agricultural Research, 9, 106–114.

    Google Scholar 

  • Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1997). Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry, 35, 939–944.

    CAS  Google Scholar 

  • Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1998). Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Canadian Journal of Botany, 76, 238–244.

    Article  Google Scholar 

  • Croser, C., Renault, S., Franklin, J., & Zwiazek, J. (2001). The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environmental Pollution, 115, 9–16.

    Article  CAS  Google Scholar 

  • Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews, 53, 121–147.

    CAS  Google Scholar 

  • de Villiers, A. J., van Rooyen, M. W., Theron, G. K., & Claassens, A. S. (1995). Removal of sodium and chloride from a saline soil by Mesembryanthemum barklyi. Journal of Arid Environments, 29(3), 325–330.

    Article  Google Scholar 

  • Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment, 32, 1682–1694.

    Article  CAS  Google Scholar 

  • Dodd, I. C., & Perez-Alfocea, F. (2012). Microbial alleviation of crop salinity. Journal of Experimental Botany, 63, 3415–3428.

    Article  CAS  Google Scholar 

  • Duan, J., Muller, K. M., Charles, T. C., Vesely, S., & Glick, B. R. (2009). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microbial Ecology, 57, 423–436.

    Article  CAS  Google Scholar 

  • Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Reviews in Microbiology, 36(3), 232–244.

    Article  Google Scholar 

  • Easton, L., & Kleindorfer, S. (2009). Effects of salinity levels and seed mass on germination in Australian species of Frankenia L. (Frankeniaceae). Environmental and Experimental Botany, 65, 345–352.

    Article  CAS  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945–963.

    Article  CAS  Google Scholar 

  • Ghosh, S., Penterman, J. N., Little, R. D., Chavez, R., & Glick, B. R. (2003). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiology and Biochemistry, 41, 277–281.

    Article  CAS  Google Scholar 

  • Gillespie, I. M. M., & Philp, J. C. (2013). Bioremediation, an environmental remediation technology for the bioeconomy. Trends in Biotechnology, 31, 329–332.

    Article  CAS  Google Scholar 

  • Glenn, E., Miyamoto, S., Moore, D., Brown, J. J., Thompson, T. L., & Brown, P. (1997). Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. Journal of Arid Environments, 36(4), 711–730.

    Article  Google Scholar 

  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227–255.

    Article  Google Scholar 

  • Glick, B. R. (1995). Enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology, 41, 109–117.

    Article  CAS  Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase producing soil bacteria. European Journal of Plant Pathology, 119, 329–339.

    Article  CAS  Google Scholar 

  • Glick, B. R., Patten, C. L., Holguin, G., & Penrose, D. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria (pp. 187–189). London: Imperical College Press.

    Book  Google Scholar 

  • Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. Journal of Theoretical Biology, 190, 63–68.

    Article  CAS  Google Scholar 

  • Govindasamy, V., Senthilkumar, M., Gaikwad, K., & Annapurna, K. (2008). Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Current Microbiology, 57(4), 312–317.

    Article  CAS  Google Scholar 

  • Goyal, S. K., & Venkataraman, G. S. (1971). Effects of algalization on high yielding rice varieties. II. Response of soil types. Phykos, 10, 32–38.

    Google Scholar 

  • Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39, 11–17.

    Article  CAS  Google Scholar 

  • Gul, B., Weber, D. J., & Khan, M. A. (2000). Effect of salinity and planting density on physiological responses of Allenrolfea occidentalis. Western North American Naturalist, 60(2), 188–197.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., et al. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, Article ID 589341, 12.

    Google Scholar 

  • Hirsch, A. M., & Fang, Y. (1994). Plant hormones and nodulation: What’s the connection? Plant Molecular Biology, 26, 5–9.

    Article  CAS  Google Scholar 

  • Hirsch, P. R., Miller, A. J., & Dennis, P. G. (2013). Do root exudates exert more influence on rhizosphere bacterial community structure than other rhizodeposits? In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 229–242). Hoboken, NJ: Wiley Blackwell.

