Skip to main content
Log in

Use of macroalgae for marine biomass production and CO2 remediation: a review

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Biomass production from macroalgae has been viewed as important mainly because of the need for pollution abatement. Environmental considerations will increasingly determine product and process acceptability and drive the next generation of economic opportunity. Some countries, including Japan, are actively promoting "green" technologies that will be in demand worldwide in the coming decades. Should an international agreement on CO2-reduction be ratified, its effective use for energy production would be of high priority. This report shows that macroalgae have great potential for biomass production and CO2 bioremediation. Macroalgae have high productivity, as great or greater than the most productive land plants, and do not compete with terrestrial crops for farm land. The review focuses on recent data on productivity, photosynthesis, nutrient dynamics, optimization and economics. Biomass from macroalgae promises to provide environmentally and economically feasible alternatives to fossil fuels. Nevertheless, the techniques and technologies for growing macroalgae on a large-scale and for converting feedstocks to energy carriers must be more fully developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alih EM (1990) Economics of seaweed (Eucheuma farming in Tawi-Tawi islands in the Philippines. The Second Asian Fisheries Forum, Proceedings of the Second Asian Fisheries Forum, Tokyo, Japan, 17–22 April 1989: 249–252.

  • Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28: 568–574.

    Google Scholar 

  • Beer S, Israel A, Drechsler Z, Cohen Y (1990) Photosynthesis ofUlva fasciata V. Evidence for an inorganic carbon concentrating system, and ribulose-1,5-bisphosphate carboxylase/oxygenase CO2 kinetics. Plant Physiol. 94: 1542–1546.

    Google Scholar 

  • Bidwell RGS, McLachlan J, Lloyd NDH (1985) The cultivation of Irish moss,Chondrus crispus Stackh. Bot. Mar. 28: 87–97.

    Google Scholar 

  • Bidwell RGS, McLachlan J (1985) Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J. exp. mar. Biol. Ecol. 86: 15–46.

    Google Scholar 

  • Birch PB, Gordon DM, McComb AJ (1981) Nitrogen and phosphorus nutrition ofCladophora in the Peel-Harven system. Bot. Mar. 24: 381–387.

    Google Scholar 

  • Bird KT (1987) Cost analysis of energy from marine biomass. In Bird KT, Benson PH (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 327–350.

    Google Scholar 

  • Bird KT, Hanisak MD, Ryther JH (1981) Chemical quality and production of agars extracted fromGracilaria tikvahiae grown in different nitrogen enrichment conditions. Bot. Mar. 24: 441–444.

    Google Scholar 

  • Borowitzka MA (1981) Photosynthesis and calcification in the articulate coralline algaeAmphiroa anceps andA. foliacea. Mar. Biol. 62: 17–23.

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1976) Calcification in the green algaHalimeda III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J. exp. Bot. 27: 879–893.

    Google Scholar 

  • Brinkhuis BH, Levine HG, Schlenk GG, Tobin S (1987)Laminaria cultivation in the far east and North America. In Bird KT, Benson PH (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 107–146.

    Google Scholar 

  • Brown DL, Tregunna EB (1967) Inhibition of respiration during photosynthesis by some algae. Can. J. Bot. 45: 1135–1143.

    Google Scholar 

  • Broecker WS (1982) Ocean chemistry during glacial times. Geochimica et Geophysica Acta 46: 1689–1705.

    Google Scholar 

  • Broecker WS, Denton GH (1989) The rose of ocean-atmosphere reorganization in glacial cycles. Geochimica et Geophysica Acta 53: 2645–2510.

    Google Scholar 

  • Calvin M, Taylor SE (1989) Fuels from algae. In Cresswell RC, Ress TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman and John Wiley & Sons, New York: 137–160.

    Google Scholar 

  • Carpenter RC, Hackney JM, Adey WH (1991) Measurements of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow. Limnol. Oceanogr. 36: 40–49.

    Google Scholar 

  • Chapman ARO, Craigie JS (1977) Seasonal growth inLaminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40: 197–205.

    Google Scholar 

  • Chynoweth DP, Fannin KF, Srivastava VJ (1987) Biological gasification of marine algae. In Bird KT, Benson PH (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 285–303.

    Google Scholar 

  • Cohen I, Neori A (1991)Ulva lactuca biofilters for marine fishpond effluents I. Ammonia uptake kinetics and nitrogen content. Bot. Mar. 34: 475–482.

