Skip to main content

Abstract

Microalgae are considered one of the most promising feedstocks for biofuels. Interest in algae-based biofuels and chemicals has increased over the past few years because of their potential to reduce the dependence on crude oil-based fuels and chemicals. Algae is the most suitable and sustainable feedstock for producing green energy. However, numerous challenges associated with declining fossil fuel reserves as energy sources have accounted for a shift to biofuels as alternative product from algae. Algae is a source for renewable energy production since it can fix the greenhouse gas (CO2) by photosynthesis and does not compete with the production of food. This chapter, therefore, presents a review on the prospects of algae for biofuel production and also highlighted in this article is the macroalgae-based biofuels energy products obtained from algae as the raw biomass. In a nutshell, algae are the most sustainable fuel resource in terms of environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14:200–216

    Article  Google Scholar 

  2. Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: Progress and perspectives. Renew Sustain Energy Rev 47:427–437

    Article  Google Scholar 

  3. Rosegrant MW, Msangi S, Sulser T, Santos RV (2006) Biofuels and the global food balance. International Food Policy Research Institute, Washington

    Google Scholar 

  4. Woo SG, Yoo K, Lee J, Bang S, Lee M, On K (2012) Comparison of fatty acid analysis methods for assessing biorefinery applicability of waste water cultivated microalgae. Talanta 97:103–110

    Article  Google Scholar 

  5. Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399

    Article  Google Scholar 

  6. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  Google Scholar 

  7. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  Google Scholar 

  8. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L (2009) Beneficial biofuels: the food, energy, and environment trilemma. Science 325:270–271

    Article  Google Scholar 

  9. Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO (2015) Algae based biorefinery—How to make sense? Renew Sustain Energy Rev 47:295–307

    Article  Google Scholar 

  10. Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203

    Article  Google Scholar 

  11. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  Google Scholar 

  12. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and lifecycle assessment of algal biofuels. Appl Energy 88:3548–3555

    Article  Google Scholar 

  13. Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macroalgae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol 86:1679–1693

    Article  Google Scholar 

  14. Bharathiraja B, Chakravarthy M, Ranjith Kumar R, Yogendran D, Yuvaraj D, Jayamuthunagai J, Praveen Kumar R, Palani S (2015) Aquatic biomass (algae) as a future feedstock for bio-refineries: a review on cultivation, processing and products. Renew Sustain Energy Rev 47:634–653

    Article  Google Scholar 

  15. Plunkett JW (2007) Plunkett’s automobile industry almanac 2008: automobile, truck and speciality vehicle industry market research, statistics, trends & leading companies. Plunkett Research Ltd, Houston (Texas)

    Google Scholar 

  16. World Business Council for Sustainable Development (WBCSD) (2004) Mobility 2030: meeting the challenges to sustainability. The sustainable mobility project. Geneva (Switzerland)

    Google Scholar 

  17. Chen HG, Zhang YHP (2015) New biorefineries and sustainable agriculture: increased food, biofuels, and ecosystem security. Renew Sustain Energy Rev 47:117–132

    Article  Google Scholar 

  18. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci 105:13769–13774

    Article  Google Scholar 

  19. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) High titer anaerobic 1-butanol synthesis in Escherichia coli enabled by driving forces. Appl Environ Microbiol 77:2905–2915

    Article  Google Scholar 

  20. Krutsakorn B, Honda K, Ye X, Imagawa T, Bei X, Okano K (2013) In vitro production of n-butanol from glucose. Metab Eng 20:84–91

    Article  Google Scholar 

  21. Liu X, Bastian S, Snow CD, Brustad EM, Saleski TE, Xu JH (2012) Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol. J Biotechnol 164:188–195

    Article  Google Scholar 

  22. Guterl JK, Sieber V (2013) Biosynthesis “debugged”: novel bioproduction strategies. Eng Life Sci 13:4–18

    Article  Google Scholar 

  23. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  Google Scholar 

  24. Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of non natural alcohols. Proc Natl Acad Sci 105:20653–20658

    Article  Google Scholar 

  25. Campbell JE, Lobell DB, Field CB (2009) Greater transportation energy and GHG off sets from bioelectricity than ethanol. Science 324:1055–1057

