Advertisement

Pyro-Electrohydrodynamic Printing and Multi Jets Dispenser

  • Sara CoppolaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter a new concept of droplet generation based on the pyroelectrohydrodynamic effect is described. The method is analyzed for the direct drawing and dispensing of small droplets from liquid drops or film reservoirs. For the smallest ink droplets, printing resolution down to 300 nm (corresponding to attolitre volumes) was achieved. This technique does not require electrodes, high-voltage circuit connections or special capillary nozzles. In fact, the electric fields are generated pyroelectrically using functionalized substrates of Lithium Niobate (LN) for transferring liquids between two substrates and manipulate the droplets three dimensionally. 

Keywords

Liquid Film Lithium Niobate Thermal Stimulus Filling Ratio Lithium Niobate Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Casner, J.-P. Delville, Phys. Rev. Lett. 90, 144503 (2003)CrossRefGoogle Scholar
  2. 2.
    B. de Heij et al., Anal. Bioanal. Chem. 378, 119–122 (2004)CrossRefGoogle Scholar
  3. 3.
    T. Ondarcuhu et al., Eur. Phys. J. Spec. Top. 166, 15–20 (2009)CrossRefGoogle Scholar
  4. 4.
    L.T. Cherney, J. Fluid Mech. 378, 167–196 (1999)CrossRefGoogle Scholar
  5. 5.
    R.T. Collins et al., Nat. Phys. 4, 149–154 (2008)CrossRefGoogle Scholar
  6. 6.
    G.I. Taylor, Proc. R. Soc. Lond. A 280, 383–397 (1964)CrossRefGoogle Scholar
  7. 7.
    J.-U. Park et al., Nature Mater. 6, 782–789 (2007)CrossRefGoogle Scholar
  8. 8.
    J.-U. Park et al., Nano Lett. 8, 4210–4216 (2008)CrossRefGoogle Scholar
  9. 9.
    H.F. Poon, D.A. Saville, I.A. Aksay, Appl. Phys. Lett. 93, 133114 (2008)CrossRefGoogle Scholar
  10. 10.
    C.-H. Chen, D.A. Saville, I.A. Aksay, Appl. Phys. Lett. 89, 124103 (2006)CrossRefGoogle Scholar
  11. 11.
    A.U. Chen, O.A. Basaran, Phys. Fluids 14, L1–L4 (2002)CrossRefGoogle Scholar
  12. 12.
    L. Miccio et al., Opt. Lett. 34, 1075–1077 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Ahmed, T.B. Jones, J. Micromech. Microeng. 17, 1052–1058 (2007)CrossRefGoogle Scholar
  14. 14.
    Ferraro et al., Nat. Nanotech. 5, 429–435 (2010)CrossRefGoogle Scholar
  15. 15.
    B. Rosenblum, P. Bräunlich, J.P. Carrico, Appl. Phys. Lett. 25 (1974)Google Scholar
  16. 16.
    A.M. Gañán-Calvo, Phys. Rev. Lett. 98 (2007)Google Scholar
  17. 17.
    N. Maeda, J.N. Israelachvili, M.M. Kohonen, PNAS 100 (2003)Google Scholar
  18. 18.
    G.M. Whitesides, Nature 442, 368 (2006)CrossRefGoogle Scholar
  19. 19.
    J.M. Köhler, T. Henkel, Appl. Microbiol. Biotechnol. 69, 113 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Huebner et al., Lab Chip 8, 1244 (2008)CrossRefGoogle Scholar
  21. 21.
    D.A. Sessoms et al., Phys. Rev. E 80, 016317 (2009)CrossRefGoogle Scholar
  22. 22.
    P. Matteini et al., J. Mater. Chem. B 1, 1096 (2013)CrossRefGoogle Scholar
  23. 23.
    F. Ratto et al., Proc. SPIE 7910, 5954853 (2011)Google Scholar
  24. 24.
    P.K. Notz, O.A. Basaran, J. Colloid Interface Sci. 213, 218 (1999)CrossRefGoogle Scholar
