Skip to main content

Evaluating the Interactions Between Proteins and Components of the Immune System with Polymer Nanoparticles

  • Chapter
  • First Online:
Polymer Nanoparticles for Nanomedicines

Abstract

The use of polymer nanoparticles in biomedicine has increased in recent years because of their potential to improve a wide range of biomedical applications, particularly as drug-delivery systems. However, the use of these nanoparticles in biomedicine has been accompanied by significant concern regarding their biocompatibility. The success of the use of nanoparticles in biomedical applications will depend to some extent on their interactions with cells and other components of the immune system. The main focus of this chapter is the way in which the interactions between complement factors, antibodies and cells with nanoparticles can be studied. The main guidelines, protocols, and key issues to be considered in these assays will be discussed. Moreover, the potential immunogenicity induced by nanoparticles will be addressed. Immunostimulation can be beneficial for vaccine purposes as nanoparticles could activate the complement system, improve the antigenicity of weak antigens by serving as adjuvants, enhance antigen uptake, and stimulate antigen-presenting cells. In contrast, unwanted immune activation can lead to undesirable reactions in the host’s body, such as inflammation, allergic, or pseudoallergic reactions and autoimmune disorders.

Silvia Lorenzo-Abalde and Rosana Simón-Vázquez shared first-authorships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Lila AS, Kiwada H, Ishida T (2013) The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release 172(1):38–47

    Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia Ma, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliver Rev 61(6):428–437

    Google Scholar 

  • Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA et al (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283(2–3):101–108

    Article  CAS  PubMed  Google Scholar 

  • Aida Y, Pabst MJ (1990) Removal of endotoxin from protein solutions by phase separation using triton X-114. J Immunol Methods 132(2):191–195

    Article  CAS  PubMed  Google Scholar 

  • Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7(3):167–202

    CAS  PubMed  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceut 5(4):505–515

    Article  CAS  Google Scholar 

  • Almeida JP, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6(5):815–835

    Article  CAS  PubMed  Google Scholar 

  • Alving CR, Swartz GM Jr, Wassef NM, Ribas JL, Herderick EE, Virmani R et al (1996) Immunization with cholesterol-rich liposomes induces anti-cholesterol antibodies and reduces diet-induced hypercholesterolemia and plaque formation. J Lab Clin Med 127(1):40–49

    Article  CAS  PubMed  Google Scholar 

  • Aoyama Y, Kanamori T, Nakai T, Sasaki T, Horiuchi S, Sando S et al (2003) Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 125(12):3455–3457

    Article  CAS  PubMed  Google Scholar 

  • Areschoug T, Gordon S (2009) Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell Microbiol 11(8):1160–1169

    Article  CAS  PubMed  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  • Asharani PV, Sethu S, Vadukumpully S, Zhong S, Lim CT, Hande MP et al (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20(8):1233–1242

    Article  CAS  Google Scholar 

  • Ballestrero A, Boy D, Moran E, Cirmena G, Brossart P, Nencioni A (2008) Immunotherapy with dendritic cells for cancer. Adv Drug Deliver Rev 60(2):173–183

    Article  CAS  Google Scholar 

  • Banerji B, Alving CR (1981) Anti-liposome antibodies induced by lipid A. I. Influence of ceramide, glycosphingolipids, and phosphocholine on complement damage. J Immunol 126(3):1080–1084

    CAS  PubMed  Google Scholar 

  • Banerji B, Alving CR (1990) Antibodies to liposomal phosphatidylserine and phosphatidic acid. Biochem Cell Biol 68(1):96–101

    Article  CAS  PubMed  Google Scholar 

  • Banerjee T, Mitra S, Kumar Singh A, Kumar Sharma R, Maitra A (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243(1–2):93–105

    Article  CAS  PubMed  Google Scholar 

  • Barauskas J, Cervin C, Jankunec M, Spandyreva M, Ribokaite K, Tiberg F et al (2010) Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Int J Pharm 391(1–2):284–291

    Google Scholar 

  • Barshtein G, Arbell D, Yedgar S (2011) Hemolytic effect of polymeric nanoparticles: role of albumin. IEEE Trans Nanobiosci 10(4):259–261

    Article  CAS  Google Scholar 

  • Bertram JP, Williams CA, Robinson R, Segal SS, Flynn NT, Lavik EB (2009) Intravenous hemostat: nanotechnology to halt bleeding. Sci Transl Med 1(11):11–22

    Article  CAS  Google Scholar 

  • Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M et al (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281(1–2):65–78

    Article  CAS  PubMed  Google Scholar 

  • Beutler B (2004) Innate immunity: an overview. Mol Immunol 40(12):845–859

    Article  CAS  PubMed  Google Scholar 

  • Binding N, Jaschinski S, Werlich S, Bletz S, Witting U (2004) Quantification of bacterial lipopolysaccharides (endotoxin) by GC-MS determination of 3-hydroxy fatty acids. J Environ Monit 6(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Boess C, Bögl KW (1996) Influence of radiation treatment on pharmaceuticals—a review: alkaloids, morphine derivatives, and antibiotics. Drug Dev Ind Pharm 22(6):495–529

    Article  CAS  Google Scholar 

  • Bok K, Parra GI, Mitra T, Abente E, Shaver CK, Boon D et al (2011) Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc Natl Acad Sci USA 108(1):325–330

    Article  CAS  PubMed  Google Scholar 

  • Bousso P (2008) T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol 8(9):675–684

    Article  CAS  PubMed  Google Scholar 

  • Brady TC, Chang L-Y, Day BJ, Crapo JD (1997) Extracellular superoxide dismutase is upregulated with inducible nitric oxide synthase after NF-κB activation. Am J Physiol 273(5):L1002–L1006

    CAS  PubMed  Google Scholar 

  • Brakha C, Arvers P, Villiers F, Marlu A, Buhot A, Livache T et al (2014) Relationship between humoral response against hepatitis C virus and disease overcome. SpringerPlus 3:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bridget Wildt RAM, Brown RP (2013) The effects of engineered nanomaterials on erythrocytes. In: Marina A, Dobrovolskaia SEM (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 173–195

    Google Scholar 

  • Brown KJ, Formolo CA, Seol H, Marathi RL, Duguez S, An E et al (2012) Advances in the proteomic investigation of the cell secretome. Expert Rev Proteomics 9(3):337–345

    Article  CAS  Google Scholar 

  • Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med 43(5):645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burleson G, Burleson F, Dietert R (2010) The cytotoxic T lymphocyte assay for evaluating cell-mediated immune function. In: Dietert RR (ed) Immunotoxicity testing. Humana Press, New York, pp 195–205

    Google Scholar 

  • Canoa P, Simón-Vázquez R, Popplewell J, González-Fernández Á (2015) A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by Surface Plasmon Resonance. Biosens Bioelectron 74:376–383

    Google Scholar 

  • Caron WP, Rawal S, Song G, Kumar P, Lay JC, Zamboni WC (2013) Bidirectional interaction between nanoparticles and cells of the mononuclear phagocytic system. Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 385–416

    Google Scholar 

  • Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR (1997) Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm 148(1):47–54

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers E, Mitragotri S (2007) Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med 232(7):958–966

    CAS  Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champion J, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26(1):244–249