    Article  Google Scholar 

  26. Zhu Z, Tam TK, Sun F, You C, Zhang Y-HP (2014) A high-energy-density sugar biobattery via a synthetic enzymatic pathway. Nat Commun 5:3026

    Google Scholar 

  27. Schirmer A, Rude MA, Li X, Popova E, delCardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  Google Scholar 

  28. Liu T, Vora H, Khosla C (2010) Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 12:378–386

    Article  Google Scholar 

  29. Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR (2009) Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. Chem Sus Chem 2:149–152

    Article  Google Scholar 

  30. Martín delCampo JS, Rollin J, Myung S, Chun Y, Chandrayan S, Patiño R (2013) High-yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell-free system. Angew Chem Int Ed 52:4587–4590

    Google Scholar 

  31. Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang YHP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380

    Article  Google Scholar 

  32. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99

    Article  Google Scholar 

  33. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  Google Scholar 

  34. Richard TL (2010) Challenges in scaling up biofuels infrastructure. Science 329:793–796

    Article  Google Scholar 

  35. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  Google Scholar 

  36. Galadima A, Muraza O (2014) Biodiesel production from algae by using heterogeneous catalysts: a critical review. Energy 78:72–83

    Article  Google Scholar 

  37. Pachauri R, Reisinger A (2007) IPCC fourth assessment report. IPCC, Geneva

    Google Scholar 

  38. Alamu O, Waheed M, Jekayinfa S (2007) Manuscript EE 07 00 9. Alkali-catalysed laboratory production and testing of biodiesel fuel from Nigerian palm kernel oil, vol IX; July

    Google Scholar 

  39. Galadima A, Garba Z (2009) Catalytic synthesis of ethyl ester from some common oils. Sci World J 4(4):1–5

    Google Scholar 

  40. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1/2):19–26

    Article  Google Scholar 

  41. Department of Energy (1998): Plant/crop-based renewable resources 2020. Document DOE/GO-10098-385, United States Department of Energy, Washington, DC. 24 pp

    Google Scholar 

  42. Young AL (2003) Biotechnology for food, energy, and industrial products: new opportunities for bio-based products. Environ Sci Pollut Res 10(5):273–276

    Article  Google Scholar 

  43. Shoemaker SP, Wright LL (2003) Feedstock production, genetic modification, and processing. Biotechnology for fuels and chemicals. In: Applied biochemistry and biotechnology, vol 3–4, pp 105–108

    Google Scholar 

  44. Patel M, Ou M, Ingram O, Shanmugam KT (2003) Second generation biocatalysts for production of fuels and chemicals from biomass

    Google Scholar 

  45. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  46. Hu Q, Sommerfeld M, Jarvis E, Girardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  Google Scholar 

  47. Guschina I, Harwood J (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  Google Scholar 

  48. Demirbas A (2009) Production of biodiesel from algae oils. Energy Sour Part A 31:163–168

    Article  Google Scholar 

  49. Oncel SS (2013) Microalgae for a macroenergy world. Renew Sustain Energy Rev 26:241–264

    Article  Google Scholar 

  50. Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through insitu lipid hydrolysis and supercritical transesterification. Energy Fuels 24:5235–5243

    Article  Google Scholar 

  51. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabe-dini M (2013) Fatty acids profiling: as elective criterion for screening microalgae strains for biodiesel production. Algal Res 2:258–267

    Article  Google Scholar 

  52. Miao X, Wu Q (2004) High yield bio oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  Google Scholar 

  53. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  Google Scholar 

  54. Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684

    Article  Google Scholar 

  55. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini GB (2009) Microalgae for oil: strains election, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 2009:100–112

    Article  Google Scholar 

  56. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  Google Scholar 

  57. Ziolkowska JR, Simon L (2014) Recent developments and prospects for algae-based fuels in the US. Renew Sustain Energy Rev 29:847–853

    Article  Google Scholar 

  58. Koopmans MV, Wijffels RH, Barbosa MJ, Eppink MHM (2013) A Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  Google Scholar 

  59. Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery—from biofuels to natural products. Bioresour Technol 135:166–174