    Chapter  Google Scholar 

  • Huang, Z., Zhang, X., Zheng, G., & Gutterman, Y. (2003). Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. Journal of Arid Environments, 55, 453–464.

    Article  Google Scholar 

  • Ilyas, N., Bano, A., Iqbal, S., & Raja, N. I. (2012). Physiological, biochemical and molecular characterization of Azospirillum spp. isolated from maize under water stress. Pakistan Journal of Botany, 44, 71–80.

    CAS  Google Scholar 

  • Imhoff, J. F. (1993). Osmotic adaptation in halophilic and halotolerant microorganisms. In R. H. Vreeland & L. I. Hochstein (Eds.), The biology of halophilic bacteria (pp. 211–212). Boca Raton: CRC Press.

    Google Scholar 

  • Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. R., & Parida, A. K. (2006). Antioxidative response mechanisms in halophytes: Their role in stress defence. Journal of Genetics, 85(3), 237–254.

    Article  CAS  Google Scholar 

  • Kamilova, F., Okon, Y., de Weert, S., & Hora, K. (2015). Commercialization of microbes: Manufacturing, inoculation, best practice for objective field testing, and registration. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 319–327). Heidelberg: Springer International Publishing Switzerland.

    Google Scholar 

  • Kausar, R., & Shahzad, S. M. (2006). Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. Journal of Agriculture and Social Science, 2, 216–218.

    Google Scholar 

  • Kaushik, B. D., & Subhasini, D. (1995). Amelioration of salt affected soils with BGA. II. Improvement of soil properties. Proceeding of Natural Science Academy, 51B, 386–389.

    Google Scholar 

  • Khan, M. A., & Gul, B. (2006). Halophyte seed germination. In M. A. Khan, & D. J. Weber (Eds.), Eco-physiology of High Salinity Tolerant Plants (pp. 11–30). Netherlands: Springer.

    Google Scholar 

  • Kilic, C., Kukul, Y., & Anac, D. (2008). Performance of purslane (Portulaca oleracea, L.), as a salt removing crop. Agricultural Water Management, 95(7), 854–858.

    Article  Google Scholar 

  • Ligero, F., Caba, J. M., Lluch, C., & Oliverase, J. (1991). Nitrate inhibition of nodulation can be overcome by ethylene inhibitor amino ethoxy vinyl glycine. Plant Physiology, 97(3), 1221–1225.

    Article  CAS  Google Scholar 

  • Lokhande, V. H., & Suprasanna, P. (2012). Prospects of halophytes in understanding and managing abiotic stress tolerance. In P. Ahmad & M. N. V. Prasad (Eds.), Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 29–56). NewYork: Springer.

    Chapter  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (1999). Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. Journal of Plant Growth Regulation, 18, 49–53.

    Article  CAS  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.

    Article  CAS  Google Scholar 

  • Moral, A. D., Prado, B., Quesda, E., Gacria, T., Ferrer, R., & Ramos-Comenzana, R. (1988). Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. Journal of General Microbiology, 134, 733–741.

    Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigation on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC-deaminase activity. Canadian Journal of Microbiology, 53, 1141–1149.

    Article  CAS  Google Scholar 

  • Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.

    Article  CAS  Google Scholar 

  • O’Leary, J. (1994). The agricultural use of native plants on problem soils. Monographs on Theoretical and Applied Genetics, 21, 127–143.

    Article  Google Scholar 

  • Oldroyd, G. E. D., & Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 26, 19–24.

    Article  CAS  Google Scholar 

  • Oren, A. (2002). Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28(1), 56–63.

    Article  CAS  Google Scholar 

  • Padhi, H., Rath, B., & Adhikary, S. P. (1997). Tolerance of nitrogen fixing cyanobacteria to NaCl. Biology of Plant, 40, 262–268.