    Article  CAS  PubMed  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Cheng YC, Yu CH, Chan SW, Cheung MK, Yu PHF (2008) In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3-hydroxybutyrate)–poly(ethylene glycol)–poly(3-hydroxybutyrate) nanoparticles as potential drug carriers. J Biomed Mater Res A 87A(2):290–298

    Article  CAS  Google Scholar 

  • Cho W-S, Thielbeer F, Duffin R, Johansson EMV, Megson IL, MacNee W et al (2014) Surface functionalization affects the zeta potential, coronal stability and membranolytic activity of polymeric nanoparticles. Nanotoxicology 8(2):202–211

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA (2011) Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci 123(1):133–143

    Article  CAS  PubMed  Google Scholar 

  • Chompoosor A, Saha K, Ghosh PS, Macarthy DJ, Miranda OR, Zhu Z-J et al (2010) The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 6(20):2246–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chonn A, Cullis PR, Devine DV (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146(12):4234–4241

    CAS  PubMed  Google Scholar 

  • Chrastina A, Massey KA, Schnitzer JE (2011) Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdisciplinary Rev Nanomed Nanobiotechnol 3(4):421–437

    Article  CAS  Google Scholar 

  • Chung S, Sudo R, Vickerman V, Zervantonakis I, Kamm R (2010) Microfluidic platforms for studies of angiogenesis, cell migration, and cell–cell interactions. Ann Biomed Eng 38(3):1164–1177

    Article  PubMed  Google Scholar 

  • Çimen MYB (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390(1–2):1–11

    Article  PubMed  CAS  Google Scholar 

  • Climent N, Munier S, Piqué N, García F, Pavot V, Primard C et al (2014) Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes induces HIV-1-specific T cell responses. Vaccine 32(47):6266–6276

    Article  CAS  PubMed  Google Scholar 

  • Cohavi O, Reichmann D, Abramovich R, Tesler AB, Bellapadrona G, Kokh DB et al (2011) A quantitative, real-time assessment of binding of peptides and proteins to gold surfaces. Chemistry 17(4):1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW et al (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6(5):698–705

    CAS  PubMed  Google Scholar 

  • Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4 + T cell responses: the alternative approaches. Annu Rev Immunol 15(1):297–322

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu I, Levin E, Gyongyossy-Issa M (2003) Liposomes and blood cells: a flow cytometric study. Artif Cells Blood Substit Biotechnol 31(4):395–424

    Article  CAS  Google Scholar 

  • Cui Z, Baizer L, Mumper RJ (2003) Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device. J Biotechnol 102(2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Czerkinsky CC, Nilsson L-Å, Nygren H, Ouchterlony Ö, Tarkowski A (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65(1–2):109–121

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522

    Article  CAS  PubMed  Google Scholar 

  • Daniel M, Kirchhoff F, Czajak S, Sehgal P, Desrosiers R (1992) Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258(5090):1938–1941

    Article  CAS  PubMed  Google Scholar 

  • Das AP, Kumar PS, Swain S (2014) Recent advances in biosensor based endotoxin detection. Biosens Bioelectron 51:62–75

    Article  CAS  PubMed  Google Scholar 

  • De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC (2011) Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 16(13–14):569–582

    Article  PubMed  CAS  Google Scholar 

  • Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X et al (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327

    Article  CAS  PubMed  Google Scholar 

  • Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM et al (2012) Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 33(19):4957–4964

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Díaz B, Sánchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadán S et al (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4(11):2025–2034

    Article  PubMed  CAS  Google Scholar 

  • Ding JL, Ho B (2010) Endotoxin detection—from Limulus amebocyte lysate to recombinant Factor C. In: Wang X, Quinn PJ (eds) Endotoxins: structure, function and recognition. Springer Netherlands, Amsterdam, pp 187–208

    Google Scholar 

  • Dobrovolskaia MA (2013) Nanoparticles and antigenicity. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 547–573

    Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013a) In vitro assays for monitoring nanoparticle interaction with components of the immune system. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 581–634

    Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013b) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013c) Endotoxin and engineered nanomaterials. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 77–116

    Google Scholar 

  • Dobrovolskaia MA, Vogel SN (2002) Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 4(9):903–914

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008a) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008b) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrovolskaia MA, Germolec DR, Weaver JL (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4(7):411–414

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Neun BW, Clogston JD, Ding H, Ljubimova J, McNeil SE (2010) Ambiguities in applying traditional Limulus Amebocyte Lysate tests to quantify endotoxin in nanoparticle formulations. Nanomedicine 5(4):555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrovolskaia MA, Patri AK, Simak J, Hall JB, Semberova J, De Paoli Lacerda SH et al (2011) Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol Pharmaceut 9(3):382–393

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE (2012) Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine 7(2):245–256

    Article  CAS  PubMed  Google Scholar 

  • Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78(1):857–902

    Article  CAS  PubMed  Google Scholar 

  • Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123(8):1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Li X-J, Tan D-J (2011) Comparison of temperature rise interpretations in the rabbit pyrogen test among Chinese, Japanese, European, and United States pharmacopeias and 2-2-2 theoretical models proposed by S. Hoffmann. Innate Immun 17(5):486–495

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10):1521–1532

    Article  CAS  PubMed  Google Scholar 

  • Dube A, Reynolds JL, Law W-C, Maponga CC, Prasad PN, Morse GD (2014) Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine 10(4):831–838

    CAS  PubMed  Google Scholar 

  • Duffin R, Mills NL, Donaldson K (2007) Nanoparticles-A thoracic toxicology perspective. Yonsei Med J 48(4):561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadok VA, Bratton DL, Henson PM (2001) Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest 108(7):957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairley SJ, Singh SR, Yilma AN, Waffo AB, Subbarayan P, Dixit S et al (2013) Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomed 8:2085–2099

    PubMed  PubMed Central  Google Scholar 

  • Fesenkova V (2013) The effects of nanoparticles on dendritic cells. In: Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 417–432

    Google Scholar 

  • Fifis T, Mottram P, Bogdanoska V, Hanley J, Plebanski M (2004a) Short peptide sequences containing MHC class I and/or class II epitopes linked to nano-beads induce strong immunity and inhibition of growth of antigen-specific tumour challenge in mice. Vaccine 23(2):258–266

    Article  CAS  PubMed  Google Scholar 

  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL et al (2004b) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173(5):3148–3154

    Article  CAS  PubMed  Google Scholar 

  • Foged C, Brodin B, Frokjaer S, Sundblad A (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298(2):315–322

    Article  CAS  PubMed  Google Scholar 

  • Fogler WE, Swartz GM Jr, Alving CR (1987) Antibodies to phospholipids and liposomes: binding of antibodies to cells. Biochim Biophys Acta (BBA) Biomembranes 903(2):265–272

    Article  CAS  Google Scholar 

  • Foucaud L, Wilson MR, Brown DM, Stone V (2007) Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174(1–3):1–9

    Article  CAS  PubMed  Google Scholar 

  • França A, Pelaz B, Moros M, Sanchez-Espinel C, Hernandez A, Fernandez-Lopez C et al (2010) Sterilization matters: consequences of different sterilization techniques on gold nanoparticles. Small 6(1):89–95