    Google Scholar 

  • Cook CM, Lanaras T, Colman B (1986) Evidence for bicarbonate transport in species of red and brown macrophytic marine algae. J. exp. Bot. 37: 977–984.

    Google Scholar 

  • Cousens R (1984) Estimation of annual production by the intertidal brown algaAscophyllum nodosum (L.) Le Jolis. Bot. Mar. 27: 217–227.

    Google Scholar 

  • Critchley AT, DeVisscher PRM, Nienhuis PH (1990) Canopy characteristics of the brown algaSargassum muticum Fucales, Phaeophyta) In Lake Grevelingen, southwest Netherlands. Hydrobiologia 204/205: Dev. Hydrobiol. 58: 211–217.

  • Debusk TA, Ryther JH (1984) Effects of seawater exchange, pH and carbon supply on the growth ofGracilaria tikvahiae (Rhodophyceae) in large scale culture. Bot. Mar. 27: 357–362.

    Google Scholar 

  • DeBoer JA, Guigli HJ, Israel TL, D'Elia CF (1978) Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J Phycol. 14: 261–266.

    Google Scholar 

  • Doty MS (1987) The production and use ofEucheuma. In Doty MS, Caddy JF, Santelices B (eds), Case Studies of Seven Commercial Seaweed Resources. FAO Fish. Tech. Pap. No. 281: 123–164.

  • Drechsler Z, Beer S (1991) Utilization of inorganic carbon byUlva lactuca. Planta Physiol. 97: 1439–1444.

    Google Scholar 

  • Dring MJ (1986) Pigment composition and photosynthetic action spectra ofLaminaria (Phaeophyta) grown in different light qualities and irradiances. Br. phycol. J. 21: 199–207.

    Google Scholar 

  • Dromgoole FI (1978) The effects of pH and inorganic carbon on photosynthesis and dark respiration ofCarpophyllum (Fucales, Phaephyceae). Aquat. Bot. 4: 11–22.

    Google Scholar 

  • Egan B, Yarish C (1990) Productivity and life history ofLaminaria longicruris at its southern limit in the western Atlantic Ocean. Mar. Ecol. Prog. Ser. 67: 263–273.

    Google Scholar 

  • FAO (1990) Training manual onGracilaria Culture and Seawood Processing in China. Training Manual 6: 2–46.

    Google Scholar 

  • Fernandez C, Gutierrez LM, Rico JM (1990) Ecology ofSargassum muticum on the north coast of Spain. Preliminary observations. Bot. Mar. 33: 423–428.

    Google Scholar 

  • Friedlander M, Dawes CJ (1985)In situ uptake kinetics of ammonium and phosphate and chemical composition of the red seaweedGracilaria tikvahiae. J. Phycol. 21: 448–453.

    Google Scholar 

  • Fujita RM (1985) The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J. exp. mar. Biol. Ecol. 92: 283–301.

    Google Scholar 

  • Gao K (1990a) Seasonal variation of photosynthetic capacity inSargassum horneri. Jpn. J. Phycol. 38: 25–33.

    Google Scholar 

  • Gao K (1990b) Diurnal photosynthetic performance ofSargassum horneri. Jpn. J. Phycol. 38: 163–165. (Japanese, with English summary).

    Google Scholar 

  • Gao K (1991a) Effects of seawater current speed on the photosynthetic oxygen evolution ofSargassum thunbergii (Phaeophyta). Jpn. J. Phycol. 39: 291–293. (Japanese, with English summary).

    Google Scholar 

  • Gao K (1991b) Comparative photosynthetic capacities of different parts ofSargassum horneri. Jpn. J. Phycol. 39: 245–252.

    Google Scholar 

  • Gao K, Aruga Y (1987) Preliminary studies on the photosynthesis and respiration ofPorphyra yezoensis under emersed conditions. J. Tokyo Univ. Fish. 74: 51–65.

    Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations. J. appl. Phycol. 3: 355–362.

    Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1992) Enhancement of photosynthetic CO2 fixation of the red algaPorphyra yezoensis Ueda in flowing seawater. Jpn. J. Phycol. 40: 397–400. (Japanese, with English summary).

    Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline algaCorallina pilulifera, with special reference to the effect of elevated atmospheric CO2. Mar. Biol. 117: 129–132.

    Google Scholar 

  • Gao K, Aruga Y, Asada K, Kiyohara M (1993) Influence of enhanced CO2 on growth and photosynthesis of the red algaeGracilaria sp. andG. chilensis. J. appl. Phycol. 5: 563–571.