    Article  Google Scholar 

  60. Griffith MJ, VanHille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    Article  Google Scholar 

  61. Mata TM, Martinsa AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  Google Scholar 

  62. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  Google Scholar 

  63. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  Google Scholar 

  64. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  Google Scholar 

  65. McHugh DJ (2003) A guide to the seaweed industry. (FAO fisheries technical paper). FAO, Rome: p 441

    Google Scholar 

  66. Demirbas A, Demirbas FM (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  67. Gao K, McKinley K (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  68. Jung AK, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  Google Scholar 

  69. Bucholc K, Szymczak-Żyła M, Lubecki L, Zamojska A, Hapter P, Tjernström E (2014) Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Sci Total Environ 473:298–307

    Google Scholar 

  70. Roesijadi G (2010) Macroalgae as a biomass feedstock: a preliminary analysis. U.S. Department of Energy under contract, Pacific Northwest National Laboratory

    Google Scholar 

  71. Debowski M, Zieliński M, Grala A, Dudek M (2013) Algae biomass as an alternative substrate in biogas production technologies—review. Renew Sustain Energy Rev 27:596–604

    Article  Google Scholar 

  72. Najafi G, Ghobadiana B, Yusaf TF (2011) Algae as a sustainable energy source for biofuel production in Iran: a case study. Renew Sustain Energy Rev 15:3870–3876

    Article  Google Scholar 

  73. Robles MA, González MPA, Esteban CL, Molina GE (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27(4):398–408

    Article  Google Scholar 

  74. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phyco remediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  Google Scholar 

  75. Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oilextraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171

    Article  Google Scholar 

  76. Islam MA, Ayoko GA, Brown R, Stuart D, Heimann K (2013) Influence of fatty acid structure on fuel properties of algae derived biodiesel. Procedia Eng 56:591–596

    Article  Google Scholar 

  77. Atadashi IM, Aroua MK, AbdulAziz A (2010) High quality biodiesel and its diesel engine application: a review. Renew Sustain Energy Rev 14(7):1999–2008

    Article  Google Scholar 

  78. Afify AEMR, Shalaby EA, Shanab SMM (2010) Enhancement of biodiesel production from different species of algae. Grasas Aceites 61:416–422

    Article  Google Scholar 

  79. Maceiras R, Rodrı´guez M, Cancela A, Urréjola S, Sánchez A. (2011) Macroalgae :raw material for biodiesel production. Appl Energy 88:3318–3323

    Google Scholar 

  80. Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C (2005) Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ Chem Lett 3:136–139

    Article  Google Scholar 

  81. Amaro HM, Macedo AC, Malcata FX (2012) Microalgae: an alternative as sustainable source of biofuels? Energy 44:158–166

    Article  Google Scholar 

  82. Suominen KEH, Ojanen S, Ahtila P (2014) A biorefinery concept for energy intensive industries focusing on microalgae and anaerobic digestion. J Mech Eng Autom 4:242–245

    Google Scholar 

  83. Singh B, Guldhe A, Rawat I, Bux F (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sustain Energy Rev 29:216–245

    Article  Google Scholar 

  84. Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114

    Article  Google Scholar 

  85. Peu P, Sassi JF, Girault R, Picard S, Saint-Cast P, Béline F (2011) Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Bioresour Technol 102:10794–10802

    Article  Google Scholar 

  86. Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biot 85:199–203

    Google Scholar 

  87. Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre- treatment of microalgae biomass for bioethanol production. Appl Energy 88:3464–3467

    Article  Google Scholar 

  88. Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2011) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 154:878–888

    Google Scholar 

  89. Lee S, Oh Y, Kim D, Kwon D, Lee C, Lee J (2011) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl Biochem Biotechnol 164:878–888

    Article  Google Scholar 

  90. Maurych D, Shu G, Guangyi W (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 2013:1371–1378

    Google Scholar 

  91. Veeken A, Kalyuzhnyi S, Scharff H, Hamelers B (2000) Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng 126:1076–1081

    Article  Google Scholar 

  92. Bush RA, Hall KM (2006) Process for the production of ethanol from algae. US Patent 7135308

    Google Scholar 

  93. Park JH (2012) Use of Gelidium amansiias a promising resource for bioethanol: a practical approach for continuous dilute acid hydrolysis and fermentation. Bioresour Technol 108:83–88