    Article  PubMed  CAS  Google Scholar 

  • França A, Aggarwal P, Barsov EV, Kozlov SV, Dobrovolskaia MA, González-Fernández Á (2011) Macrophage scavenger receptor A mediates the uptake of gold colloids by macrophages in vitro. Nanomedicine 6(7):1175–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedl P, Sahai E, Weiss S, Yamada KM (2012) New dimensions in cell migration. Nat Rev Mol Cell Biol 13(11):743–747

    Article  CAS  PubMed  Google Scholar 

  • Fruchon S, Poupot M, Martinet L, Turrin C-O, Majoral J-P, Fournié J-J et al (2009) Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. J Leukoc Biol 85(3):553–562

    Article  CAS  PubMed  Google Scholar 

  • Gamucci O, Bertero A, Gagliardi M, Bardi G (2014) Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings 4(1):139–159

    Article  CAS  Google Scholar 

  • Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM (2010) Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 26(1):315–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves DM, de Liz R, Girard D (2011) Activation of neutrophils by nanoparticles. Sci World J 11:1877–1885

    Article  CAS  Google Scholar 

  • González JRR, Larrea CL, Rodríguez SG, Naves EM (2006) Inmunología: Biología y patología del sistema inmune, 3rd ed. In: González JRR (ed) Editorial Panamericana, Madrid

    Google Scholar 

  • Gopal NGS (1978) Radiation sterilization of pharmaceuticals and polymers. Radiat Phys Chem 12(1–2):35–50

    Article  CAS  Google Scholar 

  • Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25(26):5681–5703

    Article  CAS  PubMed  Google Scholar 

  • Gore ER, Gower J, Kurali E, Sui J-L, Bynum J, Ennulat D et al (2004) Primary antibody response to keyhole limpet hemocyanin in rat as a model for immunotoxicity evaluation. Toxicology 197(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Groscurth P (1989) Cytotoxic effector cells of the immune system. Anat Embryol 180(2):109–119

    Article  CAS  PubMed  Google Scholar 

  • Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez de Aberasturi D, Larramendi IRd, Rojo T et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2(6):789–803

    Article  CAS  PubMed  Google Scholar 

  • Halminen M, Sjöroos M, Mäkelä MJ, Waris M, Terho E, Lövgren T et al (1999) Simultaneous detection of IFN-γ and IL-4 mRNAS using RT-PCR and Time-Resolved Fluometry. Cytokine 11(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Han HD, Mangala LS, Lee JW, Shahzad MMK, Kim HS, Shen D et al (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16(15):3910–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock J, Desikan R, Neill S (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(2):345–349

    Article  CAS  PubMed  Google Scholar 

  • Harboe M, Thorgersen EB, Mollnes TE (2011) Advances in assay of complement function and activation. Adv Drug Deliver Rev 63(12):976–987

    Article  CAS  Google Scholar 

  • Harding CV, Collins DS, Slot JW, Geuze HJ, Unanue ER (1991) Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell 64(2):393–401

    Article  CAS  PubMed  Google Scholar 

  • Harush-Frenkel O, Debotton N, Benita S, Altschuler Y (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666

    Article  CAS  PubMed  Google Scholar 

  • Heiati H, Tawashi R, Phillips NC (1998) Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J Microencapsul 15(2):173–184

    Article  CAS  PubMed  Google Scholar 

  • Herzyk DJ, Gore ER (2004) Adequate immunotoxicity testing in drug development. Toxicol Lett 149(1–3):115–122

    Article  CAS  PubMed  Google Scholar 

  • Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76(6):977–987

    Article  CAS  PubMed  Google Scholar 

  • Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5(24):2848–2856

    Article  CAS  PubMed  Google Scholar 

  • Hoebe K, Janssen E, Beutler B (2004) The interface between innate and adaptive immunity. Nat Immunol 5(10):971–974

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann S, Luderitz-Puchel U, Montag T, Hartung T (2005a) Optimisation of pyrogen testing in parenterals according to different pharmacopoeias by probabilistic modelling. J Endotoxin Res 11(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann S, Peterbauer A, Schindler S, Fennrich S, Poole S, Mistry Y et al (2005b) International validation of novel pyrogen tests based on human monocytoid cells. J Immunol Methods 298(1–2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Hsu CL, Chang HT, Chen CT, Wei SC, Shiang YC, Huang CC (2011) Highly efficient control of thrombin activity by multivalent nanoparticles. Chemistry 17(39):10994–11000

    Article  CAS  PubMed  Google Scholar 

  • Hubbell JA, Thomas SN, Swartz MA (2009) Materials engineering for immunomodulation. Nature 462(7272):449–460

    Article  CAS  PubMed  Google Scholar 

  • Hudson SP, Padera RF, Langer R, Kohane DS (2008) The biocompatibility of mesoporous silicates. Biomaterials 29(30):4045–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries GK, McConnell HM (1974) Immune lysis of liposomes and erythrocyte ghosts loaded with spin label. Proc Natl Acad Sci USA 71(5):1691–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huttenlocher A, Horwitz AR (2011) Integrins in cell migration. Cold Spring Harb Perspect Biol 3(9):a005074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ICH (2006) Topic S8 immunotoxicity studies for human pharmaceuticals note for guidance on immunotoxicity studies for human pharmaceuticals (CHMP/167235/2004). http://www.ichorg/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S8/Step4/S8_Guideline.pdf

  • Idris NM, Li Z, Ye L, Wei Sim EK, Mahendran R, Ho PC-L et al (2009) Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30(28):5104–5113

    Article  CAS  PubMed  Google Scholar 

  • Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology. Nanomedicine 8(5):773–784

    Article  CAS  PubMed  Google Scholar 

  • Inoue K (2011) Promoting effects of nanoparticles/materials on sensitive lung inflammatory diseases. Environ Health Prev Med 16(3):139–143

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Kiwada H (2008) Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm 354(1–2):56–62

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394(1–2):122–142

    Article  CAS  PubMed  Google Scholar 

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20(1):197–216

    Article  CAS  PubMed  Google Scholar 

  • Jenske R, Vetter W (2008) Gas chromatography/electron-capture negative ion mass spectrometry for the quantitative determination of 2- and 3-hydroxy fatty acids in bovine milk fat. J Agric Food Chem 56(14):5500–5505

    Article  CAS  PubMed  Google Scholar 

  • Jerome KR, Sloan DD, Aubert M (2003) Measurement of CTL-induced cytotoxicity: the caspase 3 assay. Apoptosis 8(6):563–571

    Article  CAS  PubMed  Google Scholar 

  • Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliver Rev 61(6):438–456

    Article  CAS  Google Scholar 

  • Joos T, Bachmann J (2009) Protein microarrays: potentials and limitations. Front Biosci 14:4376–4385

    Article  CAS  Google Scholar 

  • Jorquera PA, Choi Y, Oakley KE, Powell TJ, Boyd JG, Palath N et al (2013) Nanoparticle vaccines encompassing the respiratory syncytial virus (RSV) G protein CX3C chemokine motif Induce robust immunity protecting from challenge and disease. PLoS ONE 8(9):e74905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kainthan RK, Gnanamani M, Ganguli M, Ghosh T, Brooks DE, Maiti S et al (2006) Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA. Biomaterials 27(31):5377–5390