  25. 25.
    R. Mercatelli et al., Appl. Phys. Lett. 99, 131113 (2011)CrossRefGoogle Scholar
  26. 26.
    A.V. Butenko, J. Appl. Phys. 108, 044106 (2010)CrossRefGoogle Scholar
  27. 27.
    M.G. Lippmann, Ann. Chim. Phys. 5, 494 (1875)Google Scholar
  28. 28.
    E. Colgate, H.J. Matsumoto, Vac. Sci. Technol. A 8, 3625 (1990)CrossRefGoogle Scholar
  29. 29.
    F. Mugele, J.-C. Baret, J. Phys.: Condens. Matter 17, R705 (2005)Google Scholar
  30. 30.
    F. Beunis et al., Appl. Phys. Lett. 91, 182911 (2007)CrossRefGoogle Scholar
  31. 31.
    H. Moon et al., J. Appl. Phys. 92, 4080 (2002)CrossRefGoogle Scholar
  32. 32.
    V. Taly, B.T. Kelly, A.D. Griffiths, ChemBioChem 8, 263–272 (2007)CrossRefGoogle Scholar
  33. 33.
    A.D. Griffiths, D.S. Tawfik, Trends Biotechnol. 24, 9 (2006)CrossRefGoogle Scholar
  34. 34.
    O. Basaran, AIChE J. 48, 9 (2002)CrossRefGoogle Scholar
  35. 35.
    H. Song, D.L. Chen, F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336–7356 (2006)Google Scholar
  36. 36.
    P. Calvert, Chem. Mater. 13, 3299–3305 (2001)CrossRefGoogle Scholar
  37. 37.
    M.E. Kuil et al., Marijnissen. Biotechnol. J. 1, 969–975 (2006)CrossRefGoogle Scholar
  38. 38.
    W. Deng et al., J. Aerosol Sci. 40, 907–918 (2009)CrossRefGoogle Scholar
  39. 39.
    R. Bocanegra, J. Aerosol Sci. 36, 1387–1399 (2005)CrossRefGoogle Scholar
  40. 40.
    S.B.Q. Tran et al., J. Electrost. 68, 138–144 (2010)CrossRefGoogle Scholar
  41. 41.
    R.T. Kelly et al., Anal. Chem. 80, 5660–5665 (2008)CrossRefGoogle Scholar
  42. 42.
    L.D. Landau et al., Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)Google Scholar
  43. 43.
    E. Scaffer et al., Nature 403, 874–877 (2000)CrossRefGoogle Scholar
  44. 44.
    N.E. Voicu, S. Harkema, U. Steiner, Adv. Funct. Mater. 16, 926 (2006)CrossRefGoogle Scholar
  45. 45.
    H.F. Poon et al., Appl. Phys. Lett. 93, 133114 (2008)CrossRefGoogle Scholar
  46. 46.
    E. Elele, Y. Shen, B. Khusid, Appl. Phys. Lett. 97, 233501 (2010)CrossRefGoogle Scholar
  47. 47.
    H. Ottevaere et al., J. Opt. A: Pure Appl. Opt. 4, S22–S28 (2002)CrossRefGoogle Scholar
  48. 48.
    M. He et al., J. Opt. A: Pure Appl. Opt. 6, 94–97 (2004)CrossRefGoogle Scholar
  49. 49.
    C.Y. Chang, S.Y. Yang, J.L. Sheh, Microsyst. Technol. 12, 754–759 (2006)CrossRefGoogle Scholar
  50. 50.
    J. Shi et al., Microfluid. Nanofluid. 9, 313–318 (2010)CrossRefGoogle Scholar
  51. 51.
    J.-H. Zhu, J.-X. Shi, Y. Wang, P.-S. He, Chin. J. Chem. Phys. 19, 443–446 (2006)CrossRefGoogle Scholar
  52. 52.
    A. Schilling, R. Merz, C. Ossmann, H.P. Herzig, Opt. Eng. 9, 2171–2176 (2000)CrossRefGoogle Scholar
  53. 53.
    W. Cheong, L. Yuan, V. Koudriachov, W. Yu, Opt. Express 10, 586–590 (2002)CrossRefGoogle Scholar
  54. 54.
    I.A. Grimaldi, J. Appl. Polym. Sci. 122, 3637–3643 (2011)CrossRefGoogle Scholar
  55. 55.
    F. Villani, Opt. Lett. 35, 3333–3335 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Applied Sciences and Intelligent Systems, ISASI-CNRPozzuoliItaly

Personalised recommendations