    Google Scholar 

  • Gao K, Nakahara H (1990) Effects of nutrients on the photosynthesis ofSargassum thunbergii. Bot. Mar. 33: 375–383.

    Google Scholar 

  • Gao K, Umezaki I (1989a) Comparative studies of photosynthesis in different parts ofSargassum thunbergii. Jpn. J. Phycol. 37: 7–16.

    Google Scholar 

  • Gao K, Umezaki I (1989b) Studies on diurnal photosynthetic performance ofSargassum thunbergii I. Changes in photosynthesis under natural sunlight. Jpn. J. Phycol. 37: 89–98.

    Google Scholar 

  • Gao K, Umezaki I (1989c) Studies on diurnal photosynthetic performance ofSargassum thunbergii II. Explanation of diurnal photosynthesis patterns from examinations in the laboratory. Jpn. J. Phycol. 37: 99–104.

    Google Scholar 

  • Gellenbeck K, Chapman D (1986) Feasibility of mariculture of the brown seaweed,Sargassum muticum (Phaeophyta): Growth and culture conditions, culture methods, alginic acid content and conversion to methane. In Barclay WR, McIntosch RP (eds), Algal Biomass Technologies. J. Cramer, Berlin: 107–115.

    Google Scholar 

  • Gerard VA (1987) Optimizing biomass production on marine farms. In Bird KT, Benson PH (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 95–106.

    Google Scholar 

  • Giordano M, Maberly SC (1989) Distribution of carbonic anhydrase in British marine macroalgae. Oecologia 81: 534–539.

    Google Scholar 

  • Graham D, Smillie RM (1976) Carbonate dehydrase in marine organisms of the Great Barrier Reef. Aust. J. Plant Physiol. 3: 113–119.

    Google Scholar 

  • Haines KC, Wheeler PA (1978) Ammonium and nitrate uptake by the marine macrophytesHypnea musciformis (Rhodophyta) andMacrocystis pyrifera (Phaeophyta). J. Phycol. 14: 319–324.

    Google Scholar 

  • Hall DO, Mynick HE, Williams RH (1991) Cooling the green house with bioenergy. Nature 353: 11–12.

    Google Scholar 

  • Hanisak MD (1979) Nitrogen limitation ofCodium fragile ssp.tomentosoides as determined by tissue analysis. Mar. Biol. 50: 333–337.

    Google Scholar 

  • Hanisak MD (1981) Recycling the residues from anaerobic digesters as a nutrient source for seaweed growth. Bot. Mar. 24: 57–61.

    Google Scholar 

  • Hanisak MD, Harlin MM (1978) Uptake of inorganic nitrogen byCodium fragile subsp.tomentosoides (Chlorophyta). J. Phycol. 14: 450–454.

    Google Scholar 

  • Hanisak MD, Littler MM, Littler DS (1988) Significance of macroalgal polymorphism: intraspecific tests of the functional-form model. Mar. Biol. 99: 157–165.

    Google Scholar 

  • Hanisak MD, Ryther JH (1984) Cultivation biology ofGracilaria tikvahiae in the United States. Hydrobiologia 116/117 (Dev. Hydrobiol. 22): 295–298.

    Google Scholar 

  • Harlin MM (1978) Nitrate uptake byEnteromorpha spp (Chlorophyceae): applications to aquaculture systems. Aquaculture: 15: 373–376.

    Google Scholar 

  • Harlin MM, Craigie JS (1978) Nitrate uptake byLaminaria longicruris (Phaeophyceae). J. Phycol. 14: 464–467.

    Google Scholar 

  • Helm D (1990) Who should pay for global warming. New Scientist 3: 36–39.

    Google Scholar 

  • Henley WJ, Levavasseur G, Franklon LA, Osmond CB, Ramus J (1991) Photoacclimation and photoinhibition inUlva rotundata as influenced by nitrogen availability. Planta 184: 235–243.

    Google Scholar 

  • Herbert SK, Waaland JR (1988) Photoinhibition of photosynthesis in a sun and a shade species of the red algal genusPorphyra. Mar. Biol. 97: 1–7.

    Google Scholar 

  • Hirata H, Xu B (1990) Effects of feed addictiveUlva produced in feedback culture system on the growth and color of Red Sea Bream, Pagure major. SUISANZOSHOKU 38: 177–182. (Japanese, with English summary).