    Article  Google Scholar 

  94. Tan IS, Lam ML, Lee KT (2013) Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr Polym 94:561–566

    Article  Google Scholar 

  95. Peralta-Yahya PP, Zhang F, delCardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  Google Scholar 

  96. Hazelwood LA, Daran JM, vanMaris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  Google Scholar 

  97. Li S, Huang D, Li Y, Wen J, Jia X (2012) Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microb Cell Fact 11:101

    Article  Google Scholar 

  98. Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol: 1–13

    Google Scholar 

  99. Smith K, Cho KM, Liao J (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055

    Article  Google Scholar 

  100. Chen X, Nielsen K, Borodina I, Kielland-Brandt M, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21

    Article  Google Scholar 

  101. Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77:2727–2733

    Article  Google Scholar 

  102. Huo Y-X, Cho KM, Rivera JGL, Monte E, Shen CR, Yan Y (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol advance online publication

    Google Scholar 

  103. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    Article  Google Scholar 

  104. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596

    Article  Google Scholar 

  105. Rowbotham J, Dyer P, Greenwell H, Theodorou M (2012) Thermochemical processing of macroalgae: a late bloomer in the development of third generation biofuels. Biofuel 3:441–461

    Article  Google Scholar 

  106. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  Google Scholar 

  107. Peterson AA, Vogel F, Lachance RP, Fröling M, AntalJr MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  Google Scholar 

  108. Golueke C, Oswald W (1959) Biological conversion of light energy to the chemical energy of methane. Appl Environ Microbiol 7:219–227

    Google Scholar 

  109. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref 3:431–440

    Article  Google Scholar 

  110. Wheeler P, Lindberg A (1999) Biogas upgrading and utilisation. IEA bioenergy—Task 24: energy from biological conversion of organic waste1 pp 1–19

    Google Scholar 

  111. Ras M, Lardon L, Sialve B, Nicolas B, Steyer JP (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206

    Article  Google Scholar 

  112. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  Google Scholar 

  113. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospect and limitation to practical application. Int J Hydrog Energy 24:173–185

    Article  Google Scholar 

  114. Nakada E, Nishikata S, Asada Y, Miyake J (1999) Photosynthetic bacterial hydrogen production combined with a fuel cell. Int J Hydrog Energy 24:1053–1057

    Article  Google Scholar 

  115. Lin CN, Wu SY, Lee KS, Lin PJ, Lin CY, Chang JS (2007) Integration of fermentative hydrogen process and fuel cell for online electricity generation. Int J Hydrog Energy 32:802–808

    Article  Google Scholar 

  116. Zhang YHP (2011) What is vital (and not vital) to advance economically- competitive biofuels production. Proc Biochem 46:2091–2110

    Article  Google Scholar 

  117. Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  Google Scholar 

  118. Rezaiyan J, Cheremisinoff NP (2005) Gasification technologies: a primer for engineers and scientist. CRC press

    Google Scholar 

  119. Rezaiyan J, Cheremisinoff NP (2005) Biogasification. Gasification technologies: a primer for engineers and scientist. Boca Raton, FL CRC Press pp 119–145

    Google Scholar 

  120. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  Google Scholar 

  121. Vavilin VA, Rytow SV, Lokshina LY (1995) Modelling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria. Biores Technol 54:171–177

    Article  Google Scholar 

  122. Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K (2007) Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process. Biores Technol 98:1861–1865

    Article  Google Scholar 

  123. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104:18871–18873

    Article  Google Scholar 

  124. Billerbeck S, Härle J, Panke S (2013) The good of two worlds: increasing complexity in cell-free systems. Curr Opin Biotechnol 24:1037–1043

    Article  Google Scholar 

  125. Ardao I, Hwang E, Zeng AP (2013) Invitro multi enzymatic reaction systems for biosynthesis. Adv Biochem Eng Biotechnol 137:153–184