    Article  CAS  PubMed  Google Scholar 

  • Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI et al (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470(7335):543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katial RK, Sachanandani D, Pinney C, Lieberman MM (1998) Cytokine production in cell culture by peripheral blood mononuclear cells from immunocompetent hosts. Clin Diagn Lab Immunol 5(1):78–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Kiang T, Bright C, Cheung CY, Stayton PS, Hoffman AS, Leong KW (2014) Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression. J Biomater Sci Polym Ed 15(11):1405–1421

    Article  Google Scholar 

  • Kim MJ, Shin S (2014) Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem Toxicol 67:80–86

    Article  CAS  PubMed  Google Scholar 

  • Kim D, El-Shall H, Dennis D, Morey T (2005) Interaction of PLGA nanoparticles with human blood constituents. Colloids Surf B Biointerfaces 40(2):83–91

    Article  CAS  Google Scholar 

  • Kim E, Okada K, Beeler JA, Crim RL, Piedra PA, Gilbert BE et al (2014a) Development of an adenovirus-based respiratory syncytial virus vaccine: preclinical evaluation of efficacy, immunogenicity, and enhanced disease in a cotton rat model. J Virol 88(9):5100–5108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D, Finkenstaedt-Quinn S, Hurley KR, Buchman JT, Haynes CL (2014b) On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles. Analyst 139(5):906–913

    Article  CAS  PubMed  Google Scholar 

  • Kirschfink M, Mollnes TE (2003) Modern complement analysis. Clin Diagn Lab Immunol 10(6):982–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klippstein R, Pozo D (2010) Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine 6(4):523–529

    CAS  PubMed  Google Scholar 

  • Knaapen AM, Schins RPF, Steinfartz Y, Borm PJA (2000) Ambient particulate matter induces oxidative DNA damage in lung epithelial cells. Inhal Toxicol 12(s3):125–132

    Article  CAS  PubMed  Google Scholar 

  • Knight J (2001) When the chips are down. Nature 410(6831):860–861

    Article  CAS  PubMed  Google Scholar 

  • Koh WCA, Chandra P, Kim D-M, Shim Y-B (2011) Electropolymerized self-assembled layer on gold nanoparticles: Detection of inducible nitric oxide synthase in neuronal cell culture. Anal Chem 83(16):6177–6183

    Article  CAS  PubMed  Google Scholar 

  • Kosloski MP, Peng A, Varma PR, Fathallah AM, Miclea RD, Mager DE et al (2010) Immunogenicity and pharmacokinetic studies of recombinant Factor VIII containing lipid cochleates. Drug Deliv 18(4):246–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72(2):370–377

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov AV, Kehrer I, Kozlov A, Haller M, Redl H, Hermann M et al (2011) Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem 400(8):2383–2390

    Article  CAS  PubMed  Google Scholar 

  • Lachmann PJ, Munn EA, Weissmann G (1970) Complement-mediated lysis of liposomes produced by the `reactive lysis’ procedure. Immunology 19(6):983–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ladics GS (2007) Primary immune response to sheep red blood cells (SRBC) as the conventional T-Cell dependent antibody response (TDAR) test. J Immunotoxicol 4(2):149–152

    Article  PubMed  Google Scholar 

  • Lai ZW, Yan Y, Caruso F, Nice EC (2012) Emerging techniques in proteomics for probing nano–bio interactions. ACS Nano 6(12):10438–10448

    Article  CAS  PubMed  Google Scholar 

  • Landsiedel R, Fabian E, Ma-Hock L, van Ravenzwaay B, Wohlleben W, Wiench K et al (2012) Toxico-/biokinetics of nanomaterials. Arch Toxicol 86(7):1021–1060

    Article  CAS  PubMed  Google Scholar 

  • Lanier LL, Phillips JH (1992) Natural killer cells. Curr Opin Immunol 4(1):38–42

    Article  CAS  PubMed  Google Scholar 

  • Laverman P, Carstens MG, Boerman OC, Dams ETM, Oyen WJ, van Rooijen N et al (2001) Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther 298(2):607–612

    CAS  PubMed  Google Scholar 

  • Lebrec H, Molinier B, Boverhof D, Collinge M, Freebern W, Henson K et al (2014) The T-cell-dependent antibody response assay in nonclinical studies of pharmaceuticals and chemicals: study design, data analysis, interpretation. Regul Toxicol Pharmacol 69(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Parthasarathy R, Duf TD, Botwin K, Zobel J, Beck T et al (2001) Recognition properties of antibodies to PAMAM dendrimers and their use in immune detection of dendrimers. Biomed Microdevices 3(1):53–59

    Article  CAS  Google Scholar 

  • Lee SC, Parthasarathy R, Botwin K, Kunneman D, Rowold E, Lange G et al (2004a) Regular Papers: biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed Microdevices 6(3):191–202

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Powers K, Baney R (2004b) Physicochemical properties and blood compatibility of acylated chitosan nanoparticles. Carbohydr Polym 58(4):371–377

    Article  CAS  Google Scholar 

  • Lee S-H, Pumprueg S, Moudgil B, Sigmund W (2005) Inactivation of bacterial endospores by photocatalytic nanocomposites. Colloids Surf B Biointerfaces 40(2):93–98

    Article  CAS  Google Scholar 

  • Lee K, Lee H, Lee KW, Park TG (2011) Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles. Biomaterials 32(10):2556–2565

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee SY, Won DI, Cha SI, Park JY, Kim CH (2013) Comparison of whole-blood interferon-γ assay and flow cytometry for the detection of tuberculosis infection. J Infect 66(4):338–345

    Article  PubMed  Google Scholar 

  • Lee-MacAry AE, Ross EL, Davies D, Laylor R, Honeychurch J, Glennie MJ et al (2001) Development of a novel flow cytometric cell-mediated cytotoxicity assay using the fluorophores PKH-26 and TO-PRO-3 iodide. J Immunol Methods 252(1–2):83–92

    Article  CAS  PubMed  Google Scholar 

  • Li J, Purves RW, Richards JC (2004) Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Anal Chem 76(16):4676–4683

    Article  CAS  PubMed  Google Scholar 

  • Li J, Cox AD, Hood DW, Schweda EKH, Moxon ER, Richards JC (2005) Electrophoretic and mass spectrometric strategies for profiling bacterial lipopolysaccharides. Mol BioSyst 1(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Li S-Q, Zhu R-R, Zhu H, Xue M, Sun X-Y, Yao S-D et al (2008) Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46(12):3626–3631

    Article  CAS  PubMed  Google Scholar 

  • Li X, Radomski A, Corrigan OI, Tajber L, De Sousa Menezes F, Endter S et al (2009) Platelet compatibility of PLGA, chitosan and PLGA–chitosan nanoparticles. Nanomedicine 4(7):735–746

    Article  CAS  PubMed  Google Scholar 

  • Liebers V, Raulf-Heimsoth M, Brüning T (2008) Health effects due to endotoxin inhalation. Arch Toxicol 82(4):203–210

    Article  CAS  PubMed  Google Scholar 

  • Lonez C, Bessodes M, Scherman D, Vandenbranden M, Escriou V, Ruysschaert J-M (2014) Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways. Nanomedicine 10(4):775–782

    CAS  PubMed  Google Scholar 

  • Look M, Saltzman WM, Craft J, Fahmy TM (2014) The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus. Biomaterials 35(3):1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Fernández T, Ballester-Antxordoki L, Pérez-Temprano N, Rojas E, Sanz D, Iglesias-Gaspar M et al (2014) Potential impact of metal oxide nanoparticles on the immune system: The role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine 10(6):1301–1310

    PubMed  Google Scholar 

  • Lund FE (2008) Cytokine-producing B lymphocytes—key regulators of immunity. Curr Opin Immunol 20(3):332–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I et al (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5(9):7503–7509

    Article  CAS  PubMed  Google Scholar 

  • Ma JS, Kim WJ, Kim JJ, Kim TJ, Ye SK, Song MD et al (2010) Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-κB and IFN-β/STAT1 pathways in RAW264.7 cells. Nitric Oxide 23(3):214–219

    Article  CAS  PubMed  Google Scholar 

  • Macho Fernandez E, Chang J, Fontaine J, Bialecki E, Rodriguez F, Werkmeister E et al (2012) Activation of invariant Natural Killer T lymphocytes in response to the α-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles. Int J Pharm 423(1):45–54

    Google Scholar 

  • MacLean AG, Walker E, Sahu GK, Skowron G, Marx P, von Laer D et al (2014) A novel real-time CTL assay to measure designer T-cell function against HIV Env(+) cells. J Med Primatol 43(5):341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC, Pessoa A Jr (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharm Sci 10(3):388–404

    PubMed  Google Scholar 

  • Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci USA 105(47):18132–18138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Martin RM, Brady JL, Lew AM (1998) The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Methods 212(2):187–192

    Article  CAS  PubMed  Google Scholar 

  • Marton Z, Kesmarky G, Vekasi J, Cser A, Russai R, Horvath B et al (2001) Red blood cell aggregation measurements in whole blood and in fibrinogen solutions by different methods. Clin Hemorheol Microcirc 24(2):75–83

    CAS  PubMed  Google Scholar 

  • May C, Brosseron F, Chartowski P, Schumbrutzki C, Schoenebeck B, Marcus K (2011) Instruments and methods in proteomics. In: Hamacher M, Eisenacher M, Stephan C (eds) Data mining in proteomics. Humana Press, New York, pp 3–26

    Google Scholar 

  • Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Fröhlich E (2009) The role of nanoparticle size in hemocompatibility. Toxicology 258(2–3):139–147

    Article  CAS  PubMed  Google Scholar 

  • Mbow ML, De Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22(3):411–416

    Article  CAS  PubMed  Google Scholar 

  • McGuinnes C, Duffin R, Brown SL, Mills N, Megson IL, MacNee W et al (2011) Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol Sci 119(2):359–368

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300

    Article  CAS  PubMed  Google Scholar 

  • Meerasa A, Huang JG, Gu FX (2011) CH(50): a revisited hemolytic complement consumption assay for evaluation of nanoparticles and blood plasma protein interaction. Curr Drug Deliv 8(3):290–298

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 47(2–3):165–196

    Article  CAS  Google Scholar 

  • Memisoglu-Bilensoy E, Hincal AA (2006) Sterile, injectable cyclodextrin nanoparticles: effects of gamma irradiation and autoclaving. Int J Pharm 311(1–2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto T, Okano S, Kasai N (2009) Inactivation of Escherichia coli endotoxin by soft hydrothermal processing. Appl Environ Microbiol 75(15):5058–5063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mocan T (2013) Hemolysis as expression of nanoparticles-induced cytotoxicity in red blood cells. BMBN 1(1):7–12

    Google Scholar 

  • Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18(10):412–420

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Andersen AJ, Ahmadvand D, Wibroe PP, Andresen TL, Hunter AC (2011) Material properties in complement activation. Adv Drug Deliver Rev 63(12):1000–1007

    Article  CAS  Google Scholar 

  • Mollnes TE, Jokiranta TS, Truedsson L, Nilsson B, Rodriguez de Cordoba S, Kirschfink M (2007) Complement analysis in the 21st century. Mol Immunol 44(16):3838–3849

    Article  CAS  PubMed  Google Scholar 

  • Moros M, Hernaez B, Garet E, Dias JT, Saez B, Grazu V et al (2012) Monosaccharides versus PEG-functionalized NPs: Influence in the cellular uptake. ACS Nano 6(2):1565–1577

    Article  CAS  PubMed  Google Scholar 

  • Mottram PL, Leong D, Crimeen-Irwin B, Gloster S, Xiang SD, Meanger J et al (2006) Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharmaceut 4(1):73–84

    Article  CAS  Google Scholar 

  • Muttil P, Prego C, Garcia-Contreras L, Pulliam B, Fallon J, Wang C et al (2010) Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS J 12(3):330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166(2):182–194

    Article  CAS  PubMed  Google Scholar 

  • Naeye B, Deschout H, Röding M, Rudemo M, Delanghe J, Devreese K et al (2011) Hemocompatibility of siRNA loaded dextran nanogels. Biomaterials 32(34):9120–9127

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Kanamori T, Sando S, Aoyama Y (2003) Remarkably size-regulated cell invasion by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J Am Chem Soc 125(28):8465–8475

    Article  CAS  PubMed  Google Scholar 

  • Nam HY, Kwon SM, Chung H, Lee S-Y, Kwon S-H, Jeon H et al (2009) Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release 135(3):259–267

    Article  CAS  PubMed  Google Scholar 

  • Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB (2010) Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces 81(1):263–273

    Article  CAS  Google Scholar 

  • Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestle FO, Farkas A, Conrad C (2005) Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol 17(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Neu B, Meiselman HJ (2002) Depletion-mediated red blood cell aggregation in polymer solutions. Biophys J 83(5):2482–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TA, Yin T-I, Reyes D, Urban GA (2013) Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem 85(22):11068–11076

    Article  CAS  PubMed  Google Scholar 

  • Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 9(Suppl. 1):51–63

    Google Scholar 

  • Okamoto S, Matsuura M, Akagi T, Akashi M, Tanimoto T, Ishikawa T et al (2009) Poly(gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine 27(42):5896–5905

    Article  CAS  PubMed  Google Scholar 

  • Okamura Y, Fukui Y, Kabata K, Suzuki H, Handa M, Ikeda Y et al (2009) Novel platelet substitutes: disk-shaped biodegradable nanosheets and their enhanced effects on platelet aggregation. Bioconjug Chem 20(10):1958–1965

    Article  CAS  PubMed  Google Scholar 

  • Olsen MH, Hjortø GM, Hansen M, Met Ö, Svane IM, Larsen NB (2013) In-chip fabrication of free-form 3D constructs for directed cell migration analysis. Lab Chip 13(24):4800–4809

    Article  CAS  PubMed  Google Scholar 

  • Omidi Y, Barar J, Heidari HR, Ahmadian S, Yazdi HA, Akhtar S (2008) Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial a549 cells. Toxicol Mech Methods 18(4):369–378

    Article  CAS  PubMed  Google Scholar 

  • O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4 + T cells. Science 327(5969):1098–1102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mat 9(3):035004

    Google Scholar 

  • Palazzolo-Ballance AM, Suquet C, Hurst JK (2007) Pathways for intracellular generation of oxidants and tyrosine nitration by a macrophage cell line. Biochemistry 46(25):7536–7548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Gao W, Whiston R, Strom TB, Metcalfe S, Fahmy TM (2010) Modulation of CD4 + T lymphocyte lineage outcomes with targeted, nanoparticle-mediated cytokine delivery. Mol Pharmaceut 8(1):143–152