    Google Scholar 

  • Holbrook GP, Beer S, Spencer WE, Reiskind JB, Davis JS, Bowes G (1988) Photosynthesis in marine macroalgae: Evidence for carbon limitation. Can. J. Bot. 66: 577–582.

    Google Scholar 

  • Imada O, Usuku T, Saito Y, Ando S (1987) Artificial culture of laver thalli applied to large scale system. Bull. Jap. Soc. Sci. Fish. 53: 739–765. (Japanese, with English summary).

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1990) Climate Change: The IPCC Scientific Assessment. Houghton JT, Jenkins GJ, Ephraumus (eds), Cambridge University Press, New York.

  • Israel A, Beer S (1992) Photosynthetic carbon acquistion in the red algaGracilaria conferta. II. Rubisco carboxylase kinetics, carbonic anhydrase and HCO- 3 uptake. Mar. Biol. 112: 200–697.

    Google Scholar 

  • Johnston AM, Raven JA (1986) The utilization of bicarbonate ions by the macroalgaAscophyllum nodosum (L.) Le Jolis. Plant Cell Envir. 9: 175–184.

    Google Scholar 

  • Johnston AM, Raven JA (1990) Effects of culture in high CO2 on the photosynthetic physiology ofFucus serratus. Br. phycol. J. 25: 75–82.

    Google Scholar 

  • Kilar JA, Littler SL (1989) Functional morphological relationship inSargassum polyceratium (Phaeophyta): Phenotypic and ontogenetic variability in apparent photosynthesis and dark respiration. J. Phycol. 25: 713–720.

    Google Scholar 

  • Kita W (1990) Culture of seaweedsMonostroma. Mar. Behav. Physiol. 16: 109–131.

    Google Scholar 

  • Küppers U, Kremer BP (1978) Longitudinal profiles of carbon dioxide fixation capacities in marine macroalgae. Plant Physiol. 62: 49–53.

    Google Scholar 

  • Lapointe BE (1986) Phosphorus-limited photosynthesis and growth ofSargassum natans andSargassum fluitans (Phaeophyceae) in the western North Atlantic. Deep Sea Res. 33: 391–399.

    Google Scholar 

  • Larkum AWD (1986) A study of growth and primary production inEcklonia radiata (C.Ag.) J. Agardh (Laminariales) at a sheltered site in Port Jackson, New South Wales. J. exp. mar. Biol. Ecol. 96: 177–190.

    Google Scholar 

  • Lehnberg W, Schramm W (1984) Mass culture of brackishwater-adapted seaweeds in sewage-enriched seawater. I. Productivity and nutrient accumulation. Hydrobiologia 116/117 (Dev. Hydrobiol. 22): 276–281.

    Google Scholar 

  • Levavasseur G, Edwards GE, Osmond CB, Ramus J (1991) Inorganic carbon limitation of photosynthesis inUlva rotundata (Chlorophyta). J. Phycol. 27: 667–672.

    Google Scholar 

  • Lignell A. Pedersen M (1989) Effects of pH and inorganic carbon concentration on growth ofGracilaria secundata. Br. phycol. J. 24: 83–89.

    Google Scholar 

  • Madsen TV, Maberly SC (1990) A comparison of air and water as environments for photosynthesis by the intertidal algaFucus spiralis (Phaeophyta). J. Phycol. 26: 24–30.

    Google Scholar 

  • Maegawa M (1980) Measurements of photosynthesis and productivity of the cultivatedMonostroma population. La Mer 18: 116–124.

    Google Scholar 

  • Maegawa M, Aruga Y (1983) Photosynthesis and productivity of the cultivatedMonostroma latissimum population. La Mer 21: 164–172.

    Google Scholar 

  • Mann KH (1972) Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. 2. Productivity of the seaweeds. Mar. Biol. 12: 1–10.

    Google Scholar 

  • Matsumoto F. (1959) Studies on the effect of environmental factors on the growth of ‘Nori’ (Porphyra tenera Kjellm.), with special reference to water motion. J. Fac. Fish. Anim. Hush. Hiroshima Univ. 2: 249–333 (Japanese, with English summary).

    Google Scholar 

  • McKinley KR, Fast AW (1991) Increasing productivity by the utilization of deep ocean water: biological considerations and the U.S. experience. In Hirata GN, McKinley KR, Fast AW (eds), Engineering Research Needs for OffShore Mariculture Systems Workshop. National Science Foundation, East-West Center, Hawaii Natural Energy Institute, Honolulu: 411–421.