    Article  Google Scholar 

  • Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. Agronomy for Sustainable Development, 32, 181–200.

    Article  CAS  Google Scholar 

  • Pozo, M., López-Ráez, J., Azcón-Aguilar, C., & García-Garrido, J. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205, 1431–1436.

    Article  CAS  Google Scholar 

  • Qadir, M., Noble, A. D., Schubert, S., Thomas, R. J., & Arslan, A. (2005). Sodicity-induced land degradation and its sustainable management: Problems and Prospects. Land Degradation and Development. doi:10.1002/ldr.751.

    Google Scholar 

  • Qadir, M., Oster, J. D., Schubert, S., Noble, A. D., & Sahrawat, K. L. (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 96, 197–247.

    Article  CAS  Google Scholar 

  • Qadir, M., Qureshi, R. H., & Ahmad, N. (1996). Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma, 74(3-4), 207–217.

    Article  Google Scholar 

  • Qureshi, R. H., Nawaz, S., & Mahmood, T. (1993). Performance of selected tree species under saline-sodic field conditions in Pakistan. In H. Lieth & A. Al Masoom (Eds.), Towards the rational use of high salinity tolerant plants (Vol. 1, pp. 259–269). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Raaijmakers, J. M. (2015). The minimal rhizosphere microbiome. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 411–417). Heidelberg: Springer International Publishing Switzerland.

    Google Scholar 

  • Rabhi, M., Hafsi, C., Lakhdar, A., et al. (2009). Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. African Journal of Ecology, 47(4), 463–468.

    Article  Google Scholar 

  • Rabhi, M., Talbi, O., Atia, A., Chedly, A., & Smaoui, A. (2008). Selection of halophyte that could be used in the bio reclamation of salt affected soils in arid and semi-arid regions. In Biosaline agriculture and high salinity tolerance (pp. 242–246).

    Google Scholar 

  • Rajput, L., Imran, A., Mubeen, F., & Hafeez, Y. (2013). Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pakistan Journal of Botany, 45(6), 1955–1962.

    Google Scholar 

  • Rao, D. L. N., & Burns, R. G. (1991). The influence of blue-green algae on the biological amelioration of alkali soils. Biology and Fertility of Soils, 11, 306–312.

    Article  Google Scholar 

  • Rath, B., & Adhikary, S. P. (1995). Toxicity of Furadan to several nitrogen fixing cyanobacteria from rice field of coastal Orissa, India. Tropical Agriculture Trinidad, 72, 80–84.

    CAS  Google Scholar 

  • Rausch, T., Kirsch, M., Löw, R., Lehr, A., Viereck, R., & Zhigang, A. N. (1996). Salt stress responses of higher plants: The role of proton pumps and Na+/H+-antiporters. Journal of Plant Physiology, 148(3–4), 425–433.

    Article  CAS  Google Scholar 

  • Ravensberg, W. J. (2015). Commercialisation of microbes: Present situation and future prospects. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions. Microbes for sustainable agriculture (pp. 309–317). Heidelberg: Springer International Publishing Switzerland.

    Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39(10), 2661–2664.

    Article  CAS  Google Scholar 

  • Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23, 917–926.

    Article  CAS  Google Scholar 

  • Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., et al. (1987). Azospirillum halopraeferens sp. nov., a nitrogen fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth.). International Journal of Systematic Bacteriology, 37, 43–51.

    Article  Google Scholar 

  • Robert, M. F. (2000). Osmoadaptation and osmoregulation in archaea. Frontiers in Bioscience, 5, 796–812.

    Article  Google Scholar 

  • Rodriguez-Valera, F. (1993). Introduction to saline environments. In R. H. Vreeland & L. I. Hochstein (Eds.), The biology of halophilic bacteria (pp. 1–12). Boca Raton: CRC Press.

    Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G., & Imhoff, L. F. (1985). Variation of environmental features and microbial populations with the salt concentrations in a multi-pond saltern. Microbial Ecology, 11, 107–111.

    Article  CAS  Google Scholar 

  • Rogers, C., & Oldroyd, G. E. D. (2014). Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 65, 1939–1946.

    Article  CAS  Google Scholar 

  • Roohi, A., Ahmed, I., Iqbal, M., & Jamil, M. (2012). Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt Mines of Karak. Pakistan Journal of Botany, 44, 365–370.

    CAS  Google Scholar 

  • Russell, N. J. (1989). Adaptive modifications in membranes of halotolerant and halophilic microorganisms. Journal of Bioenergetics and Biomembranes, 21(1), 93–113.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Sandhu, G. R., & Qureshi, R. H. (1986). Salt-affected soils of Pakistan and their utilization. Reclamation and Revegetation Research, 5, 105–113.

    Google Scholar 

  • Savka, M. A., Dessaux, Y., McSpadden Gardener, B. B., Mondy, S., Kohler, P. R. A., de Bruijn, F. J., et al. (2013). The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 1147–1161). Hoboken, NJ: Wiley Blackwell.

    Google Scholar 

  • Serrano, R. (1996). Salt tolerance in plants and microorganisms: Toxicity targets and defense responses. International Review of Cytology, 165, 1–52.

    Article  CAS  Google Scholar 

  • Shiyab, S. M., Shibli, R. A., & Mohammad, M. M. (2003). Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro. Journal of Plant Nutrition, 26(5), 985–996.

    Article  CAS  Google Scholar 

  • Singh, B. K., & Naidu, R. (2012). Cleaning contaminated environment: A growing challenge. Biodegradation, 23, 785–786.

    Article  Google Scholar 

  • Singh, K., Chauhan, H. S., Rajput, D. K., & Singh, D. V. (1989). Report of a 60 month study on litter production, changes in soil chemical properties and productivity under Poplar (P. deltoides) and Eucalyptus (E. hybrid) interplanted with aromatic grasses. Agroforestry Systems, 9(1), 37–45.

    Article  Google Scholar 

  • Singh, R. P., & Jha, P. N. (2015). Plant growth potential of ACC deaminase rhizospheric bacteria isolated from Aerva javanica: A plant adapted to saline environments. International Journal of Current Microbiology and Applied Sciences, 4(7), 142–152.

    Google Scholar 

  • Skladany, G. J., & Metting, F. B. (1993). Bioremediation of contaminated soil. In F. B. Metting (Ed.), Soil microbial ecology: Applications in agricultural and environmental management (pp. 483–513). New York: Marcel Dekker.

    Google Scholar 

  • Sosa, L., Llanes, A., Reinoso, H., Reginato, M., & Luna, V. (2005). Osmotic and specific ion effects on the germination of Prosopis strombulifera. Annals of Botany, 96, 261–267.

    Article  CAS  Google Scholar 

  • Spence, C., & Bais, H. (2013). Probiotics for plants: Rhizospheric microbiome and plant fitness. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 713–721). Hoboken, NJ: Wiley Blackwell.

    Chapter  Google Scholar 

  • Stuart, J. R., Tester, M., Gaxiola, R. A., & Flowers, T. J. (2012). Plants of saline environments. In Access science, http://www.accessscience.com.

  • Tanner, C. E., & Parham, T. (2010). Growing Zostera marina (eelgrass) from seeds in land-based culture systems for use in restoration projects. Restoration Ecology, 18, 527–537.

    Article  Google Scholar 

  • Thijs, S., Dillewijn, P. W., Sillen, W., Truyens, S., Holtappels, M., Haen, J. D., et al. (2014). Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: Towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant and Soil, 385, 15–36.

    Article  CAS  Google Scholar 

  • Tripathi, V., Fraceto, L. F., & Abhilash, P. C. (2015). Sustainable clean-up technologies for soils contaminated with multiple pollutants: Plant-microbe-pollutant and climate nexus. Ecological Engineering, 82, 330–335.