    Article  CAS  Google Scholar 

  • Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357(9270):1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Parronchi P, De Carli M, Manetti R, Simonelli C, Sampognaro S, Piccinni MP et al (1992) IL-4 and IFN (alpha and gamma) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J Immunol 149(9):2977–2983

    CAS  PubMed  Google Scholar 

  • Pascarelli NA, Moretti E, Terzuoli G, Lamboglia A, Renieri T, Fioravanti A et al (2013) Effects of gold and silver nanoparticles in cultured human osteoarthritic chondrocytes. J Appl Toxicol 33(12):1506–1513

    Article  CAS  PubMed  Google Scholar 

  • Pastoriza I, Díaz-Freitas B, Sánchez-Espinel C, Faro JM, Magadán S, Liz Marzán L, González-Fernández A (2008) Visualización de nanopartículas por la técnica de SEM-FIB en el interior de los macrófagos (oral). XXXIV Congreso de la Sociedad Española de Inmunología; 2008; Palma de Mallorca (Spain)

    Google Scholar 

  • Patton LM, Pretzer D, Schulteis BS, Saggart BS, Tennant KD, Ahmed NK (1993) Activity assays for characterizing the thrombolytic protein fibrolase. J Biochem Biophys Methods 27(1):11–15

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MB, Zhou X, Larsen EK, Sorensen US, Kjems J, Nygaard JV et al (2010) Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J Immunol 184(4):1931–1945

    Article  CAS  PubMed  Google Scholar 

  • Pedersen GK, Hoschler K, Oie Solbak SM, Bredholt G, Pathirana RD, Afsar A et al (2014) Serum IgG titres, but not avidity, correlates with neutralizing antibody response after H5N1 vaccination. Vaccine 32(35):4550–4557

    Article  CAS  PubMed  Google Scholar 

  • Pelkmans L (2005) Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim Biophys Acta (BBA) Mol Cell Res 1746(3):295–304

    Article  CAS  Google Scholar 

  • Peracchia MT, Harnisch S, Pinto-Alphandary H, Gulik A, Dedieu JC, Desmaële D et al (1999) Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials 20(14):1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Perkins WR, Vaughan DE, Plavin SR, Daley WL, Rauch J, Lee L et al (1997) Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thromb Haemost 77(6):1174–1178

    CAS  PubMed  Google Scholar 

  • Petsch D, Anspach FB (2000) Endotoxin removal from protein solutions. J Biotechnol 76(2–3):97–119

    Article  CAS  PubMed  Google Scholar 

  • Pfaller T, Colognato R, Nelissen I, Favilli F, Casals E, Ooms D et al (2010) The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology 4(1):52–72

    Article  CAS  PubMed  Google Scholar 

  • Pham PV, Nguyen NT, Nguyen HM, Khuat LT, Le PM, Pham VQ et al (2014) A simple in vitro method for evaluating dendritic cell-based vaccinations. Onco Targets Ther 18(7):1455–1464

    Article  CAS  Google Scholar 

  • Pharmacopeia US (2010) Bacterial endotoxins test, Chap. 85. USP 33. United States Pharmacopeial Convention, Rockville, pp R65–R9

    Google Scholar 

  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY et al (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100

    Article  CAS  PubMed  Google Scholar 

  • Piccotti JR (2008) T cell-dependent antibody response tests. In: Bussiere DJHJL (ed) Immunotoxicology strategies for pharmaceutical safety assessment. Wiley, New York, pp 67–74

    Google Scholar 

  • Plitnick L, Herzyk D (2010) The T-Dependent antibody response to keyhole limpet hemocyanin in rodents. In: Dietert RR (ed) Immunotoxicity testing. Humana Press, New York, pp 159–171

    Google Scholar 

  • Poole S, Mussett MV (1989) The international standard for endotoxin: evaluation in an international collaborative study. J Biol Stand 17(2):161–171

    Article  CAS  PubMed  Google Scholar 

  • Potter T, Neun B, Stern S (2011) Assay to detect lipid peroxidation upon exposure to nanoparticles. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery. Humana Press, New York, pp 181–189

    Google Scholar 

  • Prach M, Stone V, Proudfoot L (2013) Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status. Toxicol Appl Pharmacol 266(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Prasad GK, Agarwal GS, Singh B, Rai GP, Vijayaraghavan R (2009) Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. J Hazard Mater 165(1–3):506–510

    Article  CAS  PubMed  Google Scholar 

  • Prego C, Paolicelli P, Díaz B, Vicente S, Sánchez A, González-Fernández A et al (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28(14):2607–2614

    Article  CAS  PubMed  Google Scholar 

  • Priano G, Pallarola D, Battaglini F (2007) Endotoxin detection in a competitive electrochemical assay: synthesis of a suitable endotoxin conjugate. Anal Biochem 362(1):108–116

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich N, McInnes P, Klein D, Hall B (1994) Vaccine technologies: view to the future. Science 265(5177):1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Ramani K, Miclea RD, Purohit VS, Mager DE, Straubinger RM, Balu-Iyer SV (2008a) Phosphatidylserine containing liposomes reduce immunogenicity of recombinant human factor VIII (rFVIII) in a murine model of hemophilia A. J Pharm Sci 97(4):1386–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani K, Purohit V, Miclea R, Gaitonde P, Straubinger RM, Balu-Iyer SV (2008b) Passive transfer of polyethylene glycol to liposomal-recombinant human FVIII enhances its efficacy in a murine model for hemophilia A. J Pharm Sci 97(9):3753–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangin M, Basu A (2004) Lipopolysaccharide identification with functionalized polydiacetylene liposome sensors. J Am Chem Soc 126(16):5038–5039

    Article  CAS  PubMed  Google Scholar 

  • Reddy ST, Swartz MA, Hubbell JA (2006) Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 27(12):573–579

    Article  CAS  PubMed  Google Scholar 

  • Rehman M, Yoshihisa Y, Miyamoto Y, Shimizu T (2012) The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm Res 61(11):1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Richards RL, Aronson J, Schoenbechler M, Diggs CL, Alving CR (1983) Antibodies reactive with liposomal phospholipids are produced during experimental Trypanosoma rhodesiense infections in rabbits. J Immunol 130(3):1390–1394

    CAS  PubMed  Google Scholar 

  • Rı́hová B (2002) Immunomodulating activities of soluble synthetic polymer-bound drugs. Adv Drug Deliver Rev 54(5):653–674

    Google Scholar 

  • Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4(9):577–580

    Article  PubMed  CAS  Google Scholar 

  • Roesslein M, Hirsch C, Kaiser J-P, Krug HF, Wick P (2013) Comparability of in vitro tests for bioactive nanoparticles: A common assay to detect reactive oxygen species as an example. Int J Mol Sci 14(12):24320–24337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rohani R, de Chickera S, Willert C, Chen Y, Dekaban G, Foster P (2011) In vivo cellular MRI of dendritic cell migration using micrometer-sized iron oxide (MPIO) particles. Mol Imaging Biol 13(4):679–694

    Article  PubMed  Google Scholar 

  • Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85(1):9–21

    Article  CAS  PubMed  Google Scholar 

  • Ronzani C, Safar R, Diab R, Chevrier J, Paoli J, Abdel-Wahhab M et al (2014) Viability and gene expression responses to polymeric nanoparticles in human and rat cells. Cell Biol Toxicol 30(3):137–146