    Google Scholar 

  • Mencher FM, Katase SA (1988) Growth of Nod (Porphyra yezoensis) in an experimental ocean thermal energy convesion system at The Natural Energy Laboratory of Hawaii. In Fast AW, Tanoue KY (eds), OTEC Aquaculture in Hawaii. UNIHI-SEAGRANT -MR-89-01, UH Sea Grant College Program, Honolulu, Hawaii: 76–83.

    Google Scholar 

  • Morand P, Carpentier B, Charlier RH, Maze J, Orlandini M, Plunkett BA, Waart JD (1991) Bioconversion of seaweeds. In Guiry MD, Blunden G (eds), Seaweed Resources in Europe: Uses and Potential. John Wiley & Sons, Chichester: 95–148.

    Google Scholar 

  • Morgan KC, Shacklock PF, Simpson FJ (1980) Some aspects of the culture ofPalmaria palmata in greenhouse tanks. Bot. Mar. 23: 765–770.

    Google Scholar 

  • Nathan RA (ed.) (1978) Fuels from Sugar Crops. U.S. Department of Energy.

  • North WJ (1987) Oceanic farming of Macrocystis, the problems and non-problems. In Bird KT, Benson PH (eds), Seaweek Cultivation for Renewable Resources. Elsevier, Amsterdam: 39–67.

    Google Scholar 

  • Novaczek (1984) Development and phenology ofEcklonia radiata at two depths in Goat Island Bay, New Zealand. Mar. Biol. 81: 189–197.

    Google Scholar 

  • Okazaki M (1972) Carbonic anhydrase in the calcareous red algaSerraticardia maxima. Bot. Mar. 15: 133–138.

    Google Scholar 

  • Orr JC, Sarmiento JL (1992) Potential of marine macroalgae as a sink for CO2: Constraint from a 3-d general circulation model of the global ocean. Water, Air and Soil Pollution 64: 405–421.

    Google Scholar 

  • Quay PK, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256: 74–79.

    Google Scholar 

  • Raven JA (1992a) How benthic macroalgae cope with flowing freshwater: resource acquisition and retention. J. Phycol. 28: 133–146.

    Google Scholar 

  • Raven JA (1992b) Limits on growth rates. Nature 361: 209–210.

    Google Scholar 

  • Raven JA, Osmond CB (1990) Bicarbonate use in photosynthesis by brown algae andCodium fragile from North Carolina. Br. phycol. J. 25: 94.

    Google Scholar 

  • Riebesel U, Wolf-Gladrow DA, Smetacek V (1992) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–251.

    Google Scholar 

  • Ritschard RL (1992) Marine algae as a CO2 sink. Water, Air and Soil Pollution 64: 289–303.

    Google Scholar 

  • Roman CT, Able KW, Lazzari MA, Heck KL (1990) Primary productivity of angiosperm and macroalgae dominated habitats in a New England salt marsh: A comparative analysis. Estuar. coast. shelf Sci. 30: 35–45.

    Google Scholar 

  • Rosenberg G, Ramus J (1984) Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquat. Bot. 19: 65–72.

    Google Scholar 

  • Ryther JH, DeBoer JA, Lapointe BE (1979) Cultivation of seaweeds for hydrocolloids, waste treatment and biomass for energy conversion. Proc. Int. Seaweed Symp. 9: 1–16.

    Google Scholar 

  • Ryther JH Dunstan WM, Tenore KR, Huguenin JE (1972) Controlled eutrophication: increasing food production from the sea by recycling human wastes. AIBS J. 22: 144–152.

    Google Scholar 

  • Sakanishi Y, Yokohama Y, Aruga Y (1990) Seasonal changes in photosynthetic capacity ofLaminaria longissima Miyabe (Phaeophyta). Jpn. J. Phycol. 38: 147–153.

    Google Scholar 

  • Sand-Jensen K, Gordon DM (1984) Differential ability of marine and freshwater macrophytes to utilize HCO- 3 and CO2. Mar. Biol. 80: 247–253.

    Google Scholar 

  • Sauze F (1983) Increasing the productivity of macroalgae by the action of a variety of factors. In Stub A, Chartier A, Schleser P, Schleser G (eds), Energy from Biomass. Elsevier Applied Science, London: 324–328.

    Google Scholar 

  • Schramm W (1991) Seaweeds for waste water treatment and recycling of nutrients. In Guiry MD, Blunden G (eds), Seaweed Resources in Europe: Uses and Potential. John Wiley & Sons, Chichester: 149–168.

    Google Scholar 

  • Smith AD, Roth AA (1979) Effect of carbon dioxide concentration on calculation in the red coralline algaBossiella orbigniana. Mar. Biol. 52: 217–225.

    Google Scholar 

  • Smith JR (1987) The economics of small-scale seaweed production in the South China Sea region. FAO Fish. Circ. No 806.

  • Smith RG, Bidwell RGS (1987) Carbonic anhydrase-dependent inroganic carbon uptake by the red macroalga,Chondrus crispus. Plant Physiol. 83: 735–738.

    Google Scholar 

  • Smith SV, Walsh TW (1988) Surface and deep water composition at the Natural Energy Laboratory of Hawaii. In Fast AW, Tanoue KW (eds), OTEC Aquaculture in Hawaii. UNIHI-SEAGRANT -MR-89-01, UH Sea Grant College Progam, Honolulu: 49–69.

    Google Scholar 

  • Snow IT Jr, Piper LE, Lupton SE, Stegen GR (1979) Comparative assessment of marine biomass materials. Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic Chemistry. Wiley, New York: 171–185.

    Google Scholar 

  • Sullivan RJ, McGinn J, Jain K, Engel M (1981) Systems analysis studies on marine biomass commercial application. General Electric Co. Re-Entry Systems Divisions, Philadelphia.

    Google Scholar 

  • Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78: 97–105.

    Google Scholar 

  • Taniguichi K, Yamada H (1988) Annual variation and productivity of theSargassum horneri population in Matsushima Bay on the Pacific coast of Japan. Bull. Tohokureg. Fish. Res. Lab. 50: 59–65. (Japanese, with English summary).

    Google Scholar 

  • Thomas EA, Tregunna EB (1968) Bicarbonate ion assimilation in photosynthesis bySargassum muticum. Can. J. Bot. 46: 411–415.

    Google Scholar 

  • Tseng CK, Fei XG (1987) Macroalgal commercialization in the Orient. Hydrobiologia 151/152 (Dev. Hydrobiol. 41): 167–172.

    Google Scholar 

  • Tseng CK, Sweeney BM (1946) Physiological studies ofGelidium cartilagineum. I. Photosynthesis, with special reference to the carbon dioxide factor. Am. J. Bot. 33: 706–715.

    Google Scholar 

  • Ugarte R, Santelices B (1992) Experimental tank cultivation ofGracilaria chilensis in central Chile. Aquaculture 101: 7–16.

    Google Scholar 

  • Wallentinus I (1984) Comparison of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar. Biol. 80: 215–225.

    Google Scholar 

  • Wheeler PA, North WJ (1980) Effect of nitrogen supply on nitrogen content and growth rate of juvenileMacrocystis pyrifera (Phaeophyta) sporophytes. J. Phycol. 16: 577–582.

    Google Scholar 

  • Wheeler WN (1980a) Effect of boundary layer transport on the fixation of carbon by the giant kelpMacrocystis pyrifera. Mar. Biol. 56: 103–110.

    Google Scholar 

  • Wheeler WN (1980b) Pigment content and photosynthetic rate of the fronds ofMacrocystis pyrifera. Mar. Biol. 56: 97–102.

    Google Scholar 

  • Wheeler WN, Druehl LD (1986) Seasonal growth and productivity ofMacrocystis integrifolia in British Columbia, Canada. Mar. Biol. 90: 181–186.

    Google Scholar 

  • Wheeler WN, Srivastava LM (1984) Seasonal nitrate physiology ofMacrocystis integrifolia. J. exp. mar. Biol. Ecol. 76: 35–50.

    Google Scholar 

  • Williamson P (1992) A curb on carbon? AMBIO 21: 387.

    Google Scholar 

  • Wu CY, Wen ZC, Zhang JP, Peng ZS (1984) A preliminary comparative study of the productivity of three economic seaweeds. Chinese J. Oceanol. Limnol. 2: 97–101.

    Google Scholar 

  • Yokohama Y (1973) A comparative study on photosynthesis-temperature relationships and their seasonal changes in marine benthic algae. Int. Rev. ges. Hydrobiol. 58: 463–472.

    Google Scholar 

  • Yokohama Y, Tanaka J, Chihara M (1987) Productivity of theEcklonia cava community in a bay of Izu Peninsula on the Pacific Coast of Japan. Bot. Mag. Tokyo 100: 129–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, K., McKinley, K.R. Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6, 45–60 (1994). https://doi.org/10.1007/BF02185904

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02185904

Key words

Navigation