    Article  Google Scholar 

  • Trivedi, R., & Arora, S. (2013). Characterization of acid and salt tolerant Rhizobium sp. isolated from saline soils of Gujarat. International Research Journal of Chemistry, 3(3), 8–13.

    Google Scholar 

  • Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizosphere soil of wheat under saline condition. Current Microbiology, 59, 489–496.

    Article  CAS  Google Scholar 

  • Venkataraman, G. S. (1981). Blue green algae for rice production—A manual for its production. FAO Soil Bulletin, 46, 102.

    Google Scholar 

  • Venkateshwaran, M. (2015). Exploring the feasibility of transferring nitrogen fixation to cereal crops. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions (pp. 403–410). Heidelberg: Springer International Publishing Switzerland.

    Google Scholar 

  • Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62(2), 504–544.

    CAS  Google Scholar 

  • Ventosa, A., Ramose Cormenzana, A., & Kocur, M. (1983). Moderately halophilic Gram-positive cocci from hypersaline environments. Systematic and Applied Microbiology, 4, 564–570.

    Article  CAS  Google Scholar 

  • Vessey, K. J. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    Article  CAS  Google Scholar 

  • Vivekanandan, M., Karthik, R., & Leela, A. (2015). Improvement of crop productivity in saline soils through application of saline-tolerant rhizosphere bacteria - Current perspective. International Journal of Advanced Research, 3(7), 1273–1283.

    Google Scholar 

  • Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, 27, 591–598.

    Article  CAS  Google Scholar 

  • Yensen, N. P. (2008). Halophyte uses for the twenty-first century. In M. A. Khan, & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants (pp. 367–396).

    Google Scholar 

  • Yuhashi, K. I., Chikawa, N., Ezuura, H., Akao, S., Minakawa, Y., NuKui, N., et al. (2000). Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness of Macroptilium atropurpureum. Applied and Environmental Microbiology, 66, 2658–2663.

    Article  CAS  Google Scholar 

  • Zahir, Z. A., Munir, A., Asghar, H. N., Shahroona, B., & Arshad, M. (2007). Effectiveness of Rhizobacterium containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18, 958–963.

    Google Scholar 

  • Zancarini, A., Lépinay, C., Burstin, J., Duc, G., Lemanceau, P., Moreau, D., et al. (2013). Combining molecular microbial ecology with ecophysiology and plant genetics for a better understanding of plant-microbial communities’ interactions in the rhizosphere. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 69–86). Hoboken, NJ: Wiley Blackwell.

    Chapter  Google Scholar 

  • Zheng, Y., Rimmington, G. M., Cao, Y., Jiang, L., Xing, X., An, P., et al. (2005). Germination characteristics of Artemisia ordosica (Asteraceae) in relation to ecological restoration in northern China. Canadian Journal of Botany, 83, 1021–1028.

    Article  Google Scholar 

  • Zhu, J.-K., Hasegawa, P. M., & Bressan, R. A. (1997). Molecular aspects of osmotic stress in plants. Critical Reviews in Plant Sciences, 16, 253–277.

    Article  CAS  Google Scholar 

  • Zolla, G., Bakker, M. G., Badri, D. V., Chaparro, J. M., Sheflin, A. M., Manter, D. K., et al. (2013). Understanding root-microbiome interactions. In: F. J. de Bruijn (Eds.), Molecular microbial ecology of the rhizosphere (Vol. 2, pp. 745–754). Wiley Blackwell.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arora, S., Singh, A.K., Sahni, D. (2017). Bioremediation of Salt-Affected Soils: Challenges and Opportunities. In: Arora, S., Singh, A., Singh, Y. (eds) Bioremediation of Salt Affected Soils: An Indian Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-48257-6_14

Download citation

Publish with us

Policies and ethics