    Article  CAS  PubMed  Google Scholar 

  • Rosalia R, Silva A, Camps M, Allam A, Jiskoot W, van der Burg S et al (2013) Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles. Cancer Immunol Immunother 62(7):1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser BM, Schürch S, Haenni B, Kapp N, Gehr P (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 40(14):4353–4359

    Article  CAS  PubMed  Google Scholar 

  • Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador-Morales C, Sim RB (2013) Complement activation. Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 357–384

    Google Scholar 

  • Samama MM, Guinet C (2011) Laboratory assessment of new anticoagulants. Clin Chem Lab Med 49(5):761–772

    Article  CAS  PubMed  Google Scholar 

  • Sanfins E, Augustsson C, Dahlbäck B, Linse S, Cedervall T (2014) Size-dependent effects of nanoparticles on enzymes in the blood coagulation cascade. Nano Lett 14(8):4736–4744

    Article  CAS  PubMed  Google Scholar 

  • Schins RPF, Duffin R, Höhr D, Knaapen AM, Shi T, Weishaupt C et al (2002) Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem Res Toxicol 15(9):1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D et al (2013) IRF4 transcription factor-dependent CD11b + dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38(5):970–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastià J, Cristòfol R, Martín M, Rodríguez-Farré E, Sanfeliu C (2003) Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry Part A 51A(1):16–25

    Article  CAS  Google Scholar 

  • Sedgwick JD, Holt PG (1983) A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods 57(1–3):301–309

    Article  CAS  PubMed  Google Scholar 

  • Sehgal K, Ragheb R, Fahmy TM, Dhodapkar MV, Dhodapkar KM (2014) Nanoparticle-mediated combinatorial targeting of multiple human dendritic cell (DC) subsets leads to enhanced T Cell activation via IL-15–dependent DC crosstalk. J Immunol 193(5):2297–2305

    Article  CAS  PubMed  Google Scholar 

  • Shafer-Weaver K, Sayers T, Strobl S, Derby E, Ulderich T, Baseler M et al (2003) The granzyme B ELISPOT assay: an alternative to the (51)Cr-release assay for monitoring cell-mediated cytotoxicity. J Transl Med 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SK (1986) Endotoxin detection and elimination in biotechnology. Biotechnol Appl Biochem 8(1):5–22

    CAS  PubMed  Google Scholar 

  • Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S et al (2010) Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 147(3):408–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17(8):852–870

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P et al (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1):78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Zhang S, Zhang F, Loftis A, Pavía-Sanders A, Zou J et al (2013) Polyphosphoester-based cationic nanoparticles serendipitously release integral biologically-active components to serve as novel degradable inducible nitric oxide synthase inhibitors. Adv Mater 25(39):5609–5614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy D, Little S, Langer R, Amiji M (2005) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol Pharm 2(5):357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiang Y-C, Hsu C-L, Huang C-C, Chang H-T (2011) Gold nanoparticles presenting hybridized self-assembled aptamers that exhibit enhanced inhibition of thrombin. Angew Chem Int Ed Engl 50(33):7660–7665

    Article  CAS  PubMed  Google Scholar 

  • Shresta S, Pham CTN, Thomas DA, Graubert TA, Ley TJ (1998) How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol 10(5):581–587

    Article  CAS  PubMed  Google Scholar 

  • Simak J (2013a) The effects of enginereed nanomaterials on the plasma coagulation system. Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 263–285

    Google Scholar 

  • Simak J (2013b) The effects of enginereed nanomaterials on platelets. In: Marina A, Dobrovolskaia SEM (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 293–348

    Google Scholar 

  • Sintzel MB, Merkli A, Tabatabay C, Gurny R (1997) Influence of irradiation sterilization on polymers used as drug carriers—a review. Drug Dev Ind Pharm 23(9):857–878

    Article  CAS  Google Scholar 

  • Slowing II, Wu C-W, Vivero-Escoto JL, Lin VSY (2009) Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Socha M, Bartecki P, Passirani C, Sapin A, Damge C, Lecompte T et al (2009) Stealth nanoparticles coated with heparin as peptide or protein carriers. J Drug Target 17(8):575–585

    Article  CAS  PubMed  Google Scholar 

  • Spira J, Plyushch O, Zozulya N, Yatuv R, Dayan I, Bleicher A et al (2010) Safety, pharmacokinetics and efficacy of factor VIIa formulated with PEGylated liposomes in haemophilia A patients with inhibitors to factor VIII—an open label, exploratory, cross-over, phase I/II study. Haemophilia Off J World Federation Hemophilia 16(6):910–918

    Article  CAS  Google Scholar 

  • Spira J, Plyushch O, Andreeva T, Zorenko V, Zozulya N, Velichkoi I et al (2012) Safety and efficacy of a long-acting liposomal formulation of plasma-derived factor VIII in haemophilia A patients. Br J Haematol 158(1):149–152

    Article  CAS  PubMed  Google Scholar 

  • Stano A, van der Vlies AJ, Martino MM, Swartz MA, Hubbell JA, Simeoni E (2011) PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine 29(4):804–812

    Article  CAS  PubMed  Google Scholar 

  • Stano A, Scott EA, Dane KY, Swartz MA, Hubbell JA (2013) Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials 34(17):4339–4346

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21(1):685–711

    Article  CAS  PubMed  Google Scholar 

  • Tafaghodi M, Saluja V, Kersten GF, Kraan H, Slutter B, Amorij JP et al (2012) Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: impact of formulation on physicochemical and immunological characteristics. Vaccine 30(36):5341–5348

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Hu W, Liu Y, Huang G, Sumer BD, Gao J (2011) Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp Biol Med 236(1):20–29

    Article  CAS  Google Scholar 

  • Tayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF et al (2011) Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Safety 31(2):211–218

    Article  CAS  Google Scholar 

  • Thiele L, Merkle H, Walter E (2003) Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res 20(2):221–228

    Article  CAS  PubMed  Google Scholar 

  • Torres MP, Wilson-Welder JH, Lopac SK, Phanse Y, Carrillo-Conde B, Ramer-Tait AE et al (2011) Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomater 7(7):2857–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triantafilou M, Triantafilou K (2005) The dynamics of LPS recognition: complex orchestration of multiple receptors. J Endotoxin Res 11(1):5–11

    CAS  PubMed  Google Scholar 

  • Trojan A, Rajeswaran R, Montemurro M, Mütsch M, Steffen R (2007) Real time PCR for the assessment of CD8 + T cellular immune response after prophylactic vaccinia vaccination. J Clin Virol 40(1):80–83

    Article  CAS  PubMed  Google Scholar 

  • Uto T, Akagi T, Hamasaki T, Akashi M, Baba M (2009) Modulation of innate and adaptive immunity by biodegradable nanoparticles. Immunol Lett 125(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, Scheynius A et al (2006) The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 6(8):1682–1686

    Article  CAS  PubMed  Google Scholar 

  • VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Vicente S, Peleteiro M, Díaz-Freitas B, Sanchez A, González-Fernández Á, Alonso MJ (2013a) Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: a needle-free vaccination strategy. J Control Release 172(3):773–781

    Article  CAS  PubMed  Google Scholar 

  • Vicente S, Diaz-Freitas B, Peleteiro M, Sanchez A, Pascual DW, Gonzalez-Fernandez A et al (2013b) A polymer/oil based nanovaccine as a single-dose immunization approach. PLos One 8(4):e62500–e

    Google Scholar 

  • Vicente S, Peleteiro M, Gonzalez-Aramundiz JV, Díaz-Freitas B, Martínez-Pulgarín S, Neissa JI et al (2014) Highly versatile immunostimulating nanocapsules for specific immune potentiation. Nanomedicine 9(15):2273–2289

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Manzanares M, Horwitz A (2011) Cell migration: an overview. In: Wells CM, Parsons M (eds) Cell migration. Humana Press, New York, pp 1–24

    Google Scholar 

  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510

    Article  CAS  PubMed  Google Scholar 

  • Walsh PN, Friedrich DP, Williams JA, Smith RJ, Stewart TL, Carter DK et al (2013) Optimization and qualification of a memory B-cell ELISpot for the detection of vaccine-induced memory responses in HIV vaccine trials. J Immunol Methods 394(1–2):84–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5–6):612–616

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Xiong W, Zhu Y, Xu H, Yang X (2010) Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells. J Biomed Mater Res B Appl Biomater 93(1):59–64

    PubMed  Google Scholar 

  • Wang H, Cai H-H, Zhang L, Cai J, Yang P-H, Chen ZW (2013) A novel gold nanoparticle-doped polyaniline nanofibers-based cytosensor confers simple and efficient evaluation of T-cell activation. Biosens Bioelectron 50:167–173

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li J, Cho J, Malik AB (2014a) Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol 9(3):204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhu R, Gao B, Wu B, Li K, Sun X et al (2014b) The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials 35(1):466–478

    Article  CAS  PubMed  Google Scholar 

  • Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J et al (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 9(4):558–569

    CAS  PubMed  Google Scholar 

  • Wassef NM, Roerdink F, Swartz GM Jr, Lyon JA, Berson BJ, Alving CR (1984) Phosphate-binding specificities of monoclonal antibodies against phosphoinositides in liposomes. Mol Immunol 21(10):863–868

    Article  CAS  PubMed  Google Scholar 

  • Wassef NM, Swartz GM Jr, Alving CR, Kates M (1990) Antibodies to liposomal phosphatidylcholine and phosphatidylsulfocholine. Biochem Cell Biol 68(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • Weber N, Ortega P, Clemente MI, Shcharbin D, Bryszewska M, de la Mata FJ et al (2008) Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. J Control Release 132(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Wonderlich J, Shearer G, Livingstone A, Brooks A (2006) Induction and measurement of cytotoxic T lymphocyte activity. Curr Protoc Immunol. John Wiley & Sons, Inc., New York, pp 1–23

    Google Scholar 

  • Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK (2009) Tricks with tetramers: how to get the most from multimeric peptide–MHC. Immunology 126(2):147–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt LS, Earl PL, Eller LA, Moss B (2004) Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc Natl Acad Sci USA 101(13):4590–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  CAS  PubMed  Google Scholar 

  • Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL et al (2006) Pathogen recognition and development of particulate vaccines: Does size matter? Methods 40(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Xiang SD, Fuchsberger M, Karlson TDL, Hardy CL, Selomulya C, Plebanski M (2013) Nanoparticles, immunomodulation and vaccine delivery. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific, Singapore, pp 449–465

    Google Scholar 

  • Xu W, Shen Y, Jiang Z, Wang Y, Chu Y, Xiong S (2004) Intranasal delivery of chitosan–DNA vaccine generates mucosal SIgA and anti-CVB3 protection. Vaccine 22(27–28):3603–3612

    Article  CAS  PubMed  Google Scholar 

  • Yagi H, Hashizume H, Horibe T, Yoshinari Y, Hata M, Ohshima A et al (2006) Induction of therapeutically relevant cytotoxic T lymphocytes in humans by percutaneous peptide immunization. Cancer Res 66(20):10136–10144

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Bechter C, Wiesneth M, Härter G, Götz M, Germeroth L et al (2008a) Multimer staining of cytomegalovirus phosphoprotein 65–specific T cells for diagnosis and therapeutic purposes: a comparative study. Clin Infect Dis 46(10):e96–e105

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Ohko Y, Sekiguchi Y, Fujishima A, Kubota Y (2008b) Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J Biomed Mater Res B Appl Biomater 85(2):453–460

    Article  CAS  Google Scholar 

  • Yatuv R, Robinson M, Dayan-Tarshish I, Baru M (2010) The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia. Int J Nanomedicine 5:581–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo D, Guk K, Kim H, Khang G, Wu D, Lee D (2013) Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int J Pharm 450(1–2):87–94

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Okada N, Oda A, Matsuo K, Matsuo K, Kayamuro H et al (2008) Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells. Vaccine 26(10):1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Young KR, Nzula S, Burt DS, Ward BJ (2014) Immunologic characterization of a novel inactivated nasal mumps virus vaccine adjuvanted with Protollin. Vaccine 32(2):238–245

    Article  CAS  PubMed  Google Scholar 

  • Yuseff M-I, Pierobon P, Reversat A, Lennon-Dumenil A-M (2013) How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol 13(7):475–486

    Article  CAS  PubMed  Google Scholar 

  • Zanivan S, Krueger M, Mann M (2012) In vivo quantitative proteomics: the SILAC Mouse. In: Shimaoka M (ed) Integrin and cell adhesion molecules. Humana Press, New York, pp 435–450

    Google Scholar 

  • Zhang G, Neubert TA (2009) Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation. Methods Mol Biol 527:79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang L, Liu Y, Chen X, Liu Q, Jia J et al (2014) Immune responses to vaccines involving a combined antigen–nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials 35(23):6086–6097

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Luo W, Wang Y, Chen J, Liu Y, Zhang Y (2015) Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells. Oncol Rep 33(6):2695–2702

    PubMed  PubMed Central  Google Scholar 

  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011a) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10):1322–1337

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VSY (2011b) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5(2):1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C et al (2014) Nanoparticle vaccines. Vaccine 32(3):327–337

    Article  PubMed  Google Scholar 

  • Zhou HY, Zhang YP, Zhang WF, Chen XG (2011) Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr Polym 83(4):1643–1651

    Article  CAS  Google Scholar 

  • Zolnik BS, González-Fernández Á, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465

    Article  CAS  PubMed  Google Scholar 

  • Zook JM, MacCuspie RI, Locascio LE, Halter MD, Elliott JT (2010) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5(4):517–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Xunta de Galicia (INBIOMED 2012/273, DXPCTSUG-FEDER and GPC, Potentially growing groups), Ministerio de Educación y Ciencia (Nanovac project SAF2011-30337-C02-02) and the BIOCAPS project (316265, FP7/REGPOT-2012-2013.1). We thank Isabel Pastoriza and Luis Liz for providing gold NPs, and Maria José Alonso for the protamine nanocapsules. The confocal and SEM-FIB images were taken in the University facilities of the Centre for Scientific and Technical Support (CACTI).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to África González-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lorenzo-Abalde, S. et al. (2016). Evaluating the Interactions Between Proteins and Components of the Immune System with Polymer Nanoparticles. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_9

Download citation

Publish with us

Policies and ethics