    Google Scholar 

  126. Rollin JA, Tam W, Zhang YHP (2013) New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chem 15:1708–1719

    Article  Google Scholar 

  127. Korman TP, Sahachartsiri B, Li D, Vinokur JM, Eisenberg D, Bowie JU (2014) A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Protein Sci 25:576–585

    Article  Google Scholar 

  128. Zhang YHP (2015) Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv. http://dx. doi.org/10.1016/j.biotechadv.2014.10.009

  129. Lee DS, Pitari G, Grewe V, Gierens K, Penner JE, Petzold A (2010) Transport impacts on atmosphere and climate: aviation. Atmos Environ 44:4678–4734

    Article  Google Scholar 

  130. Marian E, Ihab HF (2012) Bio-jet fuel from microalgae: reducing water and energy requirements for algae growth. Int J Eng Sci 1(2):22–30

    Google Scholar 

  131. Hendricks RC, Bushnell DM, Shouse DT (2011) Aviation fueling: a cleaner, greener approach. Int J Rotat Mach 1:1–13

    Google Scholar 

  132. Promotion CFJ (2014) Algae biodiesel: commercialization, research and business platform: URL http://www.jatrophaworld.org/global_algae_biodiesel_world_2012_93.html

  133. Azadi P, Brownbridge G, Mosbach S, Smallbone A, Bhave A, Inderwildi O (2014) The carbon footprint and non-renewable energy demand of algae-derived biodiesel. Appl Energy 113:1632–1644

    Article  Google Scholar 

  134. Pfromm PH, Amanor-Boadu V, Nelson R (2011) Sustainability of algae derived biodiesel: a mass balance approach. Bioresour Technol 102(2):1185–1193

    Article  Google Scholar 

  135. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14(9):2596–2610

    Article  Google Scholar 

  136. Reperez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26

    Article  Google Scholar 

  137. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  Google Scholar 

  138. Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22(2–3):137–142

    Article  Google Scholar 

  139. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19(3):235–240

    Article  Google Scholar 

  140. Cantrell KB, Ducey T, RoK S, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99(17):7941–7953

    Article  Google Scholar 

  141. Qin J (2005) Bio-hydrocarbons from algae—impacts of temperature, light and salinity on algae growth. Rural Industries Research and Development Corporation, Barton (Australia)

    Google Scholar 

  142. Bei W, Yanqun L, Nan W, Christopher QL (2008) CO2 bio-mitigation using micro algae. Appl Microbiol Biotechnol 79:707–718

    Article  Google Scholar 

  143. De Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a threestage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  Google Scholar 

  144. Rajiv CDG, Nitumani K, Mohan CK (2012) A study on growth and carbon dioxide mitigation by microalgae Selenastrum sp.: its growth behaviour under different nutrient environments and lipid production. Ann. Biol Res 3(1):499–510

    Google Scholar 

  145. Emma IH, Colman B, Espie GS, Lubian LM (2000) Active transport of CO2 by three species of marine microalgae. J Phycol 36:314–320

    Google Scholar 

  146. Golueke C, Oswald W, Gotaas H (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    Google Scholar 

  147. Mona A (2013) Sustainable algal biomass products by cultivation in wastewater flows. Espoo VTT Technol 2013:147–184

    Google Scholar 

  148. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sc i 19:257–275

    Article  Google Scholar 

  149. Richard JS, Nicholas AP, Yi H, Rockyde N (2010) Sustainable sources of biomass for bioremediation of heavy metals in wastewater derived from coal-fired power generation. PLoS ONE 7:5

    Google Scholar 

  150. Madhu P, Neelam G, Koninika M, Sutapa B (2014) Microalgae in removal of heavy metal and organic pollutants from soil. Microb Biodegrad Biorem 23:521–539

    Google Scholar 

  151. Hugo VPV, Julián MPC, Rosa OCV (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Sains Malaysia for the financial support under Research University (RUI) Grant No.: 1001/PTEKIND/814147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Norli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bala, J.D., Lalung, J., Al-Gheethi, A.A.S., Norli, I. (2016). A Review on Biofuel and Bioresources for Environmental Applications. In: Ahmad, M., Ismail, M., Riffat, S. (eds) Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31840-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31840-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31838-7

  • Online ISBN: 978-3-319-31840-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics