Skip to main content
Log in

Mitochondrial ROS production under cellular stress: comparison of different detection methods

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are involved in the regulation of many physiological processes. However, overproduction of ROS under various cellular stresses results in cell death and organ injury and thus contributes to a broad spectrum of diseases and pathological conditions. The existence of different cellular sources for ROS and the distinct properties of individual ROS (their reactivity, lifetime, etc.) require adequate detection methods. We therefore compared different models of cellular stress and various ROS-sensitive dyes—2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA), MitoSOX™, and MitoTracker® red CM-H2XRos—using a confocal fluorescent imaging approach, which has the advantage of not only detecting but also of localizing intracellular sources for ROS. Confocal acquisition of DCF-DA fluorescence can be combined with ROS detection by the mitochondria-specific probes MitoSOX™ and MitoTracker® red CM-H2XRos. Specificity was controlled using various antioxidants such as Trolox and N-acetylcysteine. Using different fluorescent ROS-sensitive probes, we detected higher ROS production equally under cell starvation (IL-3 or serum depletion), hypoxia–reoxygenation, or treatment of cells with prooxidants. The detected increase in ROS was approximately threefold in IL-3-depleted 32D cells, approximately 3.5-fold in serum-deprived NIH cells, and 2.5-fold to threefold in hypoxic HL-1 cells, and these findings agree well with previously published spectrofluorometric measurements. In some cases, electron spin resonance (ESR) spectroscopy was used for the validation of results from confocal fluorescent imaging. Our data show that confocal fluorescent imaging and ESR data are in good agreement. Under cellular stress, mitochondrial ROS are released into the cytoplasm and may participate in many processes, but they do not escape from the cell.

Mitochondrial ROS production under cellular stress

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CPH:

1-hydroxy-3-carboxypyrrolidine

DCF DA:

2′,7′-dichlorodihydrofluorescein diacetate

ESR:

Electron spin resonance

FCS:

Fetal calf serum

NAC:

N-acetylcystein

PPH:

4-phosphonooxy-2,2,6,6-tetramethylpiperidine-N-hydroxyl

ROS:

Reactive oxygen species

t-BHP:

Tert-butyl hydroperoxide

TMRM:

Tetramethylrhodamine methyl ester

TNF-α:

Tumor necrosis factor-alpha

References

  1. Droge W (2002) Physiol Rev 82:47–95

    CAS  Google Scholar 

  2. Hermann M, Kuznetsov A, Maglione M, Smigelskaite J, Margreiter R, Troppmair J (2008) Cell Commun Signal 6:4

    Article  Google Scholar 

  3. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Cell 120:649–661

    Article  CAS  Google Scholar 

  4. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Free Radic Biol Med 47:333–343

    Article  CAS  Google Scholar 

  5. Magder S (2006) Crit Care 10:208

    Article  Google Scholar 

  6. Thannickal VJ, Fanburg BL (2000) Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    CAS  Google Scholar 

  7. Zhang DX, Gutterman DD (2007) Am J Physiol Heart Circ Physiol 292:H2023–H2031

    Article  CAS  Google Scholar 

  8. Akao M, O'Rourke B, Teshima Y, Seharaseyon J, Marban E (2003) Circ Res 92:186–194

    Article  CAS  Google Scholar 

  9. Balaban RS, Nemoto S, Finkel T (2005) Cell 120:483–495

    Article  CAS  Google Scholar 

  10. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Proc Natl Acad Sci USA 95:11715–11720

    Article  CAS  Google Scholar 

  11. Cruthirds DL, Novak L, Akhi KM, Sanders PW, Thompson JA, Millan-Crow LA (2003) Arch Biochem Biophys 412:27–33

    Article  CAS  Google Scholar 

  12. Halliwell B (1993) Haemostasis 23(Suppl 1):118–126

    CAS  Google Scholar 

  13. Rodriguez R, Redman R (2005) Proc Natl Acad Sci USA 102:3175–3176

    Article  CAS  Google Scholar 

  14. Semenza GL (2000) Circ Res 86:117–118

    CAS  Google Scholar 

  15. Thannickal VJ (2003) Am J Physiol Lung Cell Mol Physiol 284:L24–L25

    CAS  Google Scholar 

  16. Benhar M, Engelberg D, Levitzki A (2002) EMBO Rep 3:420–425

    Article  CAS  Google Scholar 

  17. Gianni D, Taulet N, Dermardirossian C, Bokoch GM (2010) Mol Biol Cell 21:4287–4298

    Google Scholar 

  18. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Annu Rev Pharmacol Toxicol 47:143–183

    Article  CAS  Google Scholar 

  19. Kuznetsov AV, Smigelskaite J, Doblander C, Janakiraman M, Hermann M, Wurm M, Scheidl SF, Sucher R, Deutschmann A, Troppmair J (2008) Mol Cell Biol 28:2304–2313

    Article  CAS  Google Scholar 

  20. Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH (2003) J Biol Chem 278:9796–9801

    Article  CAS  Google Scholar 

  21. Diaz G, Liu S, Isola R, Diana A, Falchi AM (2003) Histochem Cell Biol 120:319–325

    Article  CAS  Google Scholar 

  22. Mukhopadhyay P, Rajesh M, Hasko G, Hawkins BJ, Madesh M, Pacher P (2007) Nat Protoc 2:2295–2301

    Article  CAS  Google Scholar 

  23. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Wang W, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H (2008) Cell 134:279–290

    Article  CAS  Google Scholar 

  24. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) J Exp Med 192:1001–1014

    Article  CAS  Google Scholar 

  25. Mariappan N, Elks CM, Fink B, Francis J (2009) Free Radic Biol Med 46:462–470

    Article  CAS  Google Scholar 

  26. O'Malley Y, Fink BD, Ross NC, Prisinzano TE, Sivitz WI (2006) J Biol Chem 281:39766–39775

    Article  Google Scholar 

  27. Buettner GR (1987) Free Radic Biol Med 3:259–303

    Article  CAS  Google Scholar 

  28. Dikalov S, Griendling KK, Harrison DG (2007) Hypertension 49:717–727

    Article  CAS  Google Scholar 

  29. Kozlov AV, Szalay L, Umar F, Fink B, Kropik K, Nohl H, Redl H, Bahrami S (2003) Free Radic Biol Med 34:1555–1562

    Article  CAS  Google Scholar 

  30. Takeshita K, Ozawa T (2004) J Radiat Res Tokyo 45:373–384

    Article  CAS  Google Scholar 

  31. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Am J Physiol Cell Physiol 287:C817–C833

    Article  CAS  Google Scholar 

  32. Han D, Williams E, Cadenas E (2001) Biochem J 353:411–416

    Article  CAS  Google Scholar 

  33. Murphy MP (2009) Biochem J 417:1–13

    Article  CAS  Google Scholar 

  34. Turrens JF (2003) J Physiol 552:335–344

    Article  CAS  Google Scholar 

  35. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) J Biol Chem 275:25130–25138

    Article  CAS  Google Scholar 

  36. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Cell Metab 1:401–408

    Article  CAS  Google Scholar 

  37. Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) J Biol Chem 279:4127–4135

    Article  CAS  Google Scholar 

  38. Lambert AJ, Brand MD (2004) Biochem J 382:511–517

    Article  CAS  Google Scholar 

  39. Prata C, Maraldi T, Fiorentini D, Zambonin L, Hakim G, Landi L (2008) Free Radic Res 42:405–414

    Article  CAS  Google Scholar 

  40. Geiszt M, Leto TL (2004) J Biol Chem 279:51715–51718

    Article  CAS  Google Scholar 

  41. Guzy RD, Schumacker PT (2006) Exp Physiol 91:807–819

    Article  CAS  Google Scholar 

  42. Rieske JS, Lipton SH, Baum H, Silman HI (1967) J Biol Chem 242:4888–4896

    CAS  Google Scholar 

  43. Gupta S (2002) J Clin Immunol 22:185–194

    Article  CAS  Google Scholar 

  44. Kozlov AV, Staniek K, Haindl S, Piskernik C, Ohlinger W, Gille L, Nohl H, Bahrami S, Redl H (2006) Am J Physiol Gastrointest Liver Physiol 290:G543–G549

    Article  CAS  Google Scholar 

  45. Sucher R, Gehwolf P, Kaier T, Hermann M, Maglione M, Oberhuber R, Ratschiller T, Kuznetsov AV, Bosch F, Kozlov AV, Ashraf MI, Schneeberger S, Brandacher G, Ollinger R, Margreiter R, Troppmair J (2009) Transpl Int 22:922–930

    Article  CAS  Google Scholar 

  46. Schumacker PT (2003) Adv Exp Med Biol 543:57–71

    CAS  Google Scholar 

  47. Kozlov AV, Gille L, Miller I, Piskernik C, Haindl S, Staniek K, Nohl H, Bahrami S, Ohlinger W, Gemeiner M, Redl H (2007) Biochem Biophys Res Commun 352:91–96

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a research grant from the Austrian Science Fund (FWF): [P 22080-B20] to A.V.K., and by funds from the Jubiläumsfond der Österreichisschen Nationalbank (OeNB) to J.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Kuznetsov.

Additional information

Andrey V. Kuznetsov and Ingeborg Kehrer contributed equally to this study.

The authors are sorry to announce that Ingeborg Kehrer tragically passed away during the preparation of this manuscript.

Published in the special issue Analytical Sciences in Austria with guest editors G. Allmaier W. Buchberger and K. Francesconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.V., Kehrer, I., Kozlov, A.V. et al. Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem 400, 2383–2390 (2011). https://doi.org/10.1007/s00216-011-4764-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4764-2

Keywords

